Translocation Outcomes
for the Western Ringtail Possum

(*Pseudocheirus occidentalis*)

in the Presence of the Common Brushtail Possum

(*Trichosurus vulpecula*):

Health, Survivorship and Habitat Use

Judith Rebekah Clarke

B.V.Sc. (Hons), M.Sc. (Zoology)

This thesis is presented for the degree of Doctor of Philosophy of Murdoch University,

2011
In memory of “Theo”,

the western ringtail possum who, after being translocated from Busselton to Martin’s Tank, survived a long journey to Preston Beach township, only to meet death in the jaws of a fox after being translocated back to Martin’s Tank.

May we learn from the outcomes of our research.
I declare that this thesis is my own account of my research and contains as its main content work, which has not previously been submitted for a degree at any tertiary education institution

--

Judith Rebekah Clarke
Abstract

The western ringtail possum, *Pseudocheirus occidentalis*, is classified as threatened, both nationally and internationally. Land clearing for building development threatens the last major coastal population stronghold in and around the town of Busselton in the south-west of Western Australia (WA). Translocation of displaced *P. occidentalis* from this locality into nearby conservation estates commenced in 1991, in the presence of fox control, with the aim of re-establishing populations of the species within suitable habitat outside its current range. Initial successes (1991-1998) were followed by a major population decline at one site for unclear reasons. The aim of this project was to determine which factors presently limit translocation success for *P. occidentalis* and thereby provide direction for future management of the species.

Displaced and rehabilitated *P. occidentalis* were translocated into three sites, two of which were baited for fox control. Survival was monitored weekly, causes of mortality were ascertained and attributes of habitat use were mapped and analysed. Each individual *P. occidentalis* underwent comprehensive health and disease screening under isoflurane anaesthesia prior to translocation and whenever recaptured for recollaring. Health, survivorship and habitat use of resident common brushtail possums, *Trichosurus vulpecula*, were similarly studied at each site. Pilot spotlight surveys using line transect methods were performed at the end of the study to provide provisional data on population densities.

Health screening revealed no evidence that infectious disease currently limits translocation success for *P. occidentalis*. Possums of both species were negative for toxoplasmosis, leptospirosis, salmonellosis and chlamydiosis. Cryptococcal antigen was detected in one individual *T. vulpecula* but was not of pathological significance. Endoparasite levels were negatively correlated with body condition. Differences between pre- and post-translocation haematological values were found, suggesting that habitat quality or nutrient intake were lower at the translocation sites than at the sites of origin.
Mortality rates of translocated *P. occidentalis* were high. The majority of *P. occidentalis* deaths were attributed to predation, with foxes, cats, pythons and raptors all implicated. Some *P. occidentalis* died in poor body condition from apparent hypothermia/hypoglycaemia, with moderate to heavy parasite burdens present at necropsy. Most *T. vulpecula* mortality was attributable to fox predation. Survivorship analyses were carried out using information-theoretic techniques to investigate which, if any, of a suite of hypothesised factors most influenced post-translocation survival of *P. occidentalis*. The most highly ranked models were those that included pre-release white blood cell counts and/or numbers of *T. vulpecula* at the release site. Survivorship of *P. occidentalis* was negatively correlated with each of these factors, and the two together acted in a synergistic fashion. Effects of fox control on *P. occidentalis* survivorship were equivocal. The average annual survival rate of established *P. occidentalis* was less than half that of resident *T. vulpecula*.

Post-translocation dispersal distances varied among individual *P. occidentalis*. Mean home range sizes of translocated *P. occidentalis* were larger than those reported for other coastal populations. Individual home ranges overlapped one another, both within and between possum species. Vegetation dominated by peppermint (*Agonis flexuosa*) was utilised by translocated *P. occidentalis* where available, and habitat partitioning between the two possum species was observed in some areas. A greater range of diurnal rest site types were utilised by *P. occidentalis* than *T. vulpecula*. Spotlight surveys revealed presence of low density *P. occidentalis* populations, including juveniles, at two sites but numbers remained negligible in the site at which the post-1998 decline had occurred.

Complex interactions involving health, predation, habitat quality and inter-specific competition influence the success or otherwise of wildlife translocation programs. The results of this project suggest that all these factors, particularly predation, affected translocation outcomes for *P. occidentalis* during the period of study. Complete exclusion of exotic predators (foxes and cats) from the translocation sites may be necessary in future, especially given the numbers of native predators (pythons and raptors) present. In addition to heavy predation pressure, the small size and apparently low carrying capacity of the translocation sites for *P. occidentalis*, along
with high numbers of resident *T. vulpecula*, currently appears to limit *P. occidentalis* survival and population growth.

While, in the short term, the most efficient use of funds and the best option for the species in its current coastal strongholds might be to put greater effort into conserving *P. occidentalis* in its natural environment, there could also be value in carrying out further experiments to determine whether or not translocation success can be improved through use of particular management actions. The principles of adaptive management apply both to management of *P. occidentalis* in its natural environment and to conduction of translocation programs. Possible experimental approaches are outlined and recommendations for further research proposed.
Acknowledgements

This project would have not been possible without the help, support and encouragement of many people. Firstly, I would like to thank my supervisors, Kris Warren, Ian Robertson and Mike Calver of Murdoch University and Paul de Tores from the Western Australian Department of Environment and Conservation (DEC) for initiating the project and guiding me through the field work and the writing stages. I have appreciated their patience, expertise and encouragement and am most grateful for the many hours they have spent reading through and commenting on drafts of my manuscript. I have learnt useful clinical, field and analytical skills from Kris and Paul in particular, which will stand me in good stead for my future career. In addition, I thank Murdoch University, DEC and the Australian Research Council for financial support, without which this project could not have gone ahead.

Secondly I would like to thank all the staff of the Veterinary Pathology, Veterinary Clinical Pathology and Veterinary Parasitology departments at Murdoch University for performing several possum necropsies and for carrying out the majority of the haematological, biochemical, urinary, microbiological and parasitological laboratory analyses. Without their contributions the whole project would not have been feasible. I am also grateful to Pat Statham (Tasmanian DPIPWE Animal Health Laboratory), Lee Smythe (WHO/FAO/OIE Collaborating Centre for Reference and Research on Leptospirosis at Queensland Health Scientific Services), Mark Krockenberger (Koala Infectious Diseases Research Group in the Faculty of Veterinary Science at the University of Sydney) and Peter Timms (Institute of Health & Biomedical Innovation, QLD University of Technology) for analysing samples for T. gondii, Leptospira, Cryptococcus and Chlamydiales detection, respectively. Helen Grimm provided haematological and serum biochemical data from P. occidentalis at Ludlow and Gelorup for inclusion in reference ranges calculations. I am grateful for this and also for her cheerful and stimulating friendship over the last four years.

Volunteer assistance was necessary for various aspects of the fieldwork, particularly darting and capture of P. occidentalis and spotlight surveys, neither of which could be carried out single-handedly. Assistance with nocturnal radio-tracking, health screening...
of both species, and capture of *T. vulpecula* was also valuable and much appreciated. I am indebted to the many volunteers who generously donated their time, travelled and fed themselves at their own expense and were good company, as well as contributing to the outcome of this work. I am particularly grateful to Sophie Arnal, Carlene Smith and Uta Wicke who donated a great deal of time to helping me with the work – Sophie for her cheerful assistance night after night during spotlight surveys and monitoring; Carlene who was always ready to cheerfully accompany me as we bashed through the scrub at night radio-tracking possums; and Uta for many stimulating and often challenging discussions, as well as invaluable assistance proof-reading my thesis. I am also grateful to Anna Nowicki for trapping so many of the brushtail possums used in this study, as well as for her help with health screening, radio-collaring and naming them. In addition, my friend Ruth Painter came all the way over from Hobart to help me in the field for an enjoyable fortnight. To all the other volunteers involved in the project – Ana-Lena Beimesche, Marnie Swinburn, Jazmine Hugo, Lynley Boyle, Freya White, Dave Cook, Halina Burmej, Dave Barker, Jessie-Leigh Brown, Kate Hicks, Jason Rakic, Christine Kimmorley, Carrianne Graham, Tegan May, Tina Bowers, Colin Shephard, members of the DEC Graduate Recruit Program and all the others mentioned elsewhere in these acknowledgements – I am most grateful for your help and interest in the work. Altogether over 1000 hours of volunteer time were clocked up in the field during this project.

I would like to thank my friends and colleagues for their support and help over the past four years. My fellow PhD students and other research scientists have shared similar angsts and have been cheerful collaborators (Helen Grimm, Gillian Bryant, Jen Cruz, Duncan Sutherland, Al Glen, Tracey Moore, Carlo Pacino and Sabrina Trocini); and the members of the Dwellingup research team have been good company (Rob Hill, Sean Garretson, Lauren Strümpher, Jen Jackson, Wes Manson and Judy Dunlop). My partner’s family, the Heaths (Maisie, Mike, Trish, Rick, Brian, Steve and Leaf), as well as my parents (Jane and Mike) and my brother (Peter), have helped in the field at times and provided much needed encouragement, friendship and many meals! For all of this I am most grateful. My friends in Hobart have always been there for chats on the phone and have provided accommodation and fun times when I’ve managed to visit.
Most of all I am deeply grateful to my partner, Chris Heath, for his unfailing support, generosity and encouragement throughout all the ups and downs of my studentship, without which I might not have lasted the distance. He cheerfully put up with all the weeks and months spent apart, helped me in the field on many an occasion, and has remained my closest friend. Thank you Chris.
Table of Contents

ABSTRACT ... vii

ACKNOWLEDGEMENTS ... xi

TABLE OF CONTENTS ... xv

LIST OF TABLES .. xxiii

LIST OF FIGURES .. xxix

CHAPTER 1: GENERAL INTRODUCTION AND LITERATURE REVIEW 1

1.1 MAMMAL DECLINES IN AUSTRALIA ... 2

1.1.1 Historic and current causes of decline ... 2

1.1.2 Predation by exotic carnivore species ... 4

1.2 TRANSLOCATION AS A MANAGEMENT STRATEGY 11

1.2.1 Principles, application and criteria for success .. 11

1.2.2 Conditions for success and causes of failure ... 15

1.2.3 Western Shield Translocations in WA ... 23

1.3 DISEASE AND ENDANGERED POPULATIONS ... 24

1.3.1 Extinction risks for small populations .. 24

1.3.2 Disease and extinction risk .. 26

1.3.3 Marsupial health and disease ... 33

a) Toxoplasmosis .. 35

b) Leptospirosis .. 39

c) Cryptococcosis .. 41

d) Chlamydiosis ... 43

e) Other diseases and parasites of possums ... 46

f) Haematology and serum biochemistry ... 48

1.4 BIOLOGY AND ECOLOGY OF POSSUMS IN SOUTH-WEST WA 50

1.4.1 Distribution .. 50

1.4.2 Habitat use .. 50
1.4.3 Physiology and breeding biology .. 54
1.4.4 Conservation status ... 58

1.5 THE CURRENT PROJECT ... 60
1.5.1 Context – Previous P. occidentalis translocations 60
1.5.2 Aims .. 64
1.5.3 Chapter structure ... 65

CHAPTER 2: STUDY SITES AND METHODS .. 67

2.1 STUDY DESIGN .. 67
2.1.1 Overview .. 67
2.1.2 Field Sites .. 67
 a) Leschenault Peninsula .. 69
 b) Yalgorup National Park ... 70
2.1.3 Field stations ... 74
2.1.4 Fox-baiting protocols .. 75
2.1.5 Study Animals ... 75
2.1.6 Animal ethics permits and associated licences 79

2.2 FIELD METHODS .. 80
2.2.1 Capture methods and locations .. 80
 a) Capture of P. occidentalis ... 80
 b) Dart construction and assembly .. 82
 c) Capture of T. vulpecula ... 83
2.2.2 Anaesthesia of P. occidentalis and T. vulpecula 85
2.2.3 Health screening of P. occidentalis and T. vulpecula 86
 a) Physical examination ... 86
 b) Body measurements .. 87
 c) Marking of individuals .. 87
 d) Sample collection .. 88
 e) Sample analysis ... 90
 f) Post mortem and death scene investigations 95
2.2.4 Radio-collaring of P. occidentalis and T. vulpecula 97
2.2.5 Methods and locations of release of P. occidentalis and T. vulpecula....100
2.2.6 Radiotelemetry of collared *P. occidentalis* and *T. vulpecula*102
 a) Survivorship monitoring ...102
 b) Radio tracking to determine home range and habitat use103
2.2.7 Habitat variables recorded ..106
2.2.8 Spotlighting methodology ..109

2.3 Analytical methodology – brief overview ...110
2.3.1 Database ..110
2.3.2 Approaches to data analysis: information-theoretic methods vs. classical statistics 111
2.3.3 Health data analytical methods ..115
2.3.4 Use of Program MARK for survivorship analysis ..116
2.3.5 Distance sampling methodology ...117
2.3.6 Use of Ranges®, Locatell® and ArcGIS® for home range analysis118

CHAPTER 3: HEALTH SCREENING AND DISEASE STATUS OF POSSUMS...121
3.1 Introduction ..121
3.1.1 Aims ..121
3.2 Methods ..122
3.2.1 Study animals, sample collection and sample analysis122
3.2.2 Statistical analyses ...124
3.3 Results ...127
3.3.1 Haematology and biochemistry ..127
 a) Outlying data ...127
 b) *Pseudocheirus occidentalis* reference ranges ..130
 c) Differences between *P. occidentalis* and *T. vulpecula*137
 d) Pre- versus post-translocation *P. occidentalis* data140
3.3.2 Infectious diseases ..142
 a) Toxoplasmosis ...142
 b) Leptospirosis ...143
 c) Cryptococcosis ...143
 d) Chlamydiosis ..144
3.3.3 Urinalysis ...144
3.3.4 Microbiology ...145
3.3.5 Parasites...146
 a) Microfilariae ...146
 b) Gastro-intestinal parasites ..147
 c) Ectoparasites ..148
3.3.6 Necropsied possums ...149
3.3.7 Body condition ..150
3.3.8 Fecundity ...153
3.4 DISCUSSION ...155
 3.4.1 Haematology and biochemistry ..155
 a) Outliers ..155
 b) Reference ranges ...156
 c) Species differences ..159
 d) Site differences ..159
 e) Pre- vs. post-translocation differences ...160
 3.4.2 Infectious diseases and pathogens ...161
 a) Infectious diseases ...161
 b) Urinalysis and microbiology ...164
 c) Parasites ..165
 3.4.3 Body condition, health and survival ..167
 3.4.4 Fecundity ..168
 3.4.5 Health and translocation – summary ..170

CHAPTER 4: CAUSES OF MORTALITY ...171

4.1 INTRODUCTION ...171
 4.1.1 Aims ..172

4.2 METHODS ...173
 4.2.1 Field methods ..173
 4.2.2 Statistical analyses ...174

4.3 RESULTS ...175
 4.3.1 Overview ..175
4.3.2 Deaths due to predation/scavenging ..176
4.3.3 Other causes of death ...183

4.4 Discussion ...186
4.4.1 Comparison between P. occidentalis and T. vulpecula186
4.4.2 Predator identity ...187
4.4.3 Predisposing factors ..188
4.4.4 Significance of results ...191

Chapter 5: Survivorship Analyses ..197

5.1 Introduction ...197
5.1.1 Aims ...197

5.2 Methods ..198
5.2.1 A priori hypotheses...199
5.2.2 Variables incorporated into survivorship analyses203
5.2.3 Assumptions ..206
5.2.4 Data structure ..207

1: Factors influencing survivorship of translocated P. occidentalis207
2: Initial survivorship of P. occidentalis, and summer versus winter translocation. 208
3: Survivorship of established P. occidentalis compared with resident T. vulpecula208

5.2.5 Candidate models and modelling approach209

1: Factors influencing survivorship of translocated P. occidentalis209
2: Summer versus winter translocation, and initial survivorship of P. occidentalis. 215
3: Survivorship of established P. occidentalis compared with resident T. vulpecula217

5.2.6 Model averaging ...219

5.3 Results ...221
5.3.1 Factors influencing survivorship of translocated P. occidentalis221

a) Model ranking ...221
b) Model averaging ...224
c) Post-hoc analysis – investigation of WBC effect228

5.3.2 Summer versus winter translocation and initial survival of P. occidentalis230

a) Model ranking ...230
CHAPTER 7: POPULATION DENSITY ESTIMATION...309

7.1 INTRODUCTION ..309

7.2 METHODS ..311
 7.2.1 Field methods ...311
 7.2.2 Analytical methods ..312
 a) Data structure ..313
 b) Data exploration ...313
 c) Model selection ..315

7.3 RESULTS ...316
 7.3.1 Both possum species pooled ..316
 7.3.2 Pseudocheirus occidentalis ...318
 7.3.3 Trichosurus vulpecula ..323

7.4 DISCUSSION ...328
 7.4.1 Reliability of estimation ...328
 7.4.2 Possum population sizes and trends ..330
 a) Pseudocheirus occidentalis ..330
 b) Trichosurus vulpecula ...335
 7.4.3 Transect length requirements ..339
 7.4.4 Population monitoring and future recommendations ..341

CHAPTER 8: GENERAL DISCUSSION AND SYNTHESIS...345

8.1 TRANSLOCATION OUTCOMES FOR P. OCCIDENTALIS..345
 8.1.1 Health and disease status ...345
 a) Infectious diseases ..345
 b) Parasites and stress ..346
 c) Haematology and habitat quality ...347
 8.1.2 Causes of mortality ...348
 a) Predation and the hypothesis of mesopredator release ..348
 b) Contributory factors ...349
 8.1.3 Survivorship ..351
a) Predator naïveté, competition and health.. 352
b) Site differences and environmental effects.. 357

8.1.4 Habitat use ... 358
 a) Dispersal of P. occidentalis and habitat quality... 358
 b) Habitat partitioning between P. occidentalis and T. vulpecula......................... 359
 c) Rest site use and availability .. 361

8.1.5 Population densities .. 362
 a) Pseudocheirus occidentalis population persistence... 362
 b) Predation and carrying capacity .. 363

8.2 MANAGEMENT IMPLICATIONS ... 364

 8.2.1 Is translocation viable and, if so, under what conditions? 364
 8.2.2 Deficiencies of this project ... 368
 8.2.3 Alternatives to translocation ... 370

8.3 RECOMMENDATIONS FOR FURTHER RESEARCH 374

 8.3.1 Adaptive management and experimental approaches to translocation..... 374
 8.3.2 Other recommendations .. 379

APPENDIX 1 ... 383

APPENDIX 2 ... 391

APPENDIX 3 ... 396

REFERENCES ... 403
List of Tables

Table 1.1 Some published examples of translocation failures and others in which persisting population sizes were low………………………………………………………………………17

Table 1.2 Some published examples of successful translocations within Australia……18

Table 1.3 Some documented reports of diseases that have been introduced into naïve populations by translocation of infected animals from elsewhere ………….30

Table 1.4 Some documented reports of infection of translocated animals with diseases endemic in the environments into which they were translocated …………..31

Table 1.5 Numbers of *P. occidentalis* translocated to each site during the two periods 1991 to 2001 and 2004 to January 2006 ………………………………………………………………..62

Table 2.1 Numbers of *P. occidentalis* by source translocated to each field site……..77

Table 2.2 Numbers of possums of each species collared and monitored at each field site……
Table 3.1 Outlying data and other abnormalities in the samples removed from the haematological and serum biochemical analyses ... 128

Table 3.2 Haematological and serum biochemical reference ranges for clinically healthy wild P. occidentalis weighing >600g... 131

Table 3.3 Summary statistics for haematological and biochemical parameters of clinically normal captive P. occidentalis weighing >600g... 133

Table 3.4 Summary statistics for haematological and biochemical parameters of P. occidentalis for which AICc and Wald tests showed a) sex and lactation differences, b) age differences and c) sex differences ... 134

Table 3.5 Model details for dependent variables affected by sex, age and/or lactation status of P. occidentalis ... 135

Table 3.6 Summary statistics for variables of P. occidentalis for which field site differences were identified ... 136

Table 3.7 Summary statistics for haematological and serum biochemical parameters of wild P. occidentalis and T. vulpecula in my study (excluding juveniles) ... 138

Table 3.8 Haematological and serum biochemical summary statistics for variables from P. occidentalis and T. vulpecula in my study that differed by field site .. 139

Table 3.9 Pre-and post-translocation summary statistics for parameters that varied between the two sampling categories (Wald tests, α=0.05)... 141

Table 3.10 Frequency of occurrence of gastro-intestinal bacterial species cultured from cloacal swabs taken from P. occidentalis and T. vulpecula 146

Table 3.11 Frequency of occurrence of gastro-intestinal parasites in faecal samples from T. vulpecula .. 148

Table 3.12 Mixed linear regression models of body mass against combinations of head-body (HB), head (H), pes (P) lengths and sex (S) ranked by AICc 151

Table 3.13 Mixed linear regression outputs for the HB_H and HB models for P. occidentalis, and the HB model for T. vulpecula .. 152

Table 3.14 Pearson’s correlation coefficients and significance levels for variables correlated with measures of body condition for a) P. occidentalis and b) T. vulpecula .. 153

Table 3.15 Numbers of females examined, and offspring productivity in terms of pouch young and juvenile offspring per female possum... 154
Table 4.1 Fates of 68 translocated *P. occidentalis* and 24 resident *T. vulpecula* at the three field sites ...176

Table 4.2 Variables used in the non-metric multidimensional scaling analysis and their level of measurement ...180

Table 4.3 Scores for the characteristics defined in Table 4.2 of individual *P. occidentalis* (Po) and *T. vulpecula* (Tv) predated/scavenged by mammals and raptors at Leschenault Peninsula (LP), Martin's Tank (MT) and Preston Beach Rd (PBR) ...181

Table 5.1 a) Individual covariates incorporated into survival analyses of translocated *P. occidentalis*, b) External covariates incorporated into survival analyses of translocated *P. occidentalis* ...204

Table 5.2 Rainfall and temperature data for Bunbury, WA ..205

Table 5.3 *T. vulpecula* population size within each of the trapping webs, located near release sites for translocated *P. occidentalis*205

Table 5.4 Candidate models (in alphabetical order) constructed to investigate which factors most influence post-translocation survivorship of *P. occidentalis*210

Table 5.5 Candidate models (in alphabetical order) and their corresponding descriptions ...216

Table 5.6 Candidate models (in alphabetical order) constructed to investigate factors influencing survival of established *P. occidentalis* and *T. vulpecula* and their corresponding descriptions ..218

Table 5.7 Program MARK output ranked by AICc for *a priori* models investigating factors affecting *P. occidentalis* survival ..222

Table 5.8 Program MARK output when the S(WBC+CBP) model is added to the confidence set of supported models ...223

Table 5.9 Program MARK output for the sub-set of supported models ranked by delta AICc ...225

Table 5.10 Estimates of slope coefficients for the parameters in the confidence set of models and 4-weekly survival estimates (all field sites combined) for each model using the covariate values indicated ..226

Table 5.11 Average values of covariates in the final model set for each field site226

Table 5.12 Program MARK output for the confidence model set with the addition of models created to investigate effects of the different white cell components ...229

Table 5.13 Program MARK output for the candidate model set from Table 5.5230
Table 5.14 Program MARK output for the candidate model set from Table 5.6……..232

Table 6.1 Two-way ANOVA table testing the effects of site, possum species and the interaction between these variables on mean percentages of each habitat type in possum home ranges .. 269

Table 6.2 Home range areas (90% and 50% kernels and 90% MCP) and other information for all possums providing ≥15 fixes ... 270

Table 6.3 Two-way ANOVA table testing the effects of possum species, sex and their interaction on home range size .. 272

Table 6.4 Variables included in regression analyses to determine factors influencing home range size ... 273

Table 6.5 Model components for regression analyses ... 274

Table 6.6 Models ranked by AICc for a) P. occidentalis and b) T. vulpecula, where log(Home Range area) is the dependent variable .. 275

Table 6.7 Regression outputs for the best-supported models of those listed in Table 6.6 for a) P. occidentalis and b) T. vulpecula .. 276

Table 6.8 Pairs of individual possums occupying the same 2 km² areas: Numbers whose ranges overlapped and the mean percentages of overlap ... 279

Table 6.9 Pairs of possums with Jacob’s Indices >0.30 .. 281

Table 6.10 Total contact time recorded for pairs of T. vulpecula carrying contact collars and living in the same 2 km² vicinity ... 282

Table 6.11 Mean home range sizes (ha) for three species of ringtail possums, P. occidentalis (Po), P. peregrinus (Pp) and Hemiabelideus lemuroides (Hl) at various locations, estimated by kernel and/or MCP methods .. 303

Table 7.1 Numbers of P. occidentalis and T. vulpecula sighted at each field site.. 316

Table 7.2 Models fitted to non-truncated data for both possum species, ranked by AIC ... 319

Table 7.3 Models fitted to data truncated at 30m for both possum species, ranked by AIC ... 319

Table 7.4 Models fitted to P. occidentalis data: a) non-truncated, b) truncated at 26m. Density estimates are for all field sites pooled; variance is calculated analytically .. 321

Table 7.5 Estimates of P. occidentalis density from the uniform cosine model at the four transect locations using the non-truncated data set .. 324
Table 7.6 Models fitted to *T. vulpecula* data: a) non-truncated, b) truncated at 35m. Density estimates are for all field sites pooled; variance is calculated analytically ..326

Table 7.7 Estimates of *T. vulpecula* density at the four transect locations from the half normal model including the 4-factor covariate "vegetation density", using the truncated (at 35m) data set ..329

Table 7.8 Transect length requirements for future *P. occidentalis* surveys. Calculations are based on two different variance measures; two levels of precision are specified for each ..342

Appendix 1 Dates on which each possum was health-screened, possum details, and parameters screened for ..385

Appendix 2 Details of collar types used, and the dates and durations of time over which they were deployed ..393

Appendix 3a Encounter histories and field site codes for 67 translocated *P. occidentalis* ...398

Appendix 3b Individual covariate values used in models investigating factors affecting survival of 67 translocated *P. occidentalis* ..400

Appendix 3c Data format of encounter histories for summer and winter releases of two "cohorts" of *P. occidentalis* originating from development sites 402

Appendix 3d Encounter histories and covariate values for 33 translocated *P. occidentalis* which survived long enough to establish home ranges and 18 *T. vulpecula* from within the translocation field sites ..403
List of Figures

Figure 1.1 Historic and current distribution of *P. occidentalis* ..51

Figure 1.2 Locations of *P. occidentalis* translocation sites ...52

Figure 2.1 Map showing locations of field sites in relation to Busselton and other locations in south-west WA ...68

Figure 2.2 Leschenault Peninsula Conservation Park, showing roads, release sites for *P. occidentalis* and trapping web locations ..71

Figure 2.3 Martin’s Tank fire exclusion zone, showing roads, release sites for *P. occidentalis* and trapping web locations ...73

Figure 2.4 Preston Beach Rd fire exclusion zone, showing roads, release sites for *P. occidentalis* and trapping web locations ...73

Figure 2.5 Typical peppermint-dominated forest into which *P. occidentalis* were translocated (Photo taken at Leschenault Peninsula)74

Figure 2.6 a) dart gun and dart components, b) dart components and assembled dart ...81

Figure 2.7 Cage trap with *T. vulpecula* and bait ...84

Figure 2.8 a) Portable anaesthetic machine, b) *P. occidentalis* under isoflurane anaesthesia, c) *P. occidentalis* recovering in calico bag ..85

Figure 2.9 Examples of health screening procedures and photographs of some of the equipment used ...95

Figure 2.10 Radio-collars: a) Sirtrack contact collar for *T. vulpecula*, b) Biotrack mortality sensing collar for *T. vulpecula*, c) AVM mortality sensing collar for *P. occidentalis*, d) Biotrack mortality sensing collar for *P. occidentalis* ..99

Figure 2.11 Releasing a translocated *P. occidentalis* in the evening onto a sloping peppermint tree trunk ...101

Figure 2.12 Yagi antenna attached to aeroplane fuselage for radio-tracking possums from the air ...104

Figure 3.1 Graphical representation of the table in Lumsden and Mullen (1978, p 297), showing the influence of sample size on the value of *k* which determines the probability 0.90 that 95% of the population lies within the Gaussian tolerance interval ...126
Figure 3.2 Confidence intervals for the differences between pre-translocation mean parameter levels for *P. occidentalis* that died within 5 months of translocation (NS) and those that survived longer than 5 months (S) 142

Figure 3.3 Relationships between body mass and head-body, head and pes measurements for *P. occidentalis* and *T. vulpecula* ... 151

Figure 3.4 Numbers of pouch young and juvenile offspring per female possum by season and species. Spring/summer is Sept-Feb and autumn/winter is Mar-Aug.. 155

Figure 4.1 Fates of 68 radio-collared *P. occidentalis* and 24 *T. vulpecula* at all three study sites combined, based on DNA results, carcass examinations, and necropsy findings... 177

Figure 4.2 Examples of carcass remains and collar appearance for *P. occidentalis* killed by cats, pythons, raptors and foxes.. 178

Figure 4.3 Non-metric 2-dimensional MDS ordination of 40 deceased possums 182

Figure 4.4 Carcass of PoF181 at discovery... 184

Figure 5.1 Predicted four-weekly survival rates of translocated *P. occidentalis* from the S(WBC+CBP) model for a range of white cell counts at two levels of *T. vulpecula* population size .. 224

Figure 5.2 Model-averaged four-weekly survivorship estimates for *P. occidentalis* translocated into Leschenault Peninsula, Martin’s Tank and Preston Beach Road .. 227

Figure 5.3 a) Model-averaged estimates of four-weekly survivorship of *P. occidentalis* and b) survivorship estimates from the S(.) model... 231

Figure 5.4 a) Model averaged-survivorship estimates and unconditional standard errors for established *P. occidentalis* and resident *T. vulpecula* at the translocation sites and b) survivorship estimates (±SE) from the model incorporating species differences only .. 235

Figure 6.1 Scatter of GPS locations collected on 10 successive nights at a fixed point at each field site, before (black) and after (green) post-processing........................... 250

Figure 6.2 Triangulated data points (green), associated error ellipses (brown) and GPS locations (orange) for three *T. vulpecula* at Martin’s Tank................................. 252

Figure 6.3 a) Harmonic mean and b) Fixed kernel home ranges for two female (smallest ranges) and two male (larger ranges) *P. occidentalis* coincident in time (95%, 75% and 50% isopleths) ... 254
Figure 6.4 Kernel home range of one male *P. occidentalis* a) including all 47 fixes and b) excluding the first two travelling fixes and the final fix. 95%, 75% and 50% isopleths are shown.

Figure 6.5 Vegetation strata at the three study sites: Green = Peppermint-dominated; Brown = Mixed Peppermint-Other; Yellow = Other-dominated. Blue stars indicate release sites for translocated *P. occidentalis*.

Figure 6.6 Dispersal routes of 10 translocated *P. occidentalis* after release, overlaying orthophotos of the field sites.

Figure 6.7 Location fixes for radio-tracked *P. occidentalis* (black) and *T. vulpecula* (blue) at Leschenault Peninsula, superimposed on polygons of vegetation type.

Figure 6.8 Location fixes for radio-tracked *P. occidentalis* (black) and *T. vulpecula* (blue) at Martin’s Tank, superimposed on polygons of vegetation type.

Figure 6.9 Location fixes for radio-tracked *P. occidentalis* (black) and *T. vulpecula* (blue) at Preston Beach Rd, superimposed on polygons of vegetation.

Figure 6.10 Mean percentages of home ranges areas in each vegetation type for *P. occidentalis* (black) and *T. vulpecula* (striped) at each field site.

Figure 6.11 Mean 90% and 50% home range areas (ha) for both possum species by sex. Standard error bars are shown.

Figure 6.12 Temporally coincident kernel home ranges (90% and 50% isopleths) of male and female *P. occidentalis* and *T. vulpecula* in northern and southern regions at two field sites.

Figure 6.13 Mean percent home range overlaps (90% kernel isopleths) within and between possum species.

Figure 6.14 Jacobs Indices, ranked by magnitude, for 87 pairs of possums which were observed within 15 min of each other at least twice during the study.

Figure 6.15 Movements of two female possums from one established home range to another.

Figure 6.16 Proportions of rest site types used by *P. occidentalis* and *T. vulpecula* at each of the field sites.

Figure 6.17 Percentages of rest/den sites occurring in the different vegetation species or substrate, at each field site for each possum species.
Figure 6.18 Distributions of *P. occidentalis* rest site types in the four main field locations

Figure 6.19 Mean heights of each rest site type for *P. occidentalis* (circles) and *T. vulpecula* (triangles). Standard error bars shown

Figure 6.20 Nocturnal observations of *P. occidentalis* foraging

Figure 6.21 Kernel home range isopleths (90% and 50%) and diurnal and nocturnal fixes for TvF008 (red) and TvM005 blue *T. vulpecula*. a) All diurnal observations included (superimposed upon one another); b) Only the first observation at any den site included

Figure 6.22 Home ranges of *P. occidentalis* at Martin’s Tank during 2006-08 (yellow = female, orange = male), superimposed on location fixes from *P. occidentalis* translocated by Paul de Tores (unpublished data) in 2004-05

Figure 7.1 Maps showing spotlight transect lines at each field site

Figure 7.2 Data structure within Distance, showing the four levels of stratification (study area, region, line transect, observation), and ancillary data (covariates) at the transect and observation levels

Figure 7.3 Frequency distributions of perpendicular distances of observations from the transect line for all field sites combined; a) both possum species, b) *T. vulpecula*, c) *P. occidentalis*

Figure 7.4 Q-Q Plots of the EDF vs. CDF for the best models fitted to *P. occidentalis* spotlighting data. a) Non-truncated and b) truncated at 26 m

Figure 7.5 Uniform key function with one cosine adjustment fitted to a 10-bin histogram of the non-truncated *P. occidentalis* distance data

Figure 7.6 Half normal key function, scaled by vegetation density, fitted to 11-bin histograms of the truncated *T. vulpecula* distance data for each factor of the covariate

Figure 7.7 Density estimates for translocated and natural populations of *P. occidentalis* in coastal regions of south-west WA

Figure 7.8 Distance sampling density estimates for *T. vulpecula* at the translocation sites