Compatible rhizobia and nitrogen requirements for early growth of *Acacia mangium* on Melville Island, northern Australia

This thesis is submitted for the degree of

Master of Philosophy

By

DANG Thanh Tan

BSc Forestry (For. Uni. Vietnam)

School of Biological Sciences and Biotechnology
Murdoch University, Perth, Western Australia

2011
Declaration

I declare that this thesis is my own original piece of work, does not contain the work of another individual excepting where acknowledged. My research content has not been submitted for a degree at any tertiary education institution.

Contributions including professional advice and help with data collection from others are detailed in the acknowledgments.

DANG Thanh Tan
Murdoch University
June 15, 2011
Abstract

Acacia mangium is widely planted in tropical parts of SE Asian for reforestation, timber and pulpwood. Plantation has recently been established on Melville Island and early growth and tree form are below commercial expectations. Although *A. mangium* is a N-fixing tree, seedlings are not inoculated with rhizobia and a small amount of inorganic N fertilizer is applied at planting. This thesis explores compatible rhizobia for *A. mangium* and determines the extent to which N may be limiting establishment and early growth of *A. mangium* on Melville Island.

To determine whether there are bacteria in the western soil management (WSM) collection at Murdoch University capable of forming functional nodules on *A. mangium*, a glasshouse trial was undertaken with six isolates. These cultures had been isolated from nodules on roots of *A. acuminate* and were associated with a positive effect on growth. The results showed that strain WSM 2248 also had a positive effect on growth of *A. mangium*, it increased shoot and root dried weight over negative control ones by 524% and 234%, respectively. However, there were a few of chloric seedlings still present. This strain, therefore, might be not the most effective one, and could easily be replaced by indigenous rhizobia in plantations.

The diversity and ability of indigenous rhizobia on Melville Island to colonize and promote growth of *A. mangium* were unknown. Therefore, 20 soil samples were taken from different site types on Melville Island including native forest and *A. crassicarpa*, *A. auriculiformis* and *A. mangium* plantations. A pot trial was undertaken in the glasshouse using *A. mangium* as a baiting plant. 257 isolates were obtained including both fast- and slow-growing rhizobia. They were confirmed by using the *nif*-directed primer RPO1. The fingerprinting PCR of the isolates showed a high diversity of different banding patterns. Surprisingly, root nodule bacteria might be absent in Shark Bay site, while other sites presented variety of rhizobia.

To determine whether inoculation with compatible *Bradyrhizobium* strain was desirable for improving the N status of trees in the field after outplanting, seeds were inoculated in the nursery with two strains *Bradyrhizobium* selected from previous glasshouse trails (from treatments 11 and 18). These seedlings were planted in two separate field trials on Melville Island. There was no benefit of inoculation in the nursery and indeed, growth of inoculated seedlings was inferior to that of no-inoculated seedlings supplied with inorganic N. Contamination of the control seedlings bench in the nursery would have seriously comprised the field experiments. Therefore, they were of little use in addressing the question posed in the
introduction. It remains unclear whether inoculation with compatible Bradyrhizobium strains in the nursery can benefit the N status of trees in the field after outplanting.

Acacia mangium plantations on Melville Island are still in the first rotation and unpublished observations (stunted trees, poor form, and some leaf discolouration) suggest that the trees are not adequately provided with nutrients. Given the sandy texture of the soils it is likely that N is a limiting factor and only a small amount of N is applied in the fertilizer mix at planting. The project compared six nitrogen fertilizer rates at three sites with different soil types: N0, N15 (15g N per tree) N30, N45, N60, and N75 combining basal fertilizer. There were also two controls treatments; nil fertilizer and the current commercial operational fertilizer regime (routine treatment) used on the island. The trials were designed randomised complete block design was used consisting of 3 blocks, each with 8 treatment plots. Each plot contained 48 (6 x 8) seedlings at 4 x 2.5 m spacing. The results confirmed that in first year, trees reach optimal growth at rate of 15 g nitrogen fertilizer per seedlings in combination with mixture of micro- and macro-nutrients (g), 72 K, 218 P and 83.3 micro-nutrient fertilizers. Foliar analysis revealed that it was likely micronutrients, especially B, Cu and Zn, were limiting at some sites and that the micronutrient content of the basal fertilizer reduced these limiting factors.

From this project it is obvious that there are need for further evaluation the operational fertilizer prescriptions for *A. mangium* plantations. Due to the short duration of the trial it is not as yet known if improved micronutrient status would result in improved form of *A. mangium* on Melville Island. Therefore, further studies addressing a range of essential element requirement should be undertaken for *A. Mangium* on Melville Island.
Acknowledgment

In this case, I would like take this opportunity to express my great gratitude to many people who helped and supported me to complete my thesis.

Firstly, I would like to express my deep thanks to my supervisor, Professor Bernie Dell helping me a lot not only with my project but also daily life advices. I would never forget a first day that I met Prof. Bernie and Dr. Treena at my institution in 2005 in Vietnam, and then I sooner recognized that I must go to Australia to study to obtain good qualification there to apply knowledge for research in Vietnam. In my mind, Bernie is a superman who is always friendly and humorous, and seems to be about smile with everyone, making them feel comfortable as communicated with him. I enjoyed and learned great knowledge on plant nutrient requirement in interaction between soil nutrient, inorganic nutrient fertilizer and foliar nutrient contents. Thanks for your patience in discussions with my project and helping me to keep the thesis in track. I felt extremely lucky to be one of your students.

Secondly, I wish to extend my gratitude to my co-supervisor, Senior Lecturer Dr. Treena Burgess, helping me since my first step when I footed on Perth till to the end. Thanks for helping and taking care me as my mum (Alex, a GSP employee, ever said that when we were on the Island for field work), and for providing me an excellent project.

Thirdly, I would also like to thank my co-supervisor, Dr. Lambert Brau, assisting me a lot for nitrogen-fixing bacteria knowledge. Your enthusiasms for guiding lab work skills from crashing nodules to doing molecular works, and also wonderful field trip in Darwin are appreciated.

I am very grateful for the Government of Vietnam, Ministry of Education and Training (MOET) and Ministry of Agriculture and Rural development (MARD) for providing the scholarship for my study.

I would like to thank the former Great Southern Plantation Company (GSP) and Tiwi Plantations Corporation for providing research fund, field research sites, accommodation, vehicle and other things when working in Tiwi Island and for Murdoch University for partly scholarship.

My sincere thanks to staffs of School of Biological Sciences and Biotechnology, especially to staffs of Plant Group and Centre Study Research for all their kind supports and helping me
with lab work, data analysis. Many thanks to GSP staffs who helped me from collecting soil samples, establishing the trials, collecting the growth data and also providing me useful documents relating with study sites.

Thanks to my best friend Peter Scott, my nice brother, with all my heart and to his family for their supports. Peter has been along with me for my entire Master degree period, and he helped, encouraged and supported me for my project as well. Moreover, he helped me overcoming homesick when studying, showed me how Australia life is, and we sometimes had great arguments and enjoyed with my project here, and stole also a piece of Peter’s knowledge on plant pathology.

Many thanks to A/Prof. Hoang Nghia NGUYEN, A/Prof. Quang Thu PHAM, Mrs. Thu Huyen NGUYEN and all my colleagues in Forest Protection Research Division, Forest Science Institute of Vietnam, have supported and encouraged me to go to Australia to study.

Hong Ha NGUYEN, the most upfront, beautiful, intelligent and vigour girl who I have ever met, gave me every love weekend as studying here, made me feel as in Vietnam so that I overcame homesick and could concentrate to do well my project. She passed her love in science to me lead me to done my project with all my enthusiasm. Thanks you very much for your supports

Last but not least, I would like to dedicate my thesis to my parents and my brothers and sisters who always help and support me for everything in my life.
Table of Contents

Abstract ... i

Acknowledgment ... iii

Chapter 1: Literature review and thesis aims .. 1
 1.1 Introduction.. 1
 1.1.1 Global deforestation .. 1
 1.1.2 International demand for wood and wood products ... 2
 1.1.3 Acacia species in forestry and other uses ... 3
 1.2 Acacia mangium .. 4
 1.2.1 Introduction.. 4
 1.2.2 Plantation area ... 5
 1.2.3 Productivity .. 6
 1.2.4 Overcoming site fertility constrains ... 6
 1.3 Nitrogen fixing legume symbionts ... 8
 1.3.1 Introduction.. 8
 1.3.2 N-fixing bacteria in Acacia ... 10
 1.4 Melville Island, forestry and Acacia mangium plantations ... 12
 1.5 General conclusions .. 15

Chapter 2: Screening compatible rhizobia for *Acacia mangium* and diversity of rhizobia on Melville Island ... 17
 2.1 Introduction.. 17
 2.2 Materials and methods ... 19
 2.2.1 Experiment 1 .. 19
 2.2.2 Experiment 2 .. 22
 2.3 Results.. 26
 2.3.1 Experiment 1 .. 26
 2.3.2 Experiment 2 .. 27
 2.4 Discussion .. 32

Chapter 3: Effect of nitrogen fertilization on early growth of *Acacia mangium* in plantations on Melville Island ... 36
 3.1 Introduction.. 36
 3.2 Materials and methods ... 39
 3.2.1 Site description .. 39
 3.2.2 Site preparation ... 40
 3.2.3 Nitrogen rate experiments .. 41
 3.2.4 Inoculation experiments ... 43
 3.3 Results.. 45
 3.3.1 Soil properties .. 45
 3.3.2 Nitrogen rates trials .. 46
 3.3.3 Inoculation experiments ... 55
 3.4 Discussion .. 56
 3.4.1 Nitrogen rates experiments .. 56
 3.4.2 Inoculation experiments ... 67

Chapter 4: General Discussion ... 69
 4.1 Nitrogen fixing bacteria .. 69
 4.2 Tree nutrition .. 71
 4.3 Improving the management of A. mangium on Melville Island and future study proposed .. 72

Appendices ... 75

References ... 79