RENEWABLE ENERGY POLICY: A LOCAL GOVERNMENT PERSPECTIVE

Alison Johnson

To fulfill the requirements of a Masters of Science in Renewable Energy
School of Engineering
Murdoch University

December 2010
Version 2. Approved in accordance with the Masters requirements March 2011.
DECLARATION

This thesis contains no material that has been accepted for a degree or diploma by Murdoch University or any other institution, except by way of background information and has been duly acknowledged in this thesis, and to the best of the author’s knowledge and belief no material has previously been published or written by another person except where due acknowledgement is made in the text of this thesis.

While every responsible effort has been made to ensure that this document is correct at the time of printing, the Author disclaims any and all liability to any person in respect of anything or the consequences of anything done or omitted to be done in reliance or upon the whole or any part of this document.

I hereby declare that, except where due acknowledgement is made that the content of this thesis is the student’s own account of research.

Signed:

Date: May 2011

Alison Johnson
ABSTRACT

This research project focuses on identifying barriers to new renewable energy electricity generation technology installations through Tasmanian local authority planning application processes.

Renewable energy technologies are expected to play a key role in the move towards a low carbon economy, providing local job opportunities and energy security (International Energy Agency 2009, 3). However, a wide range of economic, institutional, technical and cultural barriers currently prevent the renewable energy sector from achieving its full potential.

The private sector, research institutions and all levels of government each have key roles and responsibilities in identifying barriers and enabling support for appropriate renewable energy proposals.

The Australian Government has legislated through the expanded national Renewable Energy Target (RET) to increase renewable electricity generation to 20% by the year 2020 or 45,000 gigawatt-hour (Australia Department of Climate Change & Energy Efficiency (b) 2010, par.3-4), from an estimated 7% of total consumption in 2007-2008 (Geoscience Australia 2010).

Planning for increased appropriate renewable energy projects presents multiple benefits and opportunities for local communities. While each level of government has jurisdictional land use planning responsibilities, councils as the closest tier of government to the local community (International Energy Agency 2009, 19), play a central role as a local planning authority and as direct agents of change (United Kingdom Office of the Deputy Prime Minister (b) 2004, 43).
To provide further clarity on the nature of the problems surrounding local renewable energy proposals, this thesis gathered information on everyday council experiences assessing renewable energy applications in Tasmania. While Tasmania has a unique history with a relatively higher proportion of renewable generation, preventing the potential of renewable energy being overlooked by including renewable energy in urban planning is a similar approach in cities throughout the world (International Energy Agency 2009, 95). To identify end goals for the renewable electricity generation sector in Tasmania the current deployment of renewable energy, key government strategies and the number and type of recent planning applications in a single locality are analysed.

The public problem of how to support increased sustainable renewable energy deployment is discussed from a planning perspective, with various regulatory incentives and guidance/information policy deployment instruments (International Energy Agency 2009, 96) evaluated in the Tasmanian local government context.

It is proposed that by taking a proactive evidence-based approach to energy spatial planning, consistent, equitable, transparent and timely application processes can assist local governments to deliver the widespread implementation of sustainable renewable technologies.
TABLE OF CONTENTS

DECLARATION ... ii

ABSTRACT .. iii

TABLE OF CONTENTS ... v

ACKNOWLEDGMENTS ... vi

LIST OF FIGURES .. vii

1. Introduction ... 10

2. Aims & objectives ... 12

3. Scope ... 14

4. Literature Review .. 21

Methods .. 29

6. Presentation of results ... 38

6.1. Case Study Summary ... 38

6.2. Survey Results .. 52

7. Interpretation & Analysis of Results ... 53

7.1. Case Study Findings .. 53

7.2. Survey Key Findings .. 54

7.3. Analysis ... 58

7.4. Limitations of Results & Areas of Further Research .. 62

8. Conclusion .. 64

8.1. Recommendations .. 66

References .. 71

Appendix A: List of renewable energy resources & technologies .. 76

Appendix B: Survey Information .. 78

Appendix C: Murdoch University Human Ethics Approval Documentation .. 82

Appendix D: Summary of Survey results .. 83

Appendix E: Key Summary of Literature Review Material ... 87

Appendix F: Literature Review References ... 92
ACKNOWLEDGMENTS

I wish to thank the following organisations for their support:

- Murdoch University for the guidance provided by staff and in particular my Supervisor Dr August Schapfer, who has been an excellent mentor and an inspiring figure working in the field of renewable energy research and development, alongside Professor Phillip Jennings, Dr Trevor Pryor and Dr Jonathan Whale. Their complementary teaching styles have made my studies a great learning experience;

- Clarence City Council for their in-kind resource funding contribution in the form of $8,800 (exc.GST) of staff time and access to data for case study information; and

- The Southern Tasmanian Councils Authority, Regional Climate Change Initiative for providing initial endorsement so the Project could be developed to include consultation with council staff across the Southern Tasmanian region through a postal survey.

A big thank you to all the council staff across the Southern region of Tasmania who took the time to fill out the survey and provide feedback, without your involvement everyday issues would not have been so clearly identified.

I thank Shannan, John, Ellis, Emlyn, Chris, Bryn and Bronwyn for their assistance in proof reading the thesis. Their help has made this document a more pleasurable reading experience.

I would like to extend my gratitude to my workplace, Clarence City Council, for supporting flexible working arrangements to complete this thesis.

Finally, I would like to thank my family and friends for their care, support, encouragement and distraction over the past year. They have been a source of much motivation. I am greatly appreciative.

In particular Bronwyn and Bryn deserve special mention for the hours sacrificed discussing the thesis with me, for which I am very thankful.
LIST OF FIGURES

Figure 1. Rokeby Flour Mill Circa 1900. Source. The Archives Office of Tasmania, ref. no. PH30/1/117..18

Figure 2. Tasmanian Local Government Areas. Source: the Local Government Association of Tasmania (LGAT) 2010..........................38

Figure 3. The solar resource over the Clarence City Council area. Source: Renewable Energy Atlas of Australia 2007-2010...............................40

Figure 4. The wind resource available over the Clarence City Council area. Source: Renewable Energy Atlas of Australia 2010 © Commonwealth of Australia 2007-2010..42

Figure 5. The geothermal resource under the Clarence City Council area. Source: Renewable Energy Atlas of Australia 2010 © Commonwealth of Australia 2007 – 2010...43

Figure 6. Temperature ranges that geothermal resources can be utilized. Source: GeoScience Australia 2010, © Commonwealth of Australia44

Figure 7. Area of tenements held by KUTh Energy for geothermal resource exploration. Source: © KUTh Energy Pty Ltd. 2010.................................45

Figure 8. Modelled wave energy resource along the Southern Margin of Australia. Source: CSIRO 2010 © Griffin et al.2010.............................46

Figure 9. Micro hydro resource potential: Risdon Brook Reservoir is used as a purely as an example of a site with potentially desirable micro hydro characteristics in the Clarence City Council area. Source: REAA 2010© Commonwealth of Australia 2007 – 2010...49

Figure 10. Modelled tidal energy resource around the Southern coast of Tasmania. Source: CSIRO 2010 © Griffin et al.2010..............................49

Figure 11. REC Registry records 2005-2010. Source: The Author using REC Registry 2010 data...51
LIST OF TABLES

Table 1. Total REC’s quantified through the REC Registry 2005-2010..36
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCA</td>
<td>Building Code of Australia</td>
</tr>
<tr>
<td>BOM</td>
<td>Bureau of Meteorology</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific Research Organisation</td>
</tr>
<tr>
<td>CSP</td>
<td>Concentrated Solar Power</td>
</tr>
<tr>
<td>DEWHA</td>
<td>Department of Water, Heritage and the Arts</td>
</tr>
<tr>
<td>EPHC</td>
<td>Environmental Protection and Heritage Council</td>
</tr>
<tr>
<td>GWh</td>
<td>Gigawatt-hour</td>
</tr>
<tr>
<td>IEA</td>
<td>International Energy Agency</td>
</tr>
<tr>
<td>LGA</td>
<td>Local Government Area</td>
</tr>
<tr>
<td>LGAT</td>
<td>Local Government Association of Tasmania</td>
</tr>
<tr>
<td>NEM</td>
<td>National Electricity Market</td>
</tr>
<tr>
<td>NIMBY</td>
<td>Not-In-My-Backyard</td>
</tr>
<tr>
<td>MUHEC</td>
<td>Murdoch University Human Ethics Committee</td>
</tr>
<tr>
<td>MWh</td>
<td>Megawatt-hour</td>
</tr>
<tr>
<td>ORER</td>
<td>Office of Renewable Energy Regulator</td>
</tr>
<tr>
<td>PIA</td>
<td>Planning Institute of Australia</td>
</tr>
<tr>
<td>PPS22</td>
<td>Planning Policy Statement 22</td>
</tr>
<tr>
<td>PV</td>
<td>Photovoltaic</td>
</tr>
<tr>
<td>REAA</td>
<td>Renewable Energy Atlas of Australia</td>
</tr>
<tr>
<td>REC</td>
<td>Renewable Energy Certificate</td>
</tr>
<tr>
<td>STCA, RCCI</td>
<td>Southern Tasmanian Councils Authority, Regional Climate Change Initiative</td>
</tr>
<tr>
<td>RET</td>
<td>Renewable Energy Target</td>
</tr>
<tr>
<td>TREIDB</td>
<td>Tasmanian Renewable Energy Industry Development Board</td>
</tr>
</tbody>
</table>