Environmental Influences on Grape Aroma Potential

Anthony Lloyd Robinson

BSc - The University of Western Australia

This thesis is presented for the degree of
Doctor of Philosophy at Murdoch University.

School of Pharmacy

June 2011
Words of Wisdom...

Wine in life -

“Wine to me is passion. It's family and friends. It's warmth of heart and generosity of spirit. Wine is art. It's culture. It's the essence of civilization and the art of living.”

Robert Mondavi (1913-2008)

“You have only so many bottles in your life, never drink a bad one.”

Len Evans (1930-2006)

Wine in practice -

If you want continuity, you must start with a special vineyard. No matter how much you believe in the technology of wine-making, it takes a fine vineyard to produce fine wine.”

André Tchelistcheff (1901-1994)

“In my opinion, the greatest grape is the noble Cabernet. Cabernet Sauvignon is the only variety that would be tolerated in heaven.”

Jack Mann (1906-1989)
Declaration

I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution.

Anthony L. Robinson

26th May, 2011
Abstract

Understanding the source of wine volatile compounds and the mechanisms that influence their formation through grape growing, winemaking and storage is essential for wine businesses when developing strategies to produce wines with specific sensory attributes that appeal to target markets. The objective of this research was to develop a greater understanding of the environmental influences that drive flavour formation in grapes and translate this information into awareness of the limitations of site and region in producing wines to specification. A novel analytical method was developed utilising headspace solid-phase microextraction (HS-SPME) for the analysis of wine volatiles by comprehensive two-dimensional gas chromatography (GC × GC) time-of-flight mass spectrometry (TOFMS). The analytical technique was able to resolve and identify a substantially larger number of volatile compounds than current single dimensional GC-MS methodologies. While developing this method it became clear that there was a need to develop a greater understanding of wine matrix effects on SPME-based analyses of volatile compounds found in grape juices and wines of which ethanol and glucose had the greatest effect. Furthermore, the impact of shipping conditions in relation to wine composition and sensory characteristics was investigated to ensure sample integrity across the experiments. The HS-SPME GC × GC-TOFMS methodology was applied in conjunction with descriptive sensory analysis to field studies exploring the effects of site, viticultural management, and winemaking on wine composition and sensory characteristics. This study identified that site was a major influence on Cabernet Sauvignon wine composition and sensory characteristics leading to an extensive study exploring the composition and sensory attributes of a number of commercially produced Cabernet Sauvignon wines from ten wine growing regions of Australia. The results of the studies have enabled the integration of sensory and chemical data from
Environmental Influences on Grape Aroma Potential

Australian Cabernet Sauvignon wines which has revealed potential chemical markers of sensory attributes and compositional characters that are associated with Australian wine regions.
Table of Contents

Words of Wisdom... .. I

Declaration.. III

Abstract.. IV

Acknowledgements ... XIV

Publications, Presentations, and Conferences... XVIII

Peer Reviewed Publications.. XVIII

Conference Presentations.. XVIII

Conference Posters.. XIX

1. Literature Review .. 1

 1.1. Introduction.. 1

 1.2. The origin of wine aroma.. 2

 1.3. Volatile compound classes found in wine... 4

 1.3.1. Terpenes ... 4

 1.3.2. Norisoprenoids .. 7

 1.3.2.1. Introduction .. 7

 1.3.2.2. Grape carotenoids .. 7

 1.3.2.3. Grape norisoprenoids and their formation from carotenoids............ 9

 1.3.3. Phenylpropanoids .. 11

 1.3.4. Furanones ... 14

 1.3.5. Fatty acid derivatives.. 15

 1.3.6. Volatile acids, esters, and higher alcohols ... 17

 1.3.6.1. Volatile fatty acids.. 17

 1.3.6.2. Esters .. 18

 1.3.6.3. Alcohols... 20
Environmental Influences on Grape Aroma Potential

1.3.6.4. Factors influencing the production of fermentation-derived volatiles
1.3.6.5. Pyrazines
1.3.7. Volatile sulphur compounds
1.3.8. Glycosylated aroma precursors

1.4. The role of the grape and grape ripening in wine composition

1.4.1. Environmental Influences on Grape Aroma Formation
1.4.1.1. Climate
1.4.1.2. Season
1.4.1.3. Sunlight
1.4.2. Grape Maturity
1.4.3. Water and Canopy Management
1.4.4. Pathogenesis
1.4.5. Non-vineyard influences - wine maturation conditions
1.4.6. Analytical Chemistry of Aroma & Flavour Precursors
1.4.7. Sample preservation
1.4.8. Liquid extraction methods
1.4.9. Static headspace (SHS) and dynamic headspace (DHS) methods
1.4.10. Headspace Solid-phase Micro Extraction (HS-SPME)
1.4.10.1. SPME Fibre type
1.4.10.2. Sample temperature
1.4.10.3. Salting out
1.4.10.4. Sample agitation
1.4.11. Extraction time
1.4.12. Stir-bar sorptive extraction (SBSE)

1.5. Gas chromatographic methods
Environmental Influences on Grape Aroma Potential

1.5.1. GC-MS .. 47
1.5.2. GC×GC-TOFMS .. 48

1.6. Analysis of Glycoconjugates .. 49
1.6.1. Indirect Analysis of Glycoconjugates 50
1.6.2. Direct Analysis of Glycoconjugates 51

1.7. Sensory Evaluation of Wine ... 52
1.7.1. Descriptive analysis of wine 54
1.7.2. Interaction effects .. 56

1.8. Concluding Comments ... 58

2. Interactions between wine volatile compounds and grape and wine matrix components influence aroma compound headspace partitioning. 60

2.1. Introduction .. 60

2.2. Materials and Methods .. 63
2.2.1. Analytical reagents and supplies 63
2.2.2. Instrumentation ... 64
2.2.3. Chromatographic conditions 64
2.2.4. Optimisation of SPME extraction time 66
2.2.5. GC-MS Data analysis software 66
2.2.6. Statistical analysis software 67
2.2.7. Experimental Design .. 67
2.2.8. Interaction effects of major grape and wine matrix components 67
2.2.9. Influence of ethanol concentration 68
2.2.10. Influence of glucose concentration 68
2.2.11. Influence of ethanol and glucose on SPME linearity 68
2.2.12. Influence of ethanol concentration on wine volatile partitioning 69
2.3. Results and Discussion ...69
 2.3.1. Optimisation of SPME extraction time69
 2.3.2. Interaction effects of major grape and wine matrix components70
 2.3.3. Influence of ethanol concentration ...75
 2.3.4. Influence of glucose concentration ...78
 2.3.5. Influence of ethanol and glucose on SPME linearity79
 2.3.6. Influence of ethanol concentration on wine volatile partitioning80
2.4. Conclusions ..84

3. The effect of simulated shipping conditions on the sensory attributes and volatile composition of commercial white and red wines. ..85
 3.1. Introduction ..85
 3.2. Materials and Methods...88
 3.2.1. Wines and analytical supplies ..88
 3.2.2. Experimental design ...88
 3.2.3. Temperature monitoring ...89
 3.2.4. Sensory analysis ...89
 3.2.5. Quantitative Descriptive Analysis ...90
 3.2.6. GC-MS Instrumentation ...92
 3.2.7. Chromatographic conditions ..92
 3.2.8. HS-SPME extraction conditions ...92
 3.2.9. GC-MS Data analysis software ..93
 3.2.10. Statistical analysis ...93
 3.3. Results ...94
 3.3.1. Temperature results ...94
 3.3.2. Analysis of the white wine study ..95
Environmental Influences on Grape Aroma Potential

3.3.3. PLS analysis of the white wine study...95
3.3.4. Analysis of the red wine study..99

3.4. Discussion..103
3.4.1. White wines..103
3.4.2. Red wines..106

3.5. Conclusions..109

4. Development of a sensitive non-targeted method for characterizing the wine
volatile profile using headspace solid-phase microextraction comprehensive two-
dimensional gas chromatography time-of-flight mass spectrometry....................110

4.1. Introduction...110

4.2. Materials and Methods...113
4.2.1. Samples ...113
4.2.2. Analytical reagents and supplies ..113
4.2.3. Instrumentation...114
4.2.4. HS-SPME Optimization..114
4.2.4.1. Desorption conditions...115
4.2.4.2. Salting out effect..115
4.2.4.3. Sample agitation...115
4.2.4.4. Headspace extraction time and fiber length ...116
4.2.4.5. Influence of sample incubation temperature ..116
4.2.5. Loading of internal standard onto SPME fiber ...116
4.2.6. Loading of retention index probes onto SPME fiber116
4.2.7. Chromatographic conditions...117
4.2.8. Optimization of GC×GC parameters..117
4.2.9. Instrument control and data analysis software ..117
4.2.10. Statistical analysis ... 118
4.2.11. SPME Method optimization / data analysis 118

4.3. Results and Discussion .. 119
4.3.1. HS-SPME Optimization ... 119
4.3.2. Desorption conditions .. 119
4.3.3. Salting out effect ... 121
4.3.4. Sample agitation .. 122
4.3.5. Salt and agitation interactions ... 123
4.3.6. Headspace extraction time and fiber length 124
4.3.7. Influence of sample incubation temperature 125
4.3.8. Repeatability of SPME method .. 126
4.3.9. Optimization of GC×GC parameters .. 127
4.3.10. Sensitivity and deconvolution using GC×GC and ChromaTOF 130
4.3.11. Wine volatile profile compound identification 139
4.3.12. Differentiating commercial wines using volatile profiling 141

4.4. Conclusions .. 141

5. Influence of yeast strain, canopy management, and site on the volatile composition and sensory attributes of Cabernet Sauvignon wines from Western Australia. .. 143

5.1. Introduction ... 143

5.2. Materials and Methods .. 145
5.2.1. Field sites .. 145
5.2.2. Yeast treatments .. 146
5.2.3. Canopy treatments ... 146
5.2.4. Micro-scale wine making ... 147
Environmental Influences on Grape Aroma Potential

5.2.5. HS-SPME GC×GC-TOFMS volatile compound analysis148
5.2.6. Data processing and semi-quantification149
5.2.7. Descriptive sensory analysis ..150
5.2.8. Statistical analysis ..156

5.3. Results ..157
5.3.1. Volatile metabolome profiling of the wines157
5.3.2. Sensory analysis of the wines ...159
5.3.3. Partial least squares regression analysis160

5.4. Discussion ..165
5.4.1. Influence of vineyard site ..165
5.4.2. Influence of yeast treatments ..167
5.4.3. Influence of canopy treatments ..168

6. The relationship between sensory attributes and wine composition for
Australian Cabernet Sauvignon wines ...171

6.1. Introduction ...171
6.2. Materials and Methods ...175
6.2.1. Experimental design ...175
6.2.2. HS-SPME GC×GC-TOFMS volatile compound analysis176
6.2.3. Data processing and semi-quantification177
6.2.4. Sensory panel training ..178
6.2.5. Descriptive analysis ...178
6.2.6. Statistical analysis ...180

6.3. Results ..181
6.3.1. Chemical analysis of the wines ...181
6.3.2. Sensory analysis of the wines ..182
6.3.3. PLS1 analysis relating sensory attributes and chemical composition….186

6.4. Discussion..204

6.4.1. Cabernet sensory attributes ..204

6.4.2. Relationship between sensory attributes and composition...............207

6.5. Conclusions..213

7. Summary..215

8. Bibliography..221
Acknowledgements

No thesis comes together without the help and support of others. Therefore I would like to acknowledge those who contributed either directly or indirectly to my work throughout this PhD.

I would like to thank the Grape and Wine Research and Development Corporation, the Australian-American Fulbright Commission, Murdoch University, UC Davis, and CSIRO for providing the financial support that allowed me the privilege of pursuing a Doctorate of Philosophy. I would also like to thank the in-kind contributions of the following industry groups and their employees who supported this research through donations of time, resources, and materials; Brown Brothers Milawa Vineyard, Casella Wines, Ferngrove, Houghton Wines, Howard Park Wines, McWilliam's Wines, Orlando Wines, The Yalumba Wine Company, Treasury Wine Estates, and LECO Separation Systems.

I would like to express my sincerest gratitude to my Australian supervisors Dr. Robert D. Trengove, Dr. Paul K. Boss, and Dr. Peter S. Solomon, for their support and guidance throughout the course of my research and writing. I thank you for assisting me in realising the concept I envisaged when I first began and for grounding me from time to time when my enthusiasm exceeded my own time and resources. I extend my appreciation to Dr. John Harvey and Dr. Jim Fortune, formerly of the Grape and Wine Research and Development Corporation, who planted the initiative and provided ongoing encouragement for me to undertake this PhD. Sometimes the hardest part of the journey is having the impetus to begin it.

I would like to extend my heartfelt appreciation to Dr. Hildegarde Heymann who invited me to UC Davis, imparted a wealth of knowledge, and provided vital input into the scope of this work. I would also like to thank both her and her husband, Dr. William
Matthews, for welcoming my wife and I into their home and introducing us to life in America. To collaborators Dr. Sue Ebeler, Dr. Doug Adams, and Dr. Roger Boulton, thank you for the numerous discussions on all things wine and wine science related. I am particularly grateful to you for your advice and mentoring.

I was advised early in my studies that intelligence alone is not a prerequisite for completing a PhD, although this may help; it is achieved through clarity, enthusiasm, and perseverance. For myself, in many cases, it was the conversations with colleagues that assisted in clarifying and crystallising ideas. I would like to thank the many people that I have had the privilege to work alongside over the course of my studies; Dr. Garth Maker, Dr. Melvin Gay, Jeremy Netto, Angela Williams, Maxwell Dawson, Dr. Tom Lyons, Dr. Brendan Graham, Dr. Richard Oliver, Joel Gummer, Christian Krill, Dr. Kar-Chun Tan, Julie Lawrence, Kasia Rybak, Bruce Peebles, Catherine Rawlinson, Katherine Roussety and the many others that worked and studied at Murdoch University; Courtney Treacher, Claire McAllan, and Diane Stewart from Houghton Wines for their invaluable discussions relating to the commercial realities of winemaking and viticulture; Jake Dunlevy, Dr. Curtis Kalua, Dr. Christopher Davies, Sue Maffei, Briony Liebich (formally of Provisor), and the others at CSIRO Plant Industry who participated enthusiastically in discussion and the occasional beverage on Friday afternoons; my sincere thanks to Dr. Pete Stevens, Lucas Smith, Berthold Franz, and those that assisted me with training and data analysis at LECO Separation Systems; Scott Frost, Martha Mueller, Jonas Mueller, Dwayne Bershaw, Beatriz Machado, Dr. Luisa Torri, Barbara Weiss, Jose Sanchez Gavito, Dr. Marco Li Calzi, Chik Brenneman, Axel Borg, Greg Hirson, Dr. Daniela Hampel, Anna Hjelmeland, Arielle Johnson, Dr. Mark Krasnow, Jon Schadt, Daniel Sullivan, Kerry Shiels, Sophie Drucker, Steven Nelson, and the many others that studied and worked alongside at UC
Environmental Influences on Grape Aroma Potential

Davis; a special thanks to Kevin Scott, Caroline Shipley, Jessie Clemmensen for their never ending assistance, and all the panelists that participated daily in various sensory studies in the J. Lohr Sensory Laboratory; Kim Mosse, Fiona Miller, Dr. Rathnait Long, Chris Lawrence, David Hobbs, and the other Fulbright Scholars that I was able to meet through the course of my exchange. I am thankful to have had the opportunity to work with and around some of the best and brightest minds from around the world. A special thanks to Roger and Lyndie, Chik and Polly, Darrell and John, and the Naidu and Arasu families in California who welcomed Prithy and I as part of their family.

I am only one man and in many cases the work in these studies involved support and assistance from close friends and family. I need to particularly thank Andrew Lee for being on call to help whenever needed – be it driving me to make late night measures in the lab or early morning visits to vineyards to assist me in picking fruit. You may not have realised that you were there when I felt overwhelmed but your friendship has always been treasured. I wish to thank Darrell Corti for sharing good wine and enlightening conversation. It was always a pleasure and a privilege to be in your company, to discuss, discover and further appreciate wine. I would like to thank my family, Dr. Govindarajalu Sivaraman, Josie Robinson, Myra Robinson, and Simon Collins, for their ongoing support and understanding over the last few years. A special thanks to my parents, Geoff Robinson and Robyn Blackburn, for their encouragement, assistance, and counsel throughout the process. I thank you both for providing me every opportunity in life whilst allowing and encouraging me to walk my own path with open eyes and an open mind.

I save my final thanks for my dear wife, Prithy. It is common for partners to suffer the most during a PhD – Prithy entertained obscure conversations about my work at all times of day, she helped pick grapes in the heat and prune vines in the rain, put her life
in Australia on hold and followed me halfway around the world, endured long hours of absence while I was away or attached to a computer analysing data, and read through every draft of this thesis as it slowly took shape. Prithy, you were, are, and always will be the centre of my world and words cannot express what it has meant to have you by my side. Thank you for your endless support, enthusiasm, and patience – I dedicate this thesis to you.
Publications, Presentations, and Conferences

The following publications were derived from this work:

Peer Reviewed Publications

Conference Presentations

Eurosense – Vitoria-Gasteiz, Spain 2010

Machado, B., Heymann, H., Robinson, A., Torri, L. ‘How many judges are required for Sensory Descriptive Analysis?’.

ASEV 61st Annual Meeting – Seattle, Washington, United States 2010

Environmental Influences on Grape Aroma Potential

INTERVITIS INTERFRUCTA IVIF-Congress – Stuttgart, Germany 2010 [Invited]

6th Symposium In Vino Analytica Scientia – Angers, France 2009
Robinson, A., Ebeler, S., Heymann, H., Trengove, R. ‘Influence of wine and juice macromolecules on the headspace partitioning of volatile compounds’.

ASEV 60th Annual Meeting – Napa, California, United States 2009

5th Symposium In Vino Analytica Scientia – Melbourne, Australia 2007

Conference Posters

14th Australian Wine Industry Technical Conference – Adelaide, Australia 2010

ASEV 60th Annual Meeting – Napa, California, United States 2009
Robinson, A., Ebeler, S., Heymann, H., Trengove, R. ‘Effect of ethanol and glucose on aroma compound partitioning between the headspace and wine matrix’.

Wicks, M., Robinson, A., Heymann, H. ‘Effect of simulated shipping conditions on sensory attributes and volatile compounds in six wines’.

Conferences
The following conferences were attended during the course of this PhD:
14th Australian Wine Industry Technical Conference (AWITC) – Adelaide, Australia 2010
ASEV 61st Annual Meeting – Seattle, Washington, United States 2010
7th International Cool Climate Symposium (ICCS) – Seattle, Washington, United States 2010
INTERVITIS INTERFRUCTA IVIF-Congress – Stuttgart, Germany 2010
ASEV 60th Annual Meeting – Napa, California, United States 2009
CASSS GCXGC 2009 Symposium – Portland, Oregon, United States 2009
ASEV Unified Wine and Grape Symposium – Sacramento, California, United States 2009
13th Australian Wine Industry Technical Conference (AWITC) – Adelaide, Australia 2007
5th Symposium In Vino Analytica Scientia – Melbourne, Australia 2007
ASVO ‘Finishing the Job - Optimal ripening of Cabernet Sauvignon and Shiraz’ – Mildura, Australia 2006