Evaluating Hydraulic Transient Analysis Techniques in Pumped-Storage Hydropower Systems

Michael George Pullinger
Murdoch University, May 2011
Master of Science in Renewable Energy
PEC 624 Renewable Energy Dissertation
Declaration

This dissertation contains no material which has been accepted for the award of any other degree or diploma in any tertiary institution, and to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference is made in the text of the dissertation.

Signed

Michael Pullinger, BE BSc

May 20th, 2011
Abstract

Hydropower is the most widely adopted form of renewable energy in the world today, accounting for approximately 16% of global energy production [1]. With increasing demand for electricity, and concern about reducing fossil fuel consumption, hydropower is likely to continue to play a key role in global energy production. The interest in pumped-storage systems is increasing, due to their ability to regulate power grids, increase the efficiency of thermal power (coal and nuclear), and maximise the penetration of renewable energy such as wind and solar. Since pumped-storage systems must respond quickly to load variations, transient flow phenomena are frequent.

In the design of hydropower systems, transient effects are an important consideration, as rapid flow variations can lead to potentially catastrophic increases in pressure (water-hammer). Numerical techniques for hydraulic transient analysis appear to be well understood, but the hydraulic characteristics of reversible pump-turbines can create difficulties depending on the software used for the analysis. The “S” shape of the machine characteristic in the turbine runaway region is a cause of instability in real machines and a potential cause of numerical instability in incorrectly designed or unsuitable software packages.

The commercial hydraulic analysis software package SIMSEN-Hydro was used to evaluate hydraulic transients in two systems. Project A is a 25.5 MW run of river system utilising three Francis turbines. Hydraulic transients in the system were successfully modelled, and the results showed good agreement with load rejection data measured on site during commissioning of the project.

Project B is a 1333 MW pumped-storage system utilising four reversible Francis pump-turbines. The machine curves include the characteristic “S” shape in the runaway region of the turbine zone. Using SIMSEN-Hydro, the transients in the system were modelled, utilising the machine characteristics. Results were similar to those obtained during preliminary design of the system.

By undertaking a sensitivity analysis for Project B, the effect of modifying input parameters on the simulation results was highlighted. The choice of pipe friction factor, surge tank throttling coefficient and generator inertia all had a notable effect on the results of the analysis. While the range of pressure wave-speeds that were examined did not have a significant effect on the results, this may differ for other systems. Based on these results, it seems important that sensitivity analysis be included on all transient analysis projects, unless the modelling inputs are all known with a reasonable level of accuracy.
Acknowledgements

Many people have helped make the completion of this dissertation possible, although there are three organisations to which I wish to express my extreme gratitude for the generosity and support. They are Knight Piésold, my industry partners; École Polytechnique Fédérale de Lausanne (EPFL), the developers of SIMSEN; and FWD Systems Design, my employers.

Knight Piésold gave me a fantastic opportunity by allowing me to work on this project with them. In particular, I would like to thank Rob Adams and Dan Friedman who were both generous in lending their time, knowledge and experience to assist me in completing the dissertation.

EPFL were kind enough to allow me limited access to a full version of the software. In particular, I want to extend my sincere appreciation to Dr. Christophe Nicolet, who spent many hours of his time responding to my queries.

To Gerry and the guys at FWD Systems, I want to say thanks for allowing me to work flexible hours and for showing understanding when I needed to spend a day or two out of the office to work on the project. Without having this flexibility, I simply would not have been able to finish by the deadline.

Slobodan Dobrijevic at Andritz Hydro provided some initial insights into the ‘state of art’ in hydropower transient analysis. Trevor Pryor and Jonathan Whale at Murdoch University both provided assistance at various stages.

To Andy, my gratitude for planting the seeds for the sensitivity analysis in my mind. To Meghan, thank you for your amazing companionship and support over the last few months. Lastly, to my dear family in Australia, I want to dedicate this dissertation to you, for giving me the courage to stand up for what I believe and the inspiration to follow my dreams.
Table of Contents

Declaration ... ii

Abstract ... iii

Acknowledgements ... iv

Table of Contents ... v

List of Tables .. viii

List of Figures .. x

CHAPTER 1: Introduction .. 1

1.1 Research problem .. 1

1.2 Dissertation Aims .. 2

CHAPTER 2: Background .. 4

2.1 The role of hydropower and pumped-storage in energy reform ... 4

2.2 Components of hydropower systems ... 8

2.2.1 Dams and reservoirs .. 8

2.2.2 Hydraulic Conveyance Systems ... 9

2.2.3 Pressure control devices ... 11

2.2.4 Flow control devices ... 13

2.2.5 Turbines .. 15

2.2.6 Powerhouse .. 26

2.2.7 Electrical equipment ... 28

2.3 Hydraulic Transients ... 29

2.3.1 Water-hammer .. 30

2.3.2 Numerical analysis techniques for hydraulic transients .. 31

2.3.3 Francis turbines and pump-turbines in transient analysis .. 32

2.3.4 Software for hydraulic transient analysis ... 35
5.3.1 Sensitivity to wave-speed ... 67
5.3.2 Sensitivity to pipe friction factor .. 69
5.3.3 Sensitivity to surge-tank throttling coefficient 72
5.3.4 Sensitivity to generator inertia ... 77

5.4 Discussion ... 79

CHAPTER 6: Conclusions .. 83
6.1 Discussion of results .. 83
6.2 Future Research .. 84
6.3 Project Conclusion ... 86

References ... 87

Appendix I: An Overview of SIMSEN-Hydro ... 91
Software Components and Inputs .. 91
Francis turbine data files in SIMSEN .. 93
Modelling start-up and trip of units .. 98
Additional lessons learnt ... 98

Appendix II: Analysis Results – Project A .. 100
Appendix III: Analysis Results – Project B .. 103
Emergency shut-down ... 103
Runaway .. 106
Generation start-up and trip .. 109
Pump start-up and trip ... 112
List of Tables

Table 2.1: Properties of some pressure control devices [6]............................ 12
Table 2.2: Approximate range of specific speed for typical turbine families [17]. 18
Table 2.3: Zones of a four quadrant pump-turbine machine characteristic. 33
Table 2.4: Characteristics of some software packages for hydraulic transient analysis. 35
Table 3.1: Rated values of the three Francis turbines used in Project A. 38
Table 3.2: Properties of pipes used in Project A. .. 38
Table 3.3: Turbine steady-state conditions for the load rejection tests for Project A. 40
Table 3.4: Turbine transient conditions for the load rejection on Project A. 42
Table 3.5: Transient conditions in the surge tank for Project A. 42
Table 4.1: Rated values of the four pump-turbines used in Project B 45
Table 4.2: Properties of the pipes used in Project B. ... 47
Table 4.3: Pump-turbine transient conditions during emergency shut-down for Project B........ 50
Table 4.4: Transient conditions in the head-race surge tanks during emergency shut-down 50
Table 4.5: Transient conditions in the tail-race surge tanks during emergency shut-down 50
Table 4.6: Pump-turbine transient conditions during runaway. ... 52
Table 4.7: Transient conditions in the head-race surge tanks during runaway. 53
Table 4.8: Transient conditions in the tail-race surge tanks during runaway. 53
Table 4.9: Turbine transient conditions during generation start-up and trip. 57
Table 4.10: Transient conditions in the head-race surge tanks during start-up and trip. 57
Table 4.11: Transient conditions in the tail-race surge tanks during start-up and trip. 58
Table 4.12: Pump-turbine transient conditions during pump start-up and trip. 62
Table 4.13: Transient conditions in the head-race surge tanks during pump start-up and trip. ... 62
Table 4.14: Transient conditions in the tail-race surge tanks during pump start-up and trip. 63
Table 5.1: Values for modelling parameters used in the sensitivity analysis....................... 66
Table 5.2: Sensitivity of pump-turbine transient conditions to variations in wave-speed. 67
Table 5.3: Sensitivity of HRSC conditions to variations in wave-speed............................... 68
Table 5.4: Sensitivity of TRSC conditions to variations in wave-speed............................... 68
Table 5.5: Sensitivity of pump-turbine transient conditions to variations in friction factor. 70
Table 5.6: Sensitivity of HRSC conditions to variations in friction factor............................ 70
Table 5.7: Sensitivity of TRSC conditions to variations in friction factor............................ 71
Table 5.8: Sensitivity of pump-turbine to variations in HRSC throttling coefficient................ 73
Table 5.9: Sensitivity of HRSC conditions to variations in HRSC throttling coefficient. 73
Table 5.10: Sensitivity of TRSC conditions to variations in HRSC throttling coefficient. 73
Table 5.11: Sensitivity of pump-turbine to variations in TRSC throttling coefficient. 75
Table 5.12: Sensitivity of HRSC conditions to variations in TRSC throttling coefficient. 75
Table 5.13: Sensitivity of TRSC conditions to variations in TRSC throttling coefficient. 75
Table 5.14: Sensitivity of pump-turbine transients to variations in generator inertia. 77
Table 5.15: Sensitivity of HRSC conditions to variations in generator inertia. 77
Table 5.16: Sensitivity of TRSC conditions to variations in generator inertia. 77
List of Figures

Figure 1.1: A typical pump-turbine machine characteristic... 3
Figure 2.1: The powerhouse in a typical mini-hydropower system.. 4
Figure 2.2: A comparison of different types of energy storage [11].. 7
Figure 2.3: Components of a typical pumped-storage hydropower system. Adapted from [7].......... 9
Figure 2.4: A Moody diagram, used for determining head loss in conduits adapted from [18]........... 11
Figure 2.5: A spherical valve mounted in a test rig ... 14
Figure 2.6: Typical operating range for different types of hydropower turbine [20].......................... 16
Figure 2.7: Efficiency curves for common types of turbine [17].. 17
Figure 2.8: Four-quadrant machine characteristic for a pump-turbine (GVO = 100 %)..................... 20
Figure 2.9: A typical six nozzle Pelton wheel. Adapted from [6], [7].. 21
Figure 2.10: The basic components of a Francis turbine. Adapted from [4]....................................... 22
Figure 2.11: Water flow through a radial flow Francis turbine runner [6]... 23
Figure 2.12: Francis turbine runnery geometry for a variety of specific speeds [17]......................... 24
Figure 2.13: Four quadrant machine characteristics for two different Francis machines................. 25
Figure 2.14: The components of a Kaplan turbine. Adapted from [6]... 26
Figure 2.15: The powerhouse, sub-station and tail-race for a 5 MW hydropower system................. 27
Figure 2.16: A typical six-pole hydropower generator... 29
Figure 2.17: Representation of the machine characteristic using cartesian co-ordinates................. 33
Figure 2.18: Polar representation of the machine characteristic (GVO = 100 %).......................... 34
Figure 2.19: A model of a hydropower system created using SIMSEN-Hydro................................. 37
Figure 3.1: Schematic of the Project A run-of-river hydro scheme.. 39
Figure 3.3: Representative machine characteristics for Project A... 41
Figure 3.4: Load rejection data for Project A... 43
Figure 4.1: Schematic of the Project B pumped-storage scheme... 46
Figure 4.2: Representative pump-turbine machine characteristics for Project B......................... 48
Figure 4.3: Three stage guide vane closure relationship for Project B.. 49
Figure 4.4: Machine behaviour for emergency shut-down in Project B... 51
Figure 4.5: Machine behaviour for turbine runaway in Project B... 54
Figure 4.6: Machine startup in turbine mode... 56
Figure 4.7: Conditions in the tail-race surge tanks during generation start-up............................... 56
Figure 4.9: Conditions in the tail-race surge chamber after generation start-up and trip.............. 59
Figure 4.10: Machine start-up in pump mode for Project B. ... 61
Figure 4.11: Water level and flow into the tail-race surge chambers during pump start-up.61
Figure 4.13: Conditions in the tail-race surge chambers after pump start-up and trip.64
Figure 5.1: Turbine inlet head for various wave speeds. ... 68
Figure 5.2: The sensitivity of model outputs to variations in wave-speed. 69
Figure 5.4: The sensitivity of model outputs to variations in friction factor. 72
Figure 5.5: The level in the HRSC for various HRSC throttling coefficients. 74
Figure 5.6: The sensitivity of model outputs to variations in HRSC throttling coefficient. 74
Figure 5.7: The level in the tail-race surge chambers for various TRSC throttling coefficients. 76
Figure 5.8: The sensitivity of model outputs to variations in TRSC throttling coefficient 76
Figure 5.9: Head at the turbine inlet for various generator inertias. .. 76
Figure 5.10: Machine speed for various generator inertias. ... 78
Figure 5.11: The sensitivity of model outputs to variations in generator inertia. 79