Control of Sudden Death in Cultivated Proteas from the Southwest of Western Australia

Christopher Dunne

Thesis presented to the School of Biology and Biotechnology, Murdoch University, Western Australia, for the fulfillment of the requirements of a Ph.D.

March 2004
Acknowledgements

I wish to thank the whole WA protea industry, particularly those growers that offered their plantations for the disease surveys and that assisted in the establishment of the field trials. In particular, I would like to thank Wally and Dawn Lewis at Anniebrook flower farm in Carbanup River. Without your help, assistance and input, this project would not have been possible.

The partnership with the Department of Agriculture has proved very rewarding and I would like to acknowledge the contribution of Mark Heap, Gilly Brown, Lachlan Duncan, Chris Newell, Gerry Parvliet and Digby Gowns.

A number of Phytophthora cultures used in the current study were obtained from a culture collection at Conservation and Land Management in Western Australia. I would like to recognize Jeff Boersma for providing the VHSC 8105 P. cactorum isolate.

I would like to acknowledge Malatesta Greenwaste Recyclers and Custom Composts for providing the mulch and compost used in the field trials. Also, thanks to Agseed Research and Wrightson seeds for providing the Brassica varieties used in the current study.

Thank you to all the staff at Murdoch University who assisted me in this project. I would like to pay particular thanks to Dr Giles Hardy who has been an inspiration and mentor during this period. Also, I would like to recognize Associate Professor Bernie Dell for his supervision. Thanks to the members of the “thesis writing group” (Tania Jackson, Aaron Maxwell and Sarah Collins) for helping with the finer details of the thesis.

Thanks to all my friends and family who have supported me during this time. I would like to recognise the support of my mother, Margaret Dunne.

Finally, and most importantly, thank you to my wife Janelle Martin for putting up with me during this time. I couldn’t have done it without you and I will always be indebted to you.

This study funded by an ARC-SPIRT grant (C19940004).
# Table of Contents

## ABSTRACT

## CHAPTER 1 – LITERATURE REVIEW

### 1.0. Introduction

### 1.1. The cultivated protea industry

### 1.2. Growing proteas

### 1.3. Pests and diseases of proteas

#### 1.4. *Phytophthora cinnamomi*

- 1.4.1. Phytophthora root rot of proteas
- 1.4.2. Symptoms
- 1.4.3. The disease cycle in the southwest of Western Australia
- 1.4.4. Control of *Phytophthora*

### 1.5. General conclusions

### 1.6. Project objectives

## CHAPTER 2 – PROTEA DEATH AND DECLINE IN PLANTATIONS FROM THE SOUTHWEST OF WESTERN AUSTRALIA

### 2.1. Introduction

### 2.2. Methods

- 2.2.1. Plantation surveys
- 2.2.2. Isolation of fungi associated with diseased proteas
- 2.2.3. Inorganic nutrient analysis
- 2.2.4. Pathogenicity trials

### 2.3. Results

- 2.3.1. Plantation surveys
- 2.3.2. *Phytophthora cinnamomi* pathogenicity trial
- 2.3.3. *Fusarium* pathogenicity trial

### 2.4. Discussion

- 2.3.1 Plantation visits
- 2.4.2. Pathogenicity tests

## CHAPTER 3 – DO BIOFUMIGANTS SUPPRESS THE VEGETATIVE GROWTH OF FIVE *PHYTOPHTHORA* SPECIES IN VITRO?

### 3.1. Introduction

### 3.2. Methods

- 3.2.1. Experimental design
- 3.2.2. Experimental isolates
- 3.2.3. Preparation of biofumigant tissues
- 3.2.4. Determination of suppression (growth tests)
- 3.2.5. Quantification of biofumigant tissue
- 3.2.6. Post treatment isolate viability
- 3.2.7. Statistical analysis

### 3.3. Results

- 3.3.1. Suppression by the root and shoot tissues of *Brassica juncea* and *B. napus*
- 3.3.2. Suppression by combining *Brassica* tissues
- 3.3.3. Suppression using synthetic PE-ITC
- 3.3.4. ITC content of the *Brassica* tissues
- 3.3.5. Viability of isolates after exposure to volatiles

### 3.4. Discussion
CHAPTER 4 – DO BIOFUMIGANTS AFFECT THE SPORULATION AND SURVIVAL OF PHYTOPHTHORA CINNAMOMI?

4.1. Introduction 64
4.2. Methods 65
   4.2.1. Experimental design 65
   4.2.2. Phytophthora cinnamomi isolate 65
   4.2.4. Monitoring of infective and survival structures 66
   4.2.5. Statistical analysis 67
4.3. Results 69
   4.3.1. Quantification of the biofumigant tissues 69
   4.3.2. The effect of biofumigants on Phytophthora cinnamomi sporangia 69
   4.3.3. The effect of biofumigants on Phytophthora cinnamomi chlamydospores 72
   4.3.4. The effect of biofumigants on the infectivity of Phytophthora cinnamomi 75
4.4. Discussion 76

CHAPTER 5 – DO BIOFUMIGANTS AFFECT INOCULUM POTENTIAL, INFECTIVITY AND DISEASE INCIDENCE IN PHYTOPHTHORA CINNAMOMI?

5.1. Introduction 80
5.2. Methods 80
   5.2.1. Experimental Design 80
   5.2.2. Biological materials 81
   5.2.3. Monitoring of inoculum potential, infectivity and disease incidence 82
   5.2.4. Statistical analysis 83
5.3. Results 84
   5.3.1. Inoculum potential and infectivity in soil cores 84
   5.3.2. Inoculum potential and infectivity in soil leachate 87
   5.3.3. Disease incidence in Lupinus angustifolius 88
5.4. Discussion 90

CHAPTER 6 - CAN SOIL SOLARISATION, FUMIGATION AND BIOFUMIGATION REDUCE PHYTOPHTHORA CINNAMOMI INFECTION OF LEUCADENDRON SAFARI SUNSET?

6.1. Introduction 94
6.2. Methods 94
   6.2.1. Field trial design 94
   6.2.3. Biological materials 95
   6.2.4. Soil treatments 99
   6.2.5. Soil analysis 104
   6.2.6. Inoculation 109
   6.2.7. Monitoring of plant death 109
   6.2.8. Rainfall and temperature data 109
   6.2.9. Statistical analysis 109
6.3. Results 110
   6.3.1. The soil treatments 110
   6.3.2. Post-treatment analysis 116
6.4. Discussion 128

CHAPTER 7 - CAN BRASSICA JUNCEA OR B. NAPUS REDUCE PHYTOPHTHORA CINNAMOMI INFECTION OF LEUCADENDRON SAFARI SUNSET?

7.1. Introduction 134
7.2. Methods 134
   7.2.1. Experimental design 134
   7.2.2. Biological materials 134
7.2.3. Soil analysis 136
7.2.4. Inoculation 140
7.2.5. Monitoring of disease incidence 140
7.2.6. Statistical analysis 140
7.3. Results 141
7.3.1. Treatment analysis 141
7.3.2. Post-treatment analyses 144
7.4. Discussion 154

CHAPTER 8 – GENERAL DISCUSSION 158
8.1. Plantation visits 158
8.2. Effect of biofumigants on Phytophthora cinnamomi 159
8.3. Field trials 160
8.4. Biofumigation in protea cultivation 162
  8.4.1. Mechanisms of suppression 162
  8.4.2. Optimising biofumigation 162
  8.4.3. Incorporation methods 163
  8.4.4. Enhanced biodegradation 163
8.5. Integrated management of Phytophthora cinnamomi 164
8.5. Limitations of the current study 168
8.6. Future research directions 169
8.7. Conclusions 170

REFERENCES 171
Abstract

 Phytophthora cinnamomi Rands is a common and devastating pathogen of cultivated proteas worldwide. Webb (1997) described a Sudden Death plant disease of proteas in Western Australia (WA) protea plantations. Proteas that suffer the syndrome display symptoms such as stunted growth, wilting, chlorosis and often death. In the current study, a number of protea plantations in the southwest of WA were visited to quantify the extent that P. cinnamomi was attributing to deaths of cultivated proteas. The survey indicated that P. cinnamomi is the major cause of Sudden Death in proteas. A range of other fungi (Fusarium, Botryosphaeria, Pestalotiopsis, Alternaria) and pests (nematodes, mealy bug, scale insects) were also identified to be contributing to protea death and decline in WA plantations. In many cases the factors contributing to protea disease appeared complex, with a range of physical factors or nutritional imbalances commonly associated with these pathogens and pests. As P. cinnamomi was the major cause of death of cultivated proteas the remainder of the experiments described in this dissertation investigated its control in horticultural plantings.

Biofumigation has the potential to become an important technique in an overall integrated management approach to P. cinnamomi. In this thesis, biofumigation refers to the suppression of pathogens and pests by the incorporation of Brassica plants into the soil. Two biofumigants (Brassica juncea (L.) Czern., B. napus L.) were screened for their effect on the in vitro growth of five common Phytophthora species (P. cinnamomi, P. cactorum (Lebert & Colin) Schroeter., P. citricola Sawada, P. cryptogea Pethyb. & Laff. and P. megasperma Drechsler). Growth was determined by the measuring dry weight and radial growth of vegetative hyphae. B. juncea was found to be superior in its suppressive effect compared to B. napus. There was also significant variation in the sensitivity of the Phytophthora species to the suppressive effects of the biofumigants. P. cinnamomi was the most sensitive of the five species investigated. Where the rates of the biofumigant were sufficient to suppress growth of Phytophthora, the suppressive effect was mostly fungicidal.

To determine how B. juncea and B. napus affect the infective ability and survival of P. cinnamomi, their effects on sporangia and chlamydospores production in soil was
Control of Sudden Death in cultivated proteas from the southwest of Western Australia

investigated in vitro. *P. cinnamomi* colonised Miracloth discs were added to soil amended with the two *Brassica* species, before being removed every two days over an eight day period for the determination of sporangia production, chlamydospore production and infective ability. Only the soils amended with *B. juncea* significantly reduced sporangia production in *P. cinnamomi*. Both *Brassica* species increased the percentage of aborted or immature sporangia and reduced the infective ability of the pathogen. Neither *Brassica* species had any effect on zoospore release or chlamydospore production in *P. cinnamomi*.

Soil cores and soil leachate were collected from biofumigant-amended field soils to determine the inoculum potential and infective ability of the pathogen under glasshouse conditions. Amending the soil with both *Brassica* species had an immediate suppressive effect on the inoculum potential and infective ability of the *P. cinnamomi*. However, after this initial suppression there was a gradual increase in the recovery of the pathogen over the monitoring period of four weeks. To determine if the suppression would result in decreased disease incidence in a susceptible host, *Lupinus angustifolius* L. seeds were planted in the biofumigant amended soil. *B. juncea* amended soils reduced the disease incidence of *P. cinnamomi* by 25%. *B. napus* had no effect on disease incidence in *L. angustifolius*.

Although the current study had demonstrated that biofumigants could suppress the growth, sporulation and infection of *P. cinnamomi*, it was unclear if this would equate to a reduction in disease incidence when applied in the field. A field trial was conducted on a protea plantation in the southwest of Western Australia that compared biofumigation with *B. juncea* to chemical fumigation (metham sodium) and soil solarisation. The three soil treatments were used in an integrated management approach to control *P. cinnamomi* that included the use of a hardwood compost, mulch and water sterilisation. All treatments were monitored during their application to ensure the treatments were conducted successfully. The three soil treatments significantly reduced the recovery of the pathogen and the infective ability of the pathogen to a soil depth of 20 cm. Metham sodium was the most suppressive soil treatment and soil solarisation was the least suppressive treatment. Only the metham sodium treatment resulted in a
significant reduction in the incidence of root rot in *Leucadendron salignum* P.J. Bergius x *laureolum* (Lam.) Fourc (c.v. Safari Sunset) over the monitoring period of three years.

Another field trial was conducted on the same protea plantation to compare the effectiveness of *B. juncea* and *B. napus*, without the use of other control strategies, to reduce the incidence of *P. cinnamomi* infection of *Leucadendron* Safari Sunset. The concentration of isothiocyanates was monitored for seven days after the incorporation of the biofumigants. Although both *Brassica* species reduced the recovery and infective ability of the pathogen, neither biofumigant reduced the incidence of root rot in *Leucadendron* Safari Sunset.

In conclusion, *P. cinnamomi* is the most common and devastating pathogen in WA protea plantations. The current study demonstrated that *P. cinnamomi* is sensitive to the suppressive nature of biofumigants. Biofumigants can suppress the *in vitro* growth, sporulation, infective ability of *P. cinnamomi* and reduce the incidence of the disease caused by the pathogen in the glasshouse. Of the two *Brassica* species investigated, *B. juncea* was superior in its ability to control *P. cinnamomi* compared to *B. napus*. When applied in the field, biofumigation using *B. juncea* was found to be more suppressive that soil solarisation, but not as effective as metham sodium.