DIE-OFF OF PATHOGENS AND ASSESSMENT OF RISKS FOLLOWING BIOSOLIDS APPLICATION IN PINE PLANTATIONS

THIS THESIS IS PRESENTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF MURDOCH UNIVERSITY

By

Jason Levitan
Bachelor of Environmental Science

Murdoch University
August 2010
I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institute.

........................

Jason Levitan
Papers and Presentations from this research

Book Chapters

Journal Paper

Reviewed Conference Presentations

This study was funded by the Water Corporation (WA), and in particular Nancy Penney from the Water Corporation was instrumental in providing advice, clarity and directions on all aspects of the study from writing through experiments and also conference presentations. Ian Dumbrell from the Forest Products Commission (WA) also provided much needed help and advice in regards to everything pine plantation related as well as casting his eye over drafts of papers and conference presentations. Karen Schwarz at CSIRO provided advice and equipment enabling methodologies to be developed and aerosol measurements to be taken in a timely manner.

The tedious hours in the field and the laboratory were passed through the generous help provided by Noraisha Oyama and Nikhil Patel in particular. Further thanks to Noraisha for her support during the writing process through reviewing and editing drafts of the thesis. My fellow post-graduate students in Environmental Science at Murdoch University all provided encouragement throughout my studies and I am very thankful to have had their support during this study. Staff members of Environmental Science made my study very easy with administration help as well as guidance in the process of producing this thesis.

I am deeply grateful to all my family for their support, my parents in particular who have provided the financial support I needed to complete this project and a willing ear that without question allowed me to work through the problems and
issues I became exposed to. Their encouragement through the good and bad times was a perfect platform to launch from.

To my partner Leah, thank-you for your unending support and understanding through the study; the early mornings, the late nights, the questionable moods were all taken in your stride and you always encouraged me to step up.

Goen Ho as a supervisor provided support and direction to my thesis and I am grateful for your help and input. Finally to Jaya Nair I extend my greatest thanks and appreciation, you guided me through the study with invaluable advice and the utmost of support. As a supervisor you excelled in your role and I am truly thankful to have conducted this study with you. Thank-you Jaya!
Abstract

In Western Australia over 80,000 tonnes per annum of biosolids are produced from the treatment of wastewater. The biosolids is being disposed in a variety of land-application processes as a soil amendment. However the presence of pathogenic organisms in the biosolids can result in a human health risk if individuals are exposed to the biosolids.

Application of these biosolids to pine plantations is a practice increasing worldwide due to the benefits of biosolids as a soil amendment. The regulations allow biosolids that may contain pathogenic organisms to be land-applied. In the case of pine plantations, the general public is not physically excluded from the area resulting in a situation arising whereby exposure of the biosolids to members of the general public can occur. This potential exposure results in a human health risk becoming present.

Instances of pathogen survival post-application of biosolids have been observed indicating that the risk to human health is certainly present. The main aim of this study was to assess the risk to human health from the pathogens found in biosolids land applied to the Myalup pine plantation in Western Australia. To achieve this aim the ability of the pathogens to survive post-application of biosolids was monitored and any instances of increased pathogen activity beyond one year post-application were established. The airborne pathogen risks through the formation of biosolids dust and the occurrence of plantation burns that may cause pathogens to become airborne in the smoke of a burn,
were investigated. *E. coli, Salmonella* spp. and *Clostridium perfringens* were the pathogen indicators selected for this study.

The results show that the pathogen levels in the land-applied biosolids pose a risk to members of the public and plantation workers via direct exposure for the first 3 months post-application. After 2 months *E. coli* was observed to have undergone significant die-off, *Salmonella* spp. was observed to be at undetectable levels after 3 months. However 11 months post-application in the following winter season, *Salmonella* spp. returned to high levels that would pose a human health risk. *Clostridium perfringens* remained at high levels throughout the 1 year monitoring period. During this initial monitoring period, a relationship between moisture content and pathogen populations was observed. *Salmonella* spp. indicated the strongest relationship with a return in its population from undetectable levels to high levels when an increase in moisture content was observed.

A mechanism that facilitates this increase in the populations of the pathogens has been referred to in the literature, but not described. An observation during the initial one-year intensive monitoring showed that as the moisture content of the biosolids reduced, the biosolids dried to form clumps. After testing, it was determined that these clumps were enabling weakened populations of the pathogens to survive the natural environmental factors that usually cause their die-off. After a rainfall event, the moisture content of the clumps increases allowing the weakened populations to re-colonise the biosolids. This clumping phenomenon was only observed to occur within the first year post-application.
Beyond one year post-application, instances of elevated pathogen activity were observed up to 1.5 years post-application. After this period of time had elapsed, all indicator pathogens were observed to be at low levels that are highly unlikely to cause a human health risk. The indication being that no health risk from biosolids pathogens exists beyond 1.5 years post-application.

An alternative exposure route identified is the airborne route through inhalation of the pathogens. Plantation burns are expected to occur within the life-cycle of a plantation. The possibility that pathogens could become airborne during a burn and be transported along with the smoke was investigated. No significant instances of pathogens being transported in the smoke were observed.

The formation of biosolids dust was an issue raised, and more specifically whether pathogens could become airborne with the dust. The ability of the pathogens to survive in biosolids dust was examined. The pathogens indigenous to the biosolids failed to survive to the point where moisture loss in the biosolids was significant enough to allow dust formation to occur. Laboratory cultures of the indicator pathogens were then inoculated into the samples and their ability to survive in biosolids dust conditions was observed. Significant die-off was observed within 3 days and after 10 days the pathogen levels were low. *Clostridium perfringens* was the exception as this pathogen was observed to survive within biosolids dust.

The combined results of this thesis and the literature indicate that the human health risks relating to airborne exposure are limited to an occupational risk only. The pathogen risks are only associated with the application of the
biosolids to the land and not with the formation of biosolids dust or with the smoke of plantation burn over land applied with biosolids.

The pathogen risk from direct exposure is present for all individuals who come into contact with the biosolids during the initial 3 months post-application and, due to pathogen re-growth or re-colonisation, the following winter season when moisture levels are increased. However this direct exposure risk is only present for 1.5 years-post-application after which the pathogens were observed to be of no health risk. In general the human health risk from the land-application of biosolids is low.

Additional research work needs to be conducted in relation to the clumping phenomenon. A full understanding of the process and why the biosolids forms clumps as it dries will aid in the development of strategies to prevent this action from occurring. Removing this action will greatly reduce the risk of pathogen re-growth and/or re-colonisation.
Table of Contents

Acknowledgements .. iii

Abstract ... v

Table of Contents .. ix

List of Figures ... xiv

List of Tables ... xvii

List of Abbreviations .. xix

Chapter 1. Introduction .. 1

1.1 Biosolids ... 1

1.2 Biosolids management ... 2

1.3 Risks ... 3

1.4 Forestry applications and pine plantations ... 3

1.5 Research aim and scope of study ... 5

1.6 Layout of the thesis ... 6

Chapter 2. Literature review ... 9

2.1 Introduction .. 9

2.2 Wastewater treatment and biosolids ... 9

2.3 Land application of biosolids .. 16

2.4 Pine plantations .. 18

2.5 Biosolids and health risks .. 22

2.6 Pathogens in biosolids ... 24

2.7 Guidelines for the pathogen content in biosolids ... 27

2.8 Pathogen survival and re-growth ... 32

2.9 Airborne biosolids particles .. 36
3.3.6 Pathogen indicator analysis ... 68
3.3.7 Moisture and pathogens ... 73
3.3.8 Air temperature and pathogens .. 77
3.4 Discussion ... 78
3.5 Conclusion ... 83

Chapter 4. Pathogen survival in land-applied biosolids beyond one year post-application ... 84
4.1 Introduction .. 84
4.2 Methods ... 85
4.2.1 Site selection .. 85
4.2.2 Sample collection ... 86
4.2.3 Pathogen indicator analysis .. 86
4.3 Results ... 86
4.4 Discussion .. 89
4.5 Conclusion ... 90

Chapter 5. The potential for pathogens to be transported in the smoke of a burn in a pine plantation .. 91
5.1 Introduction ... 91
5.2 Methods ... 92
4.2.1 Experimental set-up ... 92
5.2.2 Inoculation of biosolids samples ... 96
5.2.3 Biosolids sample collection .. 96
5.2.4 Air sample collection .. 96
5.2.5 Pathogen indicator analysis ... 97
5.3 Results .. 97
5.4 Discussion .. 99
List of Figures

Figure 2.1 The generalised process of activated sludge wastewater treatment (National Research Council, 2002) .. 12

Figure 2.2 The generalised process in anaerobic sludge digestion (Peirce et al., 1998) .. 12

Figure 3.1 A map indicating the location of the research site approximately 125 km south of Perth, Western Australia (Google Maps, 2010)52

Figure 3.2 A map indicating the location of the 2.5 hectare research site within the Myalup pine plantation. Access to the site is gained from Myalup Beach road to the south of the research site (Forest Products Commission WA, 2006b) .. 53

Figure 3.3 A sample plot (inside the black box) of biosolids on ground with no pine trees/vegetation (OB) ... 54

Figure 3.4 A sample plot (inside the black box) of biosolids on ground with pine trees (PB) ... 54

Figure 3.5 A timeline of photographs showcasing the major changes observed at the biosolids applied plots beneath the pine trees (PB) over the study period ... 61

Figure 3.6 The daily rainfall observed for the monitoring period including a moving average of + 14 days .. 62

Figure 3.7 The average gravimetric moisture content (g/g) observed at the sites with pine trees (PB) including standard error ... 64

Figure 3.8 The average gravimetric moisture content (g/g) observed at the sites with no pine trees (OB) including standard error .. 65

Figure 3.9 The air temperature beneath the pine tree canopy over the study period including a moving average of + 14 days .. 66

Figure 3.10 The air temperature in the open with no pine tree canopy over the study period inlcuding a moving average of + 14 days 66

Figure 3.11 The average pH values observed at the sample sites (+ standard error) .. 68

Figure 3.12 The E. coli found in the soil/biosolids samples for each test condition including 95% confidence limits .. 69
Figure 3.13 The *Salmonella* spp. found in the soil/biosolids samples taken from the test plots including 95% confidence limits ...71

Figure 3.14 The *Clostridium perfringens* found in the soil/biosolids samples taken from the test sites including 95% confidence limits73

Figure 3.15 The average rainfall compared against *E. coli* in all test conditions (a broken line = 0 MPN/g DW) ..75

Figure 3.16 The average rainfall compared against *Salmonella* spp. in all test conditions (a broken line = 0 MPN/g DW) ..75

Figure 3.17 The average rainfall compared against *Clostridium perfringens* in all test conditions (a broken line = 0 MPN/g DW) ...75

Figure 3.21 Average air temperature of the OB and PB sites plotted against *E. coli* showing the R^2 values (Original values of >11000 MPN/g DW have been excluded) ..77

Figure 3.22 Average air temperature of the OB and PB sites plotted against *Salmonella* spp. showing the R^2 values (Original values of >11000 MPN/g DW have been excluded) ...77

Figure 3.23 Average air temperature of the OB and PB sites plotted against *Clostridium perfringens* showing the R^2 values (Original values of >11000 MPN/g DW have been excluded) ...78

Figure 4.1 The levels of *E. coli*, *Salmonella* spp. and *Clostridium perfringens* at sites previously applied with biosolids over a number of years including 95% confidence limits .. 88

Figure 5.2 The pH of sites applied with biosolids and the control sites over an extended time period (+ standard error) .. 88

Figure 5.1 The experimental set-up showing the fan, the wind tunnel, the Biosamplers and the vacuum pumps ...93

Figure 5.2 The tray fitted inside the wind tunnel. One end was open to allow the fan to blow wind into the tunnel and the exit hole was smaller to concentrate the air flow out of the tunnel to ensure the Biosamplers were in the air stream. .. 94

Figure 5.3 The Biosamplers were placed directly in the air stream exiting the wind tunnel as shown by the smoke that can be seen surrounding the Biosamplers. ..94

Figure 6.1 The methodology to examine the pathogen survival posed by the generation of biosolids dust ...104
Figure 7.1 A close-up image of the dry biosolids withdrawing into clumps.....113
Figure 8.1 The process by which biosolids is land-applied to the plantation...122
Figure 8.2 The contained area where the biosolids is unloaded to before being loaded into the spreader ...125
Figure 8.3 A front-end loader transferring biosolids to the spreader125
Figure 8.4 The vehicle that spreads the biosolids.................................127
Figure 8.5 The biosolids being spread within the plantation tree stands....127
Figure 8.6 Signage declaring the presence of land-applied biosolids in the vicinity and restricting access to unauthorized personnel128
Table 2.1 The nutrient concentrations of biosolds (dry solids basis) from different wastewater treatment plants in Western Australia: period 2006/07 (Water Corporation, 2007) ... 14

Table 2.2 Major pathogens potentially present in biosolds (United States Environmental Protection Authority, 2000) ... 15

Table 2.3 Reported cases of selected gastrointestinal diseases and Legionellosis in Australia 2001-2009 (Department of Health and Ageing, 2009) ... 26

Table 2.4 Pathogen density limits in different classes of biosolids (United States Environmental Protection Authority, 2000) ... 28

Table 2.5 Pathogen Grades for biosolids in Australia and allowable uses (Natural Resource Management Ministerial Council, 2004) ... 30

Table 2.6 Site selection factors when applying biosolids to the land as required by the Western Australian guidelines (Department of Environmental Protection Water and Rivers Commission and Department of Health, 2002) .. 31

Table 3.1 The sampling regime (with dates) of the study 57

Table 5.1 The pathogen indicator levels before and after the biosolids were inoculated with laboratory pathogen cultures ... 98

Table 5.2 The pathogen indicator levels of the biosolids before and after the burn showing the ability of the pathogens to survive a pine plantation burn including standard error ... 99

Table 5.3 Average number of organisms (per 25lt of air) in air contaminated with the smoke from a burn of biosolids and pine needles including standard error ... 99

Table 6.1 The number of samples of *E. coli*, *Salmonella* spp. and *Clostridium perfringens* observed in each population range at each stage of testing 106

Table 8.1 The typical pathogen levels in biosolids produced at Woodman Point, Beenyup and Subiaco wastewater treatment plants (WWTP), Western Australia (adapted from (Water Corporation, 2001; Water Corporation, 2003; Water Corporation, 2004; Water Corporation, 2005; Water Corporation, 2006; Water Corporation, 2007; Water Corporation, 2008). 123
Table 8.2 The pathogen content, gravimetric moisture content and risk that was observed at specific time points in the operational phase of biosolids application in the Myalup pine plantation ..130
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFU</td>
<td>Colony Forming Units</td>
</tr>
<tr>
<td>DW</td>
<td>Dry Weight</td>
</tr>
<tr>
<td>FW</td>
<td>Fresh Weight</td>
</tr>
<tr>
<td>MPN</td>
<td>Most Probable Number</td>
</tr>
<tr>
<td>PFU</td>
<td>Plaque Forming Units</td>
</tr>
<tr>
<td>PPE</td>
<td>Personal Protective Equipment</td>
</tr>
<tr>
<td>QMRA</td>
<td>Quantitative Microbial Risk Assessment</td>
</tr>
<tr>
<td>TMTC</td>
<td>Too Many To Count</td>
</tr>
<tr>
<td>WA</td>
<td>Western Australia</td>
</tr>
</tbody>
</table>