Studies on *Subterranean clover mottle virus* towards development of a gene silencing vector

This thesis is submitted to Murdoch University for the degree of Doctor of Philosophy

by

John Fosu-Nyarko
B.Sc (Hons) [Agric. Sci]

Western Australian State Agricultural Biotechnology Centre
Division of Science and Engineering
Murdoch University
February, 2005
Declaration

I declare that this thesis is my own account of my research and contains as its main content work which has not been previously submitted for a degree at any tertiary education institute.

John Fosu-Nyarko
Abstract

Subterranean clover mottle virus (SCMoV) is a positive sense, single-stranded RNA virus that infects subterranean clover (Trifolium subterraneum) and a number of related legume species. The ultimate aim of this research was to investigate aspects of SCMoV that would support its use as a gene silencing vector for legume species, since RNA (gene) silencing is now a potential tool for studying gene function. The ability of viruses to induce an antiviral defense system is being explored by virus-induced gene silencing (VIGS), in which engineered viral genomes are used as vectors to introduce genes or gene fragments to understand the function of endogenous genes by silencing them. To develop a gene silencing vector, a number of aspects of SCMoV host range and molecular biology needed to be studied.

A requirement for a useful viral vector is a suitably wide host range. Hence the first part of this work involved study of the host range and symptom development of SCMoV in a range of leguminous and non-leguminous plants. The aim of this work was to identify new and most suitable hosts among economically important crop and model legumes for functional genomic studies, and also to study symptom development in these hosts for comparison with host responses to any SCMoV-based viral vectors that might be used in later infection studies. A total of 61 plant genotypes representing 52 species from 25 different genera belonging to 7 families were examined for their response to SCMoV infection, including established and new crop legumes, established pasture, and novel pasture and forage legumes, and 12 host indicator plants belonging to the families Amaranthaceae, Apiaceae, Chenopodiaceae, Cruciferae, Cucurbitaceae and Solanaceae. Following mechanical inoculation, plants were examined for symptoms and tested for primary and secondary infection by RT-PCR and/or ELISA after 2-3 weeks and 3-9 weeks, respectively. Thirty-six legume hosts belonging to eight different genera of legumes were identified as suitable hosts of SCMoV, 22 of them systemic hosts and 15 were infected locally. Only two non-legumes were infected with SCMoV-P23, one systemically and one as a local host, so confirming that SCMoV is essentially a legume-infecting virus. This work considerably expanded knowledge of the host range of SCMoV.
Abstract

To provide the information needed to modify the SCMoV genome to develop gene vectors, the virus was characterized in detail. The complete genomes of four isolates, SCMoV-AL, SCMoV-MB, SCMoV-MJ and SCMoV-pFL, were sequenced using high fidelity RT-PCR and molecular cloning, and compared to the first sequenced isolate (SCMoV-P23) to give a complete picture of the genome organisation of the virus. The 4,258 nucleotide (nt) sequence of SCMoV RNA is not polyadenylated. The 5’ non-coding region (NCR) is 68 nt in length and the 3’ NCR is 174 nt. The coding region contains four overlapping open reading frames (ORFs). The first, ORF1 (nt 68-608), encodes a putative protein containing 179 amino acids with a calculated molecular mass (M_w) of 20.3 kDa. It overlaps with the next ORF, ORF2a, by four bases. ORF2a (nt 605-2347) encodes a putative protein of 580 amino acids with a M_w of 63.7 kDa and contains a motif characteristic of chymotrypsin-like serine proteases. The ORF2b is probably translated as part of a polyprotein by -1 ribosomal frameshifting in ORF2a. The transframe product (M_w = 107.5 kDa) is made up of 966 amino acids. A GDD motif typical of RNA virus polymerases is present in ORF2b. The 3’ terminal ORF3 (nt 3323-4084) encodes the 27.3 kDa coat protein (CP).

Nucleotide variation between the complete sequences of the isolates was two to three orders of magnitude larger than base misincorporation rates of the polymerases used in RT-PCR. Molecular relationship analysis between all five isolates, undertaken with the complete nucleotide sequences, clearly separated them into three groups. These groups reflect similar significantly diverse groupings based on the symptoms and their severity in subterranean clover. Intra-isolate sequence variability is therefore a possible cause of the differences in symptom severity. The analysis also showed that there were more nucleotide substitutions at the 5’ terminal half of SCMoV than at the 3’ end. This observation was confirmed by the higher value of nucleotide diversities at nonsynonymous versus synonymous sites (d_n/d_s ratio) estimated for the ORF1, compared to the near conservation of sequences of the other ORFs. These results, together with functional and comparative sequence analysis with other sobemoviruses, implicate the ORF1 gene product in pathogenicity of SCMoV, possibly as a severity determinant or as a viral suppressor of RNA silencing in plants.
Because more information on SCMoV genome function was required, the possible involvement of the ORF1 gene product (P1) and the CP in movement of SCMoV was studied in cells of grasspea (*Lathyrus clymenum* L) and chickpea as C-terminal fusion constructs with jellyfish (*Aequorea victoriae*) green fluorescent protein (GFP). A transient expression vector, pTEV, for *in planta* synthesis of reporter gene constructs was developed. The vector was based on pGEM-T with 35S RNA transcriptional promoter of *Cauliflower Mosaic virus* (CaMV) and nopaline synthase gene transcription terminator signal (T-Nos) separated by a multiple subcloning site. A custom-made particle inflow gun was used to introduce the constructs into plant cells. The bombardment conditions were first optimised for efficient delivery of DNA-coated particles. Transient gene expression of GFP was monitored 24-96 hours after particle bombardment. Fluorescence from GFP alone, GFP:CP and GFP:P1 constructs was observed in the nucleus of single cells, cytoplasm and cell periphery of neighbouring cells. There was limited spread of these fusion proteins from one cell to another 36-48 hours after transformation. These results indicate that the P1 and CP cannot move independently from cell to cell. Other viral/cellular components might be needed to form a complex with these proteins to transport the viral genome. Putative nuclear export signals in the P1 and CP sequences of SCMoV were identified by sequence comparison. These could be tested by mutagenesis using full-length infectious clones.

To determine the possibility of gene expression of vectors based on SCMoV, three forms of a full-length cDNA clone of SCMoV-pFL were developed: one with no heterologous transcriptional factors (pFL), a second under the control of only 35S (p35SFL) and a third with 35S and T-Nos (pTEVFL). Fifteen day-old *in vitro*-cultured chickpea, grasspea and subterranean clover seedlings were inoculated by particle bombardment using gold particles coated with plasmid pTEVFL. *In vivo*-transcribed RNA transcripts were detected by RT-PCR after two weeks in grasspea but not in subterranean clover and chickpea.
Abstract

Experiments were undertaken towards developing the SCMoV genome into a VIGS vector. Three forms each of five major GFP chimeric constructs of pFL (the full length SCMoV cDNA clone) were generated from which *in vitro-* and *in vivo-*transcribed RNA transcripts could be derived. The rationale used in developing these constructs was gene insertion and/or replacement with *gfp*, and duplication of the putative subgenomic RNA promoter (sgPro) of SCMoV. The major constructs were as follows:

- pFLCPgfp, pFL with the *gfp* gene fused to the 3’ end of the CP gene,
- pFLP1gfp, pFL with *gfp* gene fused to the 3’ end of the ORF1,
- pFLCPsgprogfp, pFL with a putative sgPro sequence and a translatable *gfp* gene cloned in tandem between the CP gene and the 3’ NCR of SCMoV,
- pFLCPVsgprogfp, pFL with a putative sgPro sequence and a translatable *gfp* gene cloned in tandem between a truncated CP gene and the 3’ NCR and
- pFLREPsgprogfp, pFL with the ORF2b, a putative sgPro sequence and a translatable *gfp* gene cloned in tandem between a truncated CP gene and the 3’ NCR

These constructs were all made, but a detailed assessment of their vector potential could not be done because there was a delay of about one year whilst the Office of the Gene Technology Regulator processed the application for permission for glasshouse testing. Although additional work needs to be undertaken to complete development of a final RNA silencing vector, this study has contributed to new knowledge in terms of extending understanding of SCMoV host range, symptoms, sequence variation and control of gene expression. The constructs made have also laid the groundwork for development of a legume gene silencing vector based on SCMoV.
Table of Contents

TABLE OF CONTENTS

Title page ... i
Declaration ... ii
Abstract .. iii
Table of Contents .. iv
Acknowledgements ... vii
Dedication .. xv
Presentations and Publications ... xvi
List of abbreviations ... xvii

CHAPTER ONE: General Introduction and Literature Review 1

1.0 General Introduction .. 2

1.1 *Subterranean clover mottle Sobemovirus* (SCMoV) 3
 1.1.1 Symptoms ... 3
 1.1.2 Isolates ... 4
 1.1.3 Transmission .. 5
 1.1.4 Host range and response to infection .. 5

1.2 Sobemoviruses .. 6
 1.2.1 Definitive species and geographical distribution 6
 1.2.2 Biology ... 6
 1.2.2.1 Strains and isolates .. 6
 1.2.2.2 Host range ... 8
 1.2.2.3 Symptoms and cellular localisation .. 8
 1.2.2.4 Transmission .. 9
 1.2.3 Structure .. 9
 1.2.3.1 Morphology .. 9
 1.2.3.2 Genome organisation .. 10
 1.2.4 Gene expression .. 12
 1.2.5 Gene products .. 12
 1.2.6 Sequence comparison .. 13
 1.2.6.1 Sequences of non-coding regions ... 13
 1.2.6.2 Sequences of coding regions ... 14
 1.2.7 Functions of Sobemovirus proteins .. 15
 1.2.7.1 The P1 protein .. 15
 1.2.7.2 The polyprotein ... 16
 1.2.7.3 The P3 protein .. 17
 1.2.7.4 The coat protein .. 17

1.3 RNA (Gene) silencing in plants ... 19
 1.3.1 History and discovery ... 19
 1.3.2 RNA silencing as a universal system .. 20
 1.3.2.1 Genes involved in RNA silencing 21
 1.3.3 Stages of RNA silencing .. 22
 1.3.3.1 Initiation .. 22
 1.3.3.2 Propagation .. 23
 1.3.3.3 Maintenance ... 23
 1.3.4 Mechanism of RNA silencing in plants 24

1.4. RNA silencing and RNA virus-host interaction 25
 1.4.1 Viruses as targets of RNA silencing ... 25
 1.4.2 Viruses as suppressors of RNA silencing 26
 1.4.3 Viruses as inducers of RNA silencing 27

vii
Table of Contents

1.5 Virus-induced gene silencing (VIGS) ... 28
 1.5.1 VIGS as a tool for functional analysis of endogenous genes 28
 1.5.2 Viral vectors for VIGS ... 29
 1.5.3 VIGS inserts .. 30

1.6 Plant viruses as gene vectors ... 31
 1.6.1 Development of plant RNA viruses as gene vectors, strategies 31
 1.6.2 Virus-based vectors as transient gene expression systems 33
 1.6.3 Introduction of viral vectors into host plants .. 33

1.7 Reporter genes and viral vectors as research tools .. 34
 1.7.1 GFP as a research tool .. 36
 1.7.2 GFP as a reporter gene for validating viral vectors 37
 1.7.3 GFP as a reporter gene for studying viral pathogenesis 38

1.8 Limitations in construction and use of plant RNA viruses as gene vectors 39
 1.8.1 Intrinsic viral factors .. 39
 1.8.2 Technical factors .. 40
 1.8.3 Environmental and regulatory factors ... 41

1.9 Aims and objectives of this project .. 42

CHAPTER TWO: General Materials and Methods ... 43

2.0 Virus isolates and culture, and plant inoculation ... 44
2.1 Plant materials and growth in the glasshouse .. 44
2.2 Extraction of total nucleic acids from virus-infected leaf tissues 45
2.3 Modifying enzymes ... 45
2.4 Reverse transcription (RT) .. 46
 2.4.1 RT with MuLV reverse transcriptase .. 46
 2.4.2 RT with M-MLV reverse transcriptase ... 46

2.5 Polymerase Chain Reaction (PCR) ... 47
 2.5.1 Routine PCRs .. 47
 2.5.2 High Fidelity PCRs .. 47

2.6 Design and primers for RT, PCR and DNA sequencing 48
2.7 Agarose gel electrophoresis and molecular weight standard markers 49

2.8 Cloning ... 51
 2.8.1 Cloning of PCR products .. 51
 2.8.1.1 Ligation of PCR products to cloning vectors 51
 2.8.2 Cohesive/sticky-end cloning ... 52
 2.8.2.1 Restriction endonuclease digestion ... 52
 2.8.2.2 Dephosphorylation of plasmid vectors ... 52
 2.8.2.3 Disruption of endonuclease recognition sites in plasmids 53
 2.8.2.4 Ligation of restriction endonuclease DNA fragments 54
 2.8.3 Transformation of competent E. coli cells .. 54
 2.8.3.1 Bacterial strains ... 54
 2.8.3.2 Preparation of chemically-competent cells 54
 2.8.3.3 Transformation efficiency of chemically-competent cells 55
 2.8.3.4 Heat-shock transformation and bacteria growth 56
 2.8.4 Selection for transformants ... 57
 2.8.5 Analysis of transformants .. 57
 2.8.5.1 Analysis of transformants by PCR ... 57
 2.8.5.2 Analysis of transformants by plasmid DNA miniprep/restriction digestion 58

2.9 DNA purification ... 58
 2.9.1 DNA purification from agarose gels ... 58
Table of Contents

2.9.2 DNA purification from solutions ... 59
 2.9.2.1 DNA purification with UltraClean™ PCR Clean-up kit 59
 2.9.2.2 DNA precipitation .. 60
 2.9.2.3 Phenol:chloroform DNA extraction .. 60
2.9.3 Plasmid DNA purification from bacterial cell culture .. 60
 2.9.3.1 Alkaline lysis method of plasmid purification .. 60
 2.9.3.2 QIAngen Plasmid Mini purification method .. 61
 2.9.3.3 QIAprep Spin Miniprep plasmid purification ... 61
2.10 DNA quantitation/quantification ... 62
2.11 DNA Sequencing ... 62
 2.11.1 Sequencing reactions ... 63
 2.11.2 Purification of extension products for sequencing ... 63
 2.11.3 Data analysis .. 63

CHAPTER THREE: Host Range and Symptomatology of SCMoV 64

3.0 Introduction ... 65
3.1 Aim of Chapter 3 ... 66
3.2 Materials and methods .. 66
 3.2.1 Potential host plants and growth conditions ... 66
 3.2.2 Virus inoculations .. 66
 3.2.3 Detection of infection by RT-PCR ... 67
 3.2.5 Detection of infection by Enzyme-linked Immunosorbent Assay (ELISA) 67
3.3 Results .. 68
 3.3.1 Symptomatology of SCMoV .. 68
 3.3.1.1 Development of primary symptoms in test plants ... 68
 3.3.1.2 Secondary symptom development in crop and alternative crop legumes 69
 3.3.1.3 Secondary symptom development in Trifolium spp 72
 3.3.1.4 Secondary symptom development in alternative pastures/forage legumes 73
 3.3.1.5 Secondary symptom development in host indicator plants 75
 3.3.2 Detection of primary and secondary infection of SCMoV-P23 by RT-PCR 75
 3.3.2.1 Detection of SCMoV-P23 infection by RT-PCR in crop/alternative crop legumes 76
 3.3.2.2 Detection of SCMoV-P23 infection by RT-PCR in Trifolium spp 77
 3.3.2.3 Detection of SCMoV-P23 infection by RT-PCR in alternative pasture/forage legumes 77
 3.3.2.4 Detection of SCMoV-P23 infection by RT-PCR in host indicator plants 78
 3.3.3 Detection of primary and secondary infection in P. sativum and M. truncatula by ELISA 79
3.4. Summary of results - Host Status of test plants to SCMoV 80
3.5 Discussion .. 81
 3.5.1 Extension of host range of SCMoV ... 82
 3.5.2 Symptomatology of SCMoV ... 82
 3.5.3 Importance of host range study to gene silencing studies with SCMoV-based vectors 84
 3.5.4 Susceptibility of new pasture cultivars to SCMoV .. 84
 3.5.5 Susceptibility of crop legumes and farming systems in SCMoV-endemic areas 85

CHAPTER FOUR: Genetic Diversity in SCMoV and Functional Constraints of its Genes 88

4.0 Introduction ... 88
4.1 Aim and objectives of Chapter 4 .. 89
4.2 Materials and methods .. 89
 4.2.1 SCMoV isolates and symptom severity .. 89
 4.2.2 Sequencing strategy and primers for sequencing .. 90
Table of Contents

4.2.3 Primers for RT-PCR ... 90
4.2.4 Sequence analysis .. 92

4.3 Results .. 92
4.3.1 Complete genomic sequences of four isolates of SCMoV .. 92
4.3.1.1 Genome organisation of SCMoV ... 92
4.3.1.2 Comparative sequence analysis of isolates of SCMoV ... 93
4.3.1.3 Genetic variation within SCMoV isolates .. 94
4.3.1.4 Distribution of nucleotide substitutions in all isolates .. 95
4.3.1.5 Nucleotide differences in isolates and symptom severity .. 95
4.3.1.5a Molecular relationship between isolates of SCMoV .. 95
4.3.1.5b Test of significance of relationship between nucleotide differences and symptom severity 96
4.3.2 Nucleotide and deduced amino acid sequence comparison and variability 96
4.3.2.1 Nucleotide sequences of the 5’ and 3’ NCRs ... 96
4.3.2.2 Deduced amino acid sequences of the ORF1 .. 97
4.3.2.3 Deduced amino acid sequences of ORFs 2a and 2b .. 98
4.3.2.4 Deduced amino acid sequences of the coat protein gene .. 101
4.3.3 Selective constraints (d0/ds) for amino acids of SCMoV ... 101
4.3.3.1 d0/ds for amino acids of the ORF1 region ... 102
4.3.3.2 d0/ds for amino acids of the ORF2a/2b region ... 103
4.3.3.3 d0/ds for amino acids of the ORF3 region ... 103

4.4 Discussion .. 104
4.4.1 Genetic variation in SCMoV isolates .. 104
4.4.2 Distribution of nucleotide differences in SCMoV isolates and symptom severity 104
4.4.2 Implications of genetic variation and/or mutations on the biology of SCMoV 105
4.4.3 Functional constraints on genes of SCMoV .. 107
4.4.4 Fidelity of in vitro polymerases and genetic variation in SCMoV isolates 108

4.5 Conclusions and further work .. 109

CHAPTER FIVE: Cell-to-Cell Movement of the P1 and Coat Protein of SCMoV 111

5.0 Introduction ... 112
5.1 Aim and objectives of Chapter 5 .. 113
5.2 Materials and Methods ... 113
5.2.1 Development of transient expression vector, pTEV .. 113
5.2.1.1 Amplification and cloning of 35S and T-Nos .. 113
5.2.1.2 Sequences and map of pTEV .. 114
5.2.2 Development of reporter gene constructs .. 115
5.2.2.1 Amplification, cloning and subcloning of GFP into pTEV as pTEVGFP 115
5.2.2.2 Sequences of m-gfp3 and map of pTEVGFP ... 115
5.2.2.3 Amplification, cloning and fusion of CP and ORF1 genes of SCMoV-pFL to GFP 116
5.2.2.4 Sequencing and maps of c-terminal GFP fusion constructs ... 117
5.2.3 Biolistic transformations ... 117
5.2.3.1 Biolistic device for plant transformation ... 118
5.2.3.2 DNA for transformations .. 118
5.2.3.3 Microcarrier preparation .. 119
5.2.3.4 Coating DNA onto microcarriers .. 119
5.2.3.5 Particle bombardment and plant tissues transformed ... 120
5.2.3.6 Visualisation of GFP expression .. 120

5.3 Results .. 121
5.3.1 Effect of amount of DNA and shooting pressure on GFP fluorescence 121
5.3.2 Effect of dry and wet shooting of DNA-coated particles on transformation 122
5.3.3 Transient expression of free GFP in cells of subclover, Trigonella, chickpea and grasspea 122
5.3.4 Transient expression of GFP:CP and GFP:P1 in cells of chickpea and grasspea 124
Table of Contents

5.4 Discussion ... 125
 5.4.1 Expression and localisation of CP and P1 of SCMoV-pFL in host cells 126
 5.4.2 Putative nuclear export signals of the SCMoV CP and P1 proteins 127
 5.4.3 Optimum conditions for transient transformation of legumes 128
 5.4.4 Limitations of GFP as a reporter gene 129

5.5 Conclusion and further work 130

CHAPTER SIX: Development of an Infectious cDNA Clone of SCMoV and GFP chimera cDNA Constructs for use as VIGS Vectors ... 131

6.0 Introduction .. 132
6.1 Aim and objectives of Chapter 6 132
6.2 Gene expression of SCMoV .. 133

 6.3 Prediction of sg promoter (sgPro) of SCMoV by sequence analysis .. 134
 6.3.1 Eukaryotic sg RNA synthesis .. 134
 6.3.2 Transcription start site of sobemoviruses 135
 6.3.3 Putative sgPro of SCMoV .. 135

6.4 PART 1: Development of a full-length cDNA clone of SCMoV-pFL ... 137
 6.4.1 Isolation of SCMoV-pFL viral RNA 137
 6.4.1.1 Purification and properties of SCMoV-pFL virions 137
 6.4.1.2 Staining of virus particles and electron microscopy 138
 6.4.1.3 Preparation of RNase-free glassware and solutions 139
 6.4.1.4 rRNA extraction from purified virions of SCMoV-pFL 139
 6.4.1.5 Purity and identity of SCMoV vRNA 139
 6.4.1.5a Formaldehyde gel electrophoresis of SCMoV vRNA 140
 6.4.1.5b RT-PCR of SCMoV vRNA 140
 6.4.2 Cloning of a full-length cDNA of SCMoV-pFL 141
 6.4.2.1 RT-PCR amplification of SCMoV-pFL RNA genome 141
 6.4.2.2 Ligation cloning of overlapping cDNA clones to produce pFL 142
 6.4.2.3 Screening of transformants for pFL 144
 6.4.2.3a Restriction digestion screening 144
 6.4.2.3b PCR screening ... 144
 6.4.2.3c DNA sequence of pFL 145
 6.4.3 Development of p35SFL and pTEVFL hybrids of pFL 146

PART 2: Development of SCMoV-based gene vector constructs, strategies and clones .. 146

6.5 Construction of plasmid pFLCPgfp 148
 6.5.1 Development of plasmid pCPgfp3NCR 148
 6.5.1.1 Cloning of plasmid p1425 149
 6.5.1.2 Development of a mutated plasmid of p1425 for ligation to gfp gene 149
 6.5.1.2a Inverse PCR mutagenesis of p1425 to incorporate EcoRI and SceI sites 149
 6.5.1.2b Primers for IPCR .. 149
 6.5.1.2c Optimisation of IPCR 150
 6.5.1.2d Religation of the IPCR mutagenesis product 151
 6.5.1.3 Ligation and cloning of gfp gene and p1425M 152
 6.5.2 Assembly and sequential cloning to produce construct pFLCPgfp 152
 6.5.3 Development of 35S and pTEV hybrids of FLCPgfp 153

6.6 Construction of plasmid pFLP1gfp 153
 6.6.1 Clones for constructing plasmid pFLP1gfp .. 153
 6.6.2 Assembly and sequential cloning to produce construct pFLP1gfp 154
 6.6.2.1 Ligation and cloning of p5P1 and pGFPE 154
 6.6.2.2 Ligation and cloning of p5P1gfp and pE2for37 ... 155
 6.6.2.3 Ligation and cloning of p5P1gfpP2 and pFLrev14 155
 6.6.3 Development of 35S and pTEV hybrids ofpFLP1gfp 156
Table of Contents

6.7 Construction of plasmid pFLCPsgprofp ... 156
6.7.1 Clones for constructing plasmid pFLCPsgprofp ... 157
 6.7.1.1 Cloning of translatable GFP and the 3’ NCR .. 157
 6.7.1.2 Cloning of the 3’ end of ORF2b and the CP gene .. 157
 6.7.1.3 Cloning of the putative sgPro .. 157
6.7.2 Assembly and sequential cloning to produce construct pFLCPsgprofp 158
6.7.3 Development of 3Ss and pTEV hybrids of pFLCPsgprofp 158

6.8 Construction of plasmid pFLCPVsngprofp ... 158
6.8.1 Assembly and sequential cloning of pFLCPVsngprofp and its 3Ss and T-Nos hybrids ... 159

6.9 Construction of plasmid pFLREPsgprofp ... 159
6.9.1 Clones for developing construct pFLREPsgprofp .. 160
 6.9.1.1 Cloning of ORF2b of SCMoV-pFL as plasmid pP2b .. 160
 6.9.1.2 Cloning of 3Ss with 5’ NCR of SCMoV ... 160
6.9.2 Assembly and ligation cloning of plasmid pFLREPsgprofp and 3Ss and T-Nos hybrids ... 160

6.10 Overlapping clones for development of ORF1 mutants of pFL 161

6.11 Biological activity of in vivo RNA transcripts of full-length cDNA of SCMoV-pFL 162
6.11.1 Host plants used and plant infection .. 162
6.11.2 Detection of in vivo-transcribed RNA transcripts .. 162

6.12 Discussion .. 163
6.12.1 Summary of clones developed in chapter 6 ... 163
6.12.2 Particle morphology and biochemical properties of SCMoV-pFL 163
6.12.3 Amplification and cloning of full-length cDNA of SCMoV-pFL 164
6.12.4 Technical issues concerning the development of SCMoV-based cDNA constructs 165
6.12.5 Stability of clones in E. coli ... 165
6.12.6 Activity of in vivo-transcribed RNA transcripts from pTEVFL 166

6.13 Conclusion and further work ... 167

CHAPTER SEVEN: GENERAL DISCUSSION AND CONCLUSION .. 169

7.0 Review of aim and objectives of the project .. 170
7.1 The extent to which the aims and objectives were achieved 170
 7.1.1 New information on hosts of SCMoV .. 170
 7.1.2 Detailed characterisation of SCMoV .. 173
 7.1.2.1 Genetic diversity and biology of SCMoV ... 173
 7.1.2.2 Genome structure of SCMoV .. 175
 7.1.2.3 Limited cell-to-cell movement of the P1 protein and CP of SCMoV 176
 7.1.2.4 Development of gene vector constructs .. 177
 7.1.3 Expression of infectious SCMoV cDNA and GFP chimeric derivatives 179

7.2 Further work .. 180
7.3 SCMoV as a VIGS vector for functional genomics research 182
7.4 Conclusion ... 183

Bibliography ... 184
Acknowledgements

Most important on my list of appreciation is the Almighty God for the gift of life. When it seemed like the whole project was a mountain, He gave me strength enough to carry on.

I would like to say “thank you” to all my supervisors who helped me throughout the preparation of this thesis. First, to Prof. Michael G. K. Jones, my principal supervisor, I am highly indebted for the support, encouragement and careful reading and correction of the manuscript. It was certainly an amazing experience working with Dr. Roger A. C. Jones, Head of Plant Pathology Section, Department of Agriculture Western Australia, for his readiness to share his writing skills and vast experience and knowledge of viruses. His excellent supervision and involvement in the work presented in Chapter 3 of this thesis could not produce a more successful result. I am also very grateful to Dr Geoffrey I. Dwyer for his help in making my life in Australia less stressful, introducing me to several techniques in Molecular Biology, for his close supervision, regular advice and his friendship. There are not enough words to convey my appreciation.

To members of the elite Plant Biotechnology Research Group (PBRG) at the WA State Agricultural Biotechnology Centre (SABC); Drs. Steve Wylie, Modika Perera, Zhaohui Wang, and Ms. Angela Hollams, Dora Li, John Blinco, Peiling Tan, Hui Phing Loo, Dale Whitney, Kanokwan Ratanaasoban, I say thanks for the helpful scientific and non-scientific discussions, and their readiness to provide any material and help I needed to complete my work. It meant a lot to me. Special mention is due Dr. Steve Wylie for his readiness to share his knowledge and Dr. Modika Perera for her friendship.

To Shawn Seet, Tobias Schoep, Andrea Pizzirani, Carly Palmer, Sharon Wescott, David Dunn, Suren Suredurai, Andrew Low, Tom La, I say thanks for being the friends they are, the helpful discussions and social gatherings, and the technical help they gave all in the spirit of comradeship and excellence were appreciated.
Acknowledgements

The spiritual support given me by Full Gospel Assembly, Perth was enough to take me through the dark times. I cannot be more thankful to my fellow cell members and Carolyn Mardell, James Soon, Justin Goh and Jimmy Teo for their constant concern and encouragement when it was most needed. Special mention of Jocelyn Low, my cell leader, and Mr. Hui Chau Wong is justified for their special friendship, care and concern throughout the period of my project.

Thanks are also due the Grains Research Development Council (GRDC), Division of Science and Engineering (DSE), Murdoch University, Prof. Mike Jones and Dr. Geoff Dwyer for funds to attend conferences and workshops: the 7th International Congress on Plant Molecular Biology, Barcelona, Spain, in June, 2003; study tour of the Sainsbury Laboratory and the John Innes Centre at the Norwich Research Park, UK and the Scottish Crop Research Institute, Dundee, Scotland, in June/July, 2003; First Medicago truncatula Workshop, Rottnest Island, Perth, Western Australia, in November 2002; the 12th Australasian Plant Breeding Conference, Perth, Western Australia, in September 2002, and the 11th Combined Biological Sciences Meeting, Perth, Western Australia, in August, 2000.

It was indeed a blessing to be granted an International Postgraduate Research Scholarship by Murdoch University and a Completion Scholarship by DSE and to work with state-of-the-art facilities at the SABC and with the staff, Prof. Mike Jones, David Berryman, Andrea Tongue and Frances Brigg.

Last but certainly not the least, had it not been the support, care, concern, love at home not to mention the actual involvement (typing and proofreading of the manuscript) by Monica, my dear wife, I would not have pulled through to the end of the project. I am forever indebted to her.
Dedicated to

The One I Loved And Wished I Could Know More, My Dear Sister, Abigail Serwaa

Publications and Presentations

Refeered Publications

Poster Presentations

Submitted Nucleic Acid Sequences

Fosu-Nyarko, J., Jones, R. A. C., Dwyer, G.I. and Jones, M. G. K. (2003). Complete genomic sequence of four Subterranean clover mottle Sobemovirus isolates: SCMoV-AL (Genbank Accession No. AY376451); SCMoV-MB (Genbank Accession No. AY376452); SCMoV-MJ (Genbank Accession No. AY376453) and SCMoV-pFL (Genbank Accession No. AY376454).
List of frequently used abbreviations

3’ hydroxyl terminus of DNA molecule
35S 35S RNA transcriptional promoter of CaMV
5’ phosphate terminus of DNA molecule
bp base pair
cDNA complementary DNA
CIP Calf intestinal alkaline phosphatase
CP coat protein
C-terminus carboxy terminus
cv cultivar
DNA deoxyribonucleic acid
dNTP deoxynucleoside triphosphate
dsRNA double stranded RNA
E. coli Eschericia coli
EDTA ethylenediaminetetra-acetate acid disodium salt
ELISA Enzyme-Linked Immunosorbent Assay
GFP green fluorescent protein
gRNA genomic RNA
GUS β-glucoronidase gene
kb kilobases
Mₐr average calculated molecular mass
MCR multiple cloning region
MP movement protein
NCR non-coding region
NES Nuclear export signal
N-terminus amino terminus
ORF open reading frame
PCR Polymerase chain reaction
PDS Phytoene desaturase
PTGS Post-transcriptional gene silencing
RdRp RNA dependent RNA polymerase
RNA ribonucleic acid
RNAi RNA interference
RNase ribonuclease
RT reverse transcription
SatRNA satellite RNA
SEL size exclusion limit
sgPro subgenomic promoter
sgRNA subgenomic RNA
siRNA short interfering RNA
TAE Tris-acetate-EDTA
TE Tris-EDTA
T-Nos Nopaline synthase gene transcription terminator signal
U Unit
VIGS Virus-induced gene silencing
Vol volumes
vRNA viral RNA

Viruses and scientific names
ACMV African cassava mosaic virus
AMV Alfalfa mosaic virus
BaMV Bamboo mosaic virus
BDMV Bean dwarf mosaic virus
BMV Brome mosaic virus
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Virus Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNYVV</td>
<td>Beet necrotic yellow vein virus</td>
</tr>
<tr>
<td>BSMV</td>
<td>Barley stripe mosaic virus</td>
</tr>
<tr>
<td>BSSV</td>
<td>Blueberry shoestring virus</td>
</tr>
<tr>
<td>BYDV</td>
<td>Barley yellow dwarf virus</td>
</tr>
<tr>
<td>BYDV-PAV</td>
<td>Barley yellow dwarf virus-PAV</td>
</tr>
<tr>
<td>BYMV</td>
<td>Beet yellow mosaic virus</td>
</tr>
<tr>
<td>BYV</td>
<td>Beet yellows virus</td>
</tr>
<tr>
<td>CaMV</td>
<td>Cauliflower mosaic virus</td>
</tr>
<tr>
<td>CCMV</td>
<td>Cowpea chlorotic mottle virus</td>
</tr>
<tr>
<td>CbLCV</td>
<td>Cabbage leaf curl virus</td>
</tr>
<tr>
<td>CfMV</td>
<td>Cocksfoot mottle virus</td>
</tr>
<tr>
<td>CLBV</td>
<td>Citrus leaf blotch virus</td>
</tr>
<tr>
<td>CLCuV</td>
<td>Cotton leaf curl virus</td>
</tr>
<tr>
<td>CMV</td>
<td>Cucumber mosaic virus</td>
</tr>
<tr>
<td>CPMV</td>
<td>Cowpea mosaic virus</td>
</tr>
<tr>
<td>CTV</td>
<td>Citrus tristeza virus</td>
</tr>
<tr>
<td>CymRSV</td>
<td>Cymbidium ringspot virus</td>
</tr>
<tr>
<td>CYVV</td>
<td>Clover yellow vein virus</td>
</tr>
<tr>
<td>LTSV</td>
<td>Lucerne transient streak virus</td>
</tr>
<tr>
<td>MoMLV</td>
<td>Moloney murine leukaemia virus</td>
</tr>
<tr>
<td>MuLV</td>
<td>Murine Leukaemia virus</td>
</tr>
<tr>
<td>ORSV</td>
<td>Odontoglossum ringspot virus</td>
</tr>
<tr>
<td>PLRV</td>
<td>Potato leaf roll virus</td>
</tr>
<tr>
<td>PMMoV</td>
<td>Pepper mild mottle virus virus</td>
</tr>
<tr>
<td>PSbMV</td>
<td>Pea seedborne mosaic virus</td>
</tr>
<tr>
<td>PVX</td>
<td>Potato virus X</td>
</tr>
<tr>
<td>PVY</td>
<td>Potato virus Y</td>
</tr>
<tr>
<td>RCNMV</td>
<td>Red clover necrotic mosaic virus</td>
</tr>
<tr>
<td>RGMoV</td>
<td>Ryegrass mottle virus</td>
</tr>
<tr>
<td>RYMV</td>
<td>Rice yellow mottle virus</td>
</tr>
<tr>
<td>SBMV</td>
<td>Southern bean mosaic virus</td>
</tr>
<tr>
<td>SCMoV</td>
<td>Subterranean clover mottle virus</td>
</tr>
<tr>
<td>SCPMV</td>
<td>Southern cowpea mosaic virus</td>
</tr>
<tr>
<td>SCRlv</td>
<td>Subterranean clover red leaf virus</td>
</tr>
<tr>
<td>SeMV</td>
<td>Sesbania mosaic virus</td>
</tr>
<tr>
<td>SHMV</td>
<td>Sunn-hemp mosaic virus</td>
</tr>
<tr>
<td>SNMV</td>
<td>Solanum nodiflorum mottle virus</td>
</tr>
<tr>
<td>SoMV</td>
<td>Sowbane mosaic virus</td>
</tr>
<tr>
<td>STNV</td>
<td>Tobacco necrosis satellite virus</td>
</tr>
<tr>
<td>TAV</td>
<td>Tomato aspermy virus</td>
</tr>
<tr>
<td>TBSV</td>
<td>Tomato bushy stunt virus</td>
</tr>
<tr>
<td>TCV</td>
<td>Turnip crinkle virus virus</td>
</tr>
<tr>
<td>TEV</td>
<td>Tobacco etch virus virus</td>
</tr>
<tr>
<td>TGMV</td>
<td>Tomato golden mosaic virus</td>
</tr>
<tr>
<td>TLCV</td>
<td>Tobacco leaf curl Virus</td>
</tr>
<tr>
<td>TMGMV</td>
<td>Tobacco mild green mosaic virus</td>
</tr>
<tr>
<td>TMV</td>
<td>Tobacco mosaic virus</td>
</tr>
<tr>
<td>TNV</td>
<td>Tobacco necrosis virus</td>
</tr>
<tr>
<td>ToMV</td>
<td>Tomato mosaic virus</td>
</tr>
<tr>
<td>TRoV</td>
<td>Turnip rosette Virus</td>
</tr>
<tr>
<td>TRV</td>
<td>Tobacco rattle virus</td>
</tr>
<tr>
<td>TYMV</td>
<td>Turnip yellow mosaic virus</td>
</tr>
<tr>
<td>VTMoV</td>
<td>Velvet tobacco mottle virus</td>
</tr>
</tbody>
</table>