Investigating porcine and feline zona pellucida as
immunocontraceptive antigens in the female domestic cat

Joyce A. Eade, BSc (Hons)

This thesis is presented for the degree of Doctor of Philosophy at Murdoch University

2007
DECLARATION

I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution.

...

Joyce A. Eade
ABSTRACT

Immuonocontraception, or contraception mediated by the immune system, is being widely studied as an alternative, humane form of population control. The induction of an immune response against a specific component of the mammalian oocyte, termed zona pellucida (ZP) has been shown to be an effective immunocontraceptive in several species. Comparatively little work has been done investigating the use of ZP antigens in the domestic cat. This study aimed to investigate porcine ZP(B+C) and feline ZPA, B and C as immunogens in the domestic cat, and further to elucidate their effects on reproduction. Immunisation of female cats with porcine ZP(B+C) failed to elicit a detectable antibody response as assessed by ELISA, immunoblotting and immunohistochemistry. Additionally, there was no effect on the structure of the ovaries nor on breeding performance. Feline ZPA, B and C were cloned into the pkCMVint.polyli mammalian expression vector and used to immunise female cats. ELISA revealed that immunisation with either pkCMVint.fZP(B+C) or pkCMVint.fZPA DNA (Treated) resulted in a low-level circulating antibody response, which was apparently short-lived. Immunoblotting did not reveal any common pattern of recognition of antigenic polypeptides between responding animals. Ovaries from fZP Treated animals, however, showed antibody binding specifically on the ZP of follicles from late primary / early secondary, through to antral stages. Despite the antibody binding, the overall structure of the ovaries remained unaffected in all but two of the fZP Treated cats. Two fZPA immunised cats exhibited ovaries that had no recognisable follicular structures, however, the observed abnormalities could not be conclusively linked to fZPA immunisation. Overall, a significant lymphoproliferative response was shown in fZP Treated cats when compared with Controls. Fertility was not significantly affected in fZP Treated cats, although there was a tendency towards increased incidence of unsuccessful matings or pregnancies. The fZP DNA preparations studied here exhibit potential as an immunocontraceptive, with the ability
to generate a lymphoproliferative response against fZP and elicit antibodies specifically recognizing fZP in situ. Further studies should continue to investigate the immunogenicity of, and characterise the immune response against, such fZP DNA preparations.
TABLE OF CONTENTS

Declaration ... ii

Abstract ... iii

Table of Contents ... v

List of Abbreviations, acronyms and units ... x

List of Tables .. xii

List of Figures ... xiii

Acknowledgements ... xvi

Chapter One Introductory Literature Review ... 1

1.1 The cat in Australia .. 2

1.1.1 Introduction ... 2

1.1.2 Cat as a feral pest .. 2

1.1.3 Other significant pest species .. 3

1.2 Population growth patterns ... 4

1.3 Population control of feral cats .. 5

1.3.1 Traditional methods .. 6

1.3.2 Control of birth rate as a population control measure .. 7

1.4 The reproductive system ... 8

1.4.1 General reproductive biology of the male ... 8

1.4.2 General reproductive biology of the female .. 9

1.4.3 Fertilisation and pregnancy: ... 12

1.4.4 Reproduction in the cat: ... 12

1.5 Potential targets for contraception .. 14

1.5.1 Male or female targets? .. 14

1.5.2 Hormones .. 14

1.6 Immunocontraception ... 16

1.6.1 The immune system and the ovary .. 16

1.6.2 Experimentally induced autoimmunity to ovarian components 17

1.6.3 Structural characteristics of ZP .. 17

1.6.4 ZP as an immunocontraceptive antigen ... 20

1.7 DNA Vaccination .. 23

1.7.1 An alternative to protein immunisation ... 23

1.7.2 Delivery of DNA ... 25

1.7.3 DNA vaccination studies ... 27

1.7.4 ZP DNA vaccination ... 29
1.8 Introduction to the thesis .. 31

Chapter Two Materials and Methods .. 33

2.1 Materials... 34
 2.1.1 Animals ... 34
 2.1.2 Cell Lines ... 34

2.2 Methods ... 35
 2.2.1 Animal handling ... 35
 2.2.2 Animal Procedures ... 35
 2.2.2.1 Experiment I: pZP55 trial .. 35
 2.2.2.2 Experiment II: Naked DNA trial - pkCMVint.fZPB and fZPC ... 36
 2.2.2.3 Experiment III: Naked DNA trial - pkCMVint.fZPA ... 36
 2.2.2.4 Blood samples ... 37
 2.2.2.5 Vaginal epithelial cell samples .. 37
 2.2.2.6 Freund’s adjuvant ... 37
 2.2.2.7 Feline reproduction ... 38
 2.2.3 Cloning .. 39
 2.2.3.1 Feline ZP genes .. 39
 2.2.3.2 Subcloning in pkCMVinPolyli .. 40
 2.2.3.3 Preparation of competent cells ... 44
 2.2.3.4 Transformation of DH5a cells .. 44
 2.2.3.5 Screening potentially transgenic clones by enzyme reaction .. 44
 2.2.3.6 Screening potentially transgenic clones by PCR ... 45
 2.2.3.7 Screening potentially transgenic clones by toothpick lysis ... 46
 2.2.3.8 DNA sequencing .. 46
 2.2.4 Plasmid DNA Preparation ... 49
 2.2.4.1 Mini preparation of plasmid DNA by boiling ... 49
 2.2.4.2 Mini preparation of plasmid DNA by alkaline lysis ... 49
 2.2.4.3 Midi preparation of plasmid DNA (LiCl/Phenol/Chloroform extraction) 50
 2.2.5 Cell Culture ... 51
 2.2.5.1 Cryopreservation of COS-7 cell stocks ... 51
 2.2.5.2 Revival and maintenance of COS-7 cell stock ... 51
 2.2.5.3 Transfection of COS-7 cells ... 52
 2.2.5.4 Total RNA extraction from cells ... 53
 2.2.5.5 Intracellular protein extraction from transfected COS-7 ... 54
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.6 Northern Blotting</td>
<td>54</td>
</tr>
<tr>
<td>2.2.7 Cellular Protein Assay by Immunohistochemistry</td>
<td>55</td>
</tr>
<tr>
<td>2.2.8 Preparing Native ZP</td>
<td>56</td>
</tr>
<tr>
<td>2.2.8.1 Porcine ZP</td>
<td>56</td>
</tr>
<tr>
<td>2.2.8.2 Feline ZP</td>
<td>57</td>
</tr>
<tr>
<td>2.2.9 Protein Estimation</td>
<td>58</td>
</tr>
<tr>
<td>2.2.10 Gel Electrophoresis</td>
<td>58</td>
</tr>
<tr>
<td>2.2.10.1 SDS Polyacrylamide gel</td>
<td>58</td>
</tr>
<tr>
<td>2.2.10.2 Protoprep synthetic melting gel</td>
<td>58</td>
</tr>
<tr>
<td>2.2.10.3 DNA agarose gel</td>
<td>59</td>
</tr>
<tr>
<td>2.2.11 Staining gels</td>
<td>59</td>
</tr>
<tr>
<td>2.2.11.1 Silver staining</td>
<td>59</td>
</tr>
<tr>
<td>2.2.11.2 Coomassie Blue staining</td>
<td>60</td>
</tr>
<tr>
<td>2.2.11.3 Copper staining</td>
<td>60</td>
</tr>
<tr>
<td>2.2.12 Western Blotting</td>
<td>61</td>
</tr>
<tr>
<td>2.2.13 Lymphocyte Proliferation Assay</td>
<td>62</td>
</tr>
<tr>
<td>2.2.14 Immunohistochemistry</td>
<td>63</td>
</tr>
<tr>
<td>2.2.15 ELISA</td>
<td>64</td>
</tr>
<tr>
<td>2.2.16 Statistical methods</td>
<td>65</td>
</tr>
</tbody>
</table>

Chapter Three Characterisation of porcine ZP as an immunocontraceptive antigen for female domestic cats ... 66

3.1 Introduction.. 67
3.2 Results .. 69
 3.2.1 Preparation of the immunogen.. 69
 3.2.2 Antibodies against solubilised whole pZP (ELISA) 72
 3.2.3 Antibody reactivity against reduced, solubilised pZP (Western blotting) ... 74
 3.2.4 Antibody reactivity against native fZP 76
 3.2.5 Antibody binding on native fZP in situ 79
 3.2.6 Cataloguing normal ovary activity in feral cats....................... 79
 3.2.7 Ovary histology of Control and pZP55-Treated cats 84
 3.2.8 Assessment of fertility of Control and pZP55-Treated cats 87
 3.2.9 Summary of results.. 90
3.3 Discussion.. 91
Chapter Four. Characterisation of pkCMVint.fZPB and fZPC DNA immunisation for immunocontraception in cats ... 98

4.1 Introduction ... 99

4.2 Results .. 101

4.2.1 Preparation and verification of pkCMVint.fZPB and pkCMVint.fZPC DNA constructs ... 101

4.2.2 In vitro expression of pkCMVint.fZPB and fZPC 105

4.2.3 DNA vaccination protocol ... 108

4.2.4 Assessment of antibody response to fZPB/C DNA immunisation 110

4.2.4.2 Western blotting against fZP ... 110

4.2.4.3 Western blotting against fZPA-Tms:COS-7 111

4.2.4.4 Antibody cross-reactivity with native fZP in ovary tissue 115

4.2.4.5 Antibody cross-reactivity with native fZP in situ 118

4.2.5 Specific lymphocyte proliferative response to COS-7 derived fZPB and fZPC antigen ... 122

4.2.7 Histological assessment of ovary structure ... 126

4.2.6 Effect of pkCMVint.fZP(B+C) DNA immunisation on fertility 127

4.3 Summary ... 130

4.4 Discussion .. 132

Chapter Five Characterisation of pkCMVint.fZPA DNA immunisation for immunocontraception in cats ... 144

5.1 Introduction ... 145

5.2 Results .. 147

5.2.1 Preparation and verification of pkCMVint.fZPA and pkCMVint.fZPA-Tms constructs ... 147

5.2.2 Transcription of pkCMVint.fZPA DNA constructs in vitro 151

5.2.3 DNA vaccination protocol .. 154

5.2.4 Assessment of antibody response to fZPA DNA immunisation 156

5.2.4.1 ELISA detection of serum antibody against fZP 156

5.2.4.2 Western blotting against fZP ... 156

5.2.4.3 Western blotting against fZPA-Tms:COS-7 160

5.2.4.4 Antibody cross-reactivity with native fZP in ovary tissue 162

5.2.4.5 Antibody cross-reactivity with native fZP in situ 162

5.2.5 Specific lymphocyte proliferative response to COS-7 derived fZPA-Tms antigen ... 168
5.2.6 Effect of fZPA DNA immunisation on fertility .. 174
 5.2.6.1 Fertility outcomes from mating ... 174
 5.2.6.2 Gross observations of reproductive organs 180
5.2.7 Histological assessment of ovary structure 183
5.2.8 Observations on popliteal lymph nodes ... 187
5.2.9 Summary .. 188
5.3 Discussion .. 189

Chapter Six General Discussion ... 196

Bibliography .. 206

Appendix ... 218
ABBREVIATIONS, ACRONYMS and UNITS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pZP</td>
<td>porcine zona pellucida</td>
</tr>
<tr>
<td>fZPA,B,C</td>
<td>feline zona pellucida A, B, C</td>
</tr>
<tr>
<td>mZP</td>
<td>mouse zona pellucida</td>
</tr>
<tr>
<td>rZP</td>
<td>rabbit zona pellucida</td>
</tr>
<tr>
<td>ZP</td>
<td>zona pellucida</td>
</tr>
<tr>
<td>FIV</td>
<td>feline immunodeficiency virus</td>
</tr>
<tr>
<td>LB</td>
<td>Luria Bertiani medium</td>
</tr>
<tr>
<td>kan</td>
<td>kanamycin</td>
</tr>
<tr>
<td>amp</td>
<td>ampicillin</td>
</tr>
<tr>
<td>TBROth</td>
<td>Terrific broth</td>
</tr>
<tr>
<td>EtOH</td>
<td>ethanol</td>
</tr>
<tr>
<td>MetOH</td>
<td>methanol</td>
</tr>
<tr>
<td>UP H$_2$O</td>
<td>Ultra pure water</td>
</tr>
<tr>
<td>dH$_2$O</td>
<td>distilled water</td>
</tr>
<tr>
<td>dIH$_2$O</td>
<td>deionised water</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>dinucleotide triphosphate</td>
</tr>
<tr>
<td>AGE</td>
<td>agarose gel electrophoresis</td>
</tr>
<tr>
<td>MCT</td>
<td>microcentrifuge tube</td>
</tr>
<tr>
<td>ECL</td>
<td>enhanced chemiluminescence</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>AOD</td>
<td>autoimmune ovarian disease</td>
</tr>
<tr>
<td>APC</td>
<td>antigen presenting cell</td>
</tr>
<tr>
<td>CTL</td>
<td>cytolytic T-lymphocyte</td>
</tr>
<tr>
<td>CMI</td>
<td>cell-mediated immunity</td>
</tr>
<tr>
<td>DC</td>
<td>dendritic cell</td>
</tr>
<tr>
<td>IFN</td>
<td>interferon</td>
</tr>
<tr>
<td>Ig</td>
<td>immunoglobulin</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>MHC</td>
<td>major histocompatibility complex</td>
</tr>
<tr>
<td>T_h</td>
<td>T helper cell</td>
</tr>
<tr>
<td>T_{reg}</td>
<td>T regulatory cell</td>
</tr>
<tr>
<td>i.d.</td>
<td>intradermal</td>
</tr>
<tr>
<td>i.m.</td>
<td>intramuscular</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>RBC</td>
<td>red blood cell</td>
</tr>
<tr>
<td>WBC</td>
<td>white blood cell</td>
</tr>
<tr>
<td>g</td>
<td>gravity/ relative centrifugal force</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>min</td>
<td>minutes</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>V</td>
<td>volts</td>
</tr>
<tr>
<td>RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>L</td>
<td>litre</td>
</tr>
<tr>
<td>mL</td>
<td>millilitre</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>μg</td>
<td>microgram</td>
</tr>
<tr>
<td>μL</td>
<td>microlitre</td>
</tr>
<tr>
<td>mol</td>
<td>mole</td>
</tr>
<tr>
<td>nmol</td>
<td>nanomole</td>
</tr>
<tr>
<td>fmol</td>
<td>femptomole</td>
</tr>
<tr>
<td>pmol</td>
<td>picomole</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The stages of the reproductive cycle in the female domestic cat, characterised by changes in the reproductive behaviour</td>
<td>p13</td>
</tr>
<tr>
<td>1.2</td>
<td>Zone pellucida protein homology between cat and various species deduced from cDNA sequences</td>
<td>p19</td>
</tr>
<tr>
<td>1.3</td>
<td>Functions of the three major ZP protein classes in various species, with previous ZP nomenclature included for reference</td>
<td>p19</td>
</tr>
<tr>
<td>2.1</td>
<td>Vaginal cytology during follicular phase in domestic cats (adapted from Feldman and Nelson, 1996)</td>
<td>p38</td>
</tr>
<tr>
<td>2.2</td>
<td>Primers used in subcloning feline ZP genes into pkCMVintPolyli expression vector</td>
<td>p41</td>
</tr>
<tr>
<td>2.3</td>
<td>PCR amplification cycles for subcloning fZP genes into pkCMVintPolyli expression vector</td>
<td>p42</td>
</tr>
<tr>
<td>2.4</td>
<td>PCR amplification cycles for detecting insertions into pkCMVintPolyli expression vector in a polylinker region</td>
<td>p45</td>
</tr>
<tr>
<td>2.5</td>
<td>DNA sequencing primers and PCR amplification cycling conditions</td>
<td>p47</td>
</tr>
<tr>
<td>2.6</td>
<td>Sequencing reaction and clean-up solution components for ABI PRISM™ BigDye V2 and V3.1 sequencing chemistries</td>
<td>p48</td>
</tr>
<tr>
<td>2.7</td>
<td>Amounts of Lipofectamine 2000™ reagent, Opti-MEMI, DNA and media used for transfection of COS-7 cells</td>
<td>p53</td>
</tr>
<tr>
<td>3.1</td>
<td>Fertility data from Control and pZP55-Treated queens</td>
<td>p88</td>
</tr>
<tr>
<td>4.1</td>
<td>Summary of polypeptide bands in fZPA-Tms:COS-7 protein extract recognised specifically by serum antibodies from fZPB/C Treated cats</td>
<td>p115</td>
</tr>
<tr>
<td>4.2</td>
<td>Observations of the growth characteristics of white blood cells in Control and fZPB/C Treated cats</td>
<td>p126</td>
</tr>
<tr>
<td>4.3</td>
<td>Outcomes from fertility trials of pkCMVint.fZP(B+C) DNA immunised (Treated) or blank pkCMVint immunised (Control) cats.</td>
<td>p129</td>
</tr>
<tr>
<td>4.4</td>
<td>Summary of key results for fZPB/C Treated cats including Western blotting, lymphocyte proliferation, \textit{in situ} antibody binding and fertility outcomes</td>
<td>p136</td>
</tr>
<tr>
<td>5.1</td>
<td>Summary of antibody recognition patterns in Control and fZPA Treated cats against fZP</td>
<td>p159</td>
</tr>
<tr>
<td>5.2</td>
<td>Summary of polypeptide bands in fZPA-Tms:COS-7 whole cell extract recognised specifically by serum antibody from pkCMVint.fZPA DNA immunised cats</td>
<td>p160</td>
</tr>
<tr>
<td>5.3</td>
<td>Fertility data from Control and pkCMVint.fZPA DNA immunised cats</td>
<td>p175</td>
</tr>
<tr>
<td>5.4</td>
<td>Popliteal lymph node weights (g) in Control and pkCMVint.fZPA DNA immunised (fZPA Treated) cats</td>
<td>p187</td>
</tr>
</tbody>
</table>
5.5 Summary of key results for fZPA Treated cats including Western blotting, lymphoproliferation, in situ antibody binding and fertility outcomes p191

Appendix Tables
1 Tissue Culture Media and supplements p219
2 Chemicals and Reagents p219
3 Materials and Equipment p224
4 Buffers and Solutions p226

LIST OF FIGURES
1.1 Population growth kinetics p5
1.2 Follicle development in the ovary p11
3.1 Protoprep matrix gel electrophoresis of solubilised pZP p70
3.2 Rabbit anti-pZP antiserum is cross-reactive to pZP and pZP55 preparations p71
3.3 Antibody response (total IgG) against solubilised pZP in pZP55-Treated cats p73
3.4 Western blotting of control and pZP55-Treated cat sera against heat solubilised pZP p75
3.5 Rabbit anti-pZP antiserum cross-reacts with native feline ZP p77
3.6 Sera from pZP55-Treated cats do not react with feline ZP p78
3.7 In situ ovarian immunohistochemistry in Control and pZP55-Treated cats p81
3.8 Comparisons of the percentage distribution of ovarian follicle populations between adult and juvenile feral cats p82
3.9 Juvenile feral cats exhibit polyovulatory ovarian follicles p83
3.10 Ovarian histology of Control and pZP55-Treated cats p85
3.11 Comparisons of the percentage distribution of ovarian follicle populations in Control and pZP55-Treated cats p86
3.12 Evidence of pseudopregnancy in pZP55-Treated queen Mky p89
4.1 Confirmation of fZPB and fZPC gene inserts in pBluescript plasmid constructs p102
4.2 Plasmid map of pkCMVint.Polyli and fZPB and fZPC gene cassettes p103
4.3 PCR detection of fZPB and fZPC gene inserts in the pkCMVint.fZPB and fZPC clones

4.4 Transfected COS-7 cells produce ZP mRNA transcripts

4.5 Immunocytochemical analysis of protein expression in COS-7 cells transfected with pkCMVint.fZPB and fZPC

4.6 DNA vaccination protocol for Experiment II

4.7 Serum antibody titres against solubilised fZP in pkCMVint.fZP(B+C) DNA immunised (fZPB/C Treated) cats

4.8 Western blotting of sera from Control and pkCMVint.fZP(B+C) DNA immunised (fZPB/C Treated) cats against fZP

4.9 Western blotting of sera from Control and pkCMVint.fZP(B+C) DNA immunised (fZPB/C Treated) cats shows antibody development cross-reactive towards components of fZPA-Tms:COS-7 protein extract

4.10 Immunohistochemistry using citrate antigen retrieval buffer (pH 6) does not reveal any antibody bound in situ to ZP in pkCMVint.fZP(B+C) DNA immunised cats or Control cats

4.11 In vitro ovarian immunohistochemistry in Control and pkCMVint.fZP(B+C) DNA immunised (fZPB/C Treated) cats

4.12 Absence of antibody binding in situ to ZP in blank pkCMVint DNA immunised (Control) cats

4.13 In situ antibody binding to ZP in pkCMVint.fZP(B+C) DNA immunised (fZPB/C Treated) cats

4.14 Lymphocyte proliferation stimulation indices for individual Control cats over time

4.15 Lymphocyte proliferation stimulation indices for individual fZPB/C Treated cats over time

4.16 The distribution of follicle subpopulations in ovaries of Control and fZPB/C Treated cats

5.1 Confirmation of the fZPA gene insert in the pBluescript.fZPA plasmid

5.2 Plasmid map of pkCMVint.Polyli and fZPA gene cassettes

5.3 Initial amplification of the fZPA-Tms gene insert from pBluescript.fZPA and PCR detection of fzPA-Tms gene insert in the pkCMVint.Polyli plasmid

5.4 Diagnostic restriction enzyme digest of pkCMVint.fZPA clones

5.5 Transfected COS-7 cells produce fZPA mRNA transcripts

5.6 DNA vaccination protocol for Experiment III

5.7 The titres of serum antibodies against fZP in pkCMVint.fZPA DNA immunised (fZPA Treated) cats

5.8 Western blotting of sera from Control and pkCMVint.fZPA DNA immunised (fZPA Treated) cats against fZP
5.9 Western blotting of sera from Control and pkCMVint.fZPA DNA immunised (fZPA Treated) cats against fZPA-Tms:COS-7 protein extract
p161

5.10 *In vitro* ovarian immunohistochemistry in Control and pkCMVint.fZPA DNA immunised (fZPA Treated) cats
p163

5.11 *In situ* ovarian immunohistochemistry in blank pkCMVint.fZPA DNA immunised (Control) cats
p164

5.12 *In situ* ovarian immunohistochemistry in pkCMVint.fZPA DNA immunised (fZPA Treated) cats
p166

5.13 *In situ* ovarian immunohistochemistry in two pkCMVint.fZPA DNA immunised (fZPA Treated) cats: Din and Sal
p167

5.14 Lymphocyte proliferation stimulation indices for individual Control cats over time
p170

5.15A,B Lymphocyte proliferation stimulation indices for individual fZPA Treated cats over time
p171-2

5.16 Pseudopregnancy in pkCMVint.fZPA DNA immunised cat Tab
p176

5.17 Abnormal pregnancy in pkCMVint.fZPA DNA immunised cat Mia
p178

5.18 Ultrasonographic examination of two breeder queens four weeks post-coitus
p179

5.19 Abnormal reproductive organ development in pkCMVint.fZPA DNA immunised cat Din
p181

5.20 Abnormal reproductive organ development in pkCMVint.fZPA DNA immunised cat Sal
p182

5.21 The distribution of follicle subpopulations in ovaries of Control and pkCMVint.fZPA DNA immunised (fZPA Treated) cats
p184

5.22 Ovarian histology in blank pkCMVint (Control) and pkCMVint.fZPA DNA immunised (fZPA Treated) cats
p185

5.23 Ovarian histology in two pkCMVint.fZPA DNA immunised cats: Din and Sal
p186

Appendix Figures
1 Feline lymphocyte proliferation with and without Concanavalin A stimulation
p232

2 Feline lymphocyte proliferation with and without Concanavalin A stimulation
p233

3 Family tree for stud Tom “Mal” showing only female progeny
p234

4 Family tree for stud Tom “Roly” showing only female progeny
p235
ACKNOWLEDGEMENTS

This project was undertaken because I believed in the heart of it, and in the science behind it….and I liked cats. I still believe, and I still like cats.

I have had immense support and encouragement from my two principal supervisors, Cassandra James and Ian Robertson, and can only hope to adequately express my gratitude here. Cassie’s love of research and boundless optimism, during times when I didn’t think I could make it through, were inspiring. I appreciated her approach to supervision, which was to allow me the freedom to direct my research without leaving me stranded. In this, she was more than a mere supervisor, she was a mentor in all aspects of research. Throughout my candidature I never stopped learning immunology from her. If Cassie was my immunology guide, Ian was my guide through feline reproduction, physiology and statistics. I am forever indebted to him for his cat handling skills and endless patience, which I could not hope to replicate. Ian was always accommodating, despite his busy workload, and his sense of humour was a reminder that we should enjoy ourselves, whatever it was we were doing. I enjoyed discussing the finer points of immunocontraception with my co-supervisor, Mal Lawson, from whom I learned the virtue of a critical eye, and the value of practicality.

Michael Slaven and Gerard Spoelestra, from the histology department, deserve a round of applause as they were often happy not only to help beyond the call of duty, but also just to chat. David Lines was an amazing support staff member, for nothing was ever a problem, or if it was, it could invariably be solved. Jeff Harris, from Zonagen, is the main reason the feline ZP work got underway so quickly and I am greatly indebted to him for his generosity. Thank you to the Cat Haven and Watsonia for providing tissue samples for ZP preparation. Also, a big thank you to the CALM officers who kindly collected feral cat ovaries for this study.

The lasting friendships I formed with the people of “the office” (Jill, Rebecca, Bong and Peter) helped keep me sane, which meant I enjoyed more than just research during my time as a PhD student and left with more than when I arrived.

I consider myself blessed to have a family that gave me the gift of education, supported me throughout and waited as long and as anxiously as I have to see this completed. And especially to Andrew, my husband, who was unwavering in his faith that I could do this and more - all my love, darling.
There are many, many people to whom I owe thanks and I apologise if I have not been able to mention them all individually here. Finally, I must not forget to thank the Pest Animal Control CRC, the Western Australian Department of Conservation and Land Management, Murdoch University and the National Shooting Association for generously funding the research.

“The scientist does not study nature because it is useful; he studies it because he delights in it, and he delights in it because it is beautiful. If nature were not beautiful, it would not be worth knowing, and if nature were not worth knowing, life would not be worth living.”

Jules Henri Poincaré (1854-1912)
French mathematician.