MAPPING FIRE AFFECTED AREAS IN NORTHERN WESTERN AUSTRALIA – TOWARDS AN AUTOMATIC APPROACH

This thesis is presented for the degree of

Master of Philosophy of Murdoch University

2004

Submitted by

Katherine Candy

B.Sc.Hons (University of Western Australia)
I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution.

....................................

Katherine Candy
Wildfires across northern Australia are a growing problem with more than 2.5 million hectares being burnt each year. Accordingly, remote sensing has been used as a tool to routinely monitor and map fire histories. In northern Western Australia, the Department of Land Information Satellite Remote Sensing Services (DLI SRSS) has been responsible for providing and interpreting NOAA-AVHRR (National Oceanic and Atmospheric Administration-Advanced Very High Resolution Radiometer) data. SRSS staff utilise this data to automatically map hotspots on a daily basis, and manually map fire affected areas (FAA) every nine days. This information is then passed on to land managers to enhance their ability to manage the effects of fire and assess its impact over time.

The aim of this study was to develop an algorithm for the near real-time automatic mapping of FAA in the Kimberley and Pilbara as an alternative to the currently used semi-manual approach. Daily measures of temperature, surface reflectance and vegetation indices from twenty nine NOAA-16 (2001) passes were investigated. It was firstly necessary to apply atmospheric and BRDF corrections to the raw reflectance data to account for the variation caused by changing viewing and illumination geometry over a cycle.

Findings from the four case studies indicate that case studies 1 and 2 exhibited a typical fire response (visible and near-infrared channels and vegetation indices decreased), whereas 3 and 4 displayed an atypical response (visible channel increased while the near-infrared channel and vegetation indices decreased). Alternative vegetation indices such as GEMI,
GEMI3 and VI3 outperformed NDVI in some cases. Likewise atmospheric and BRDF corrected NDVI provided better performance in separating burnt and unburnt classes.

The difficulties in quantifying FAA due to temporal and spatial variation result from numerous factors including vegetation type, fire intensity, rate of ash and charcoal dispersal due to wind and rain, background soil influence and rate of revegetation. In this study two different spectral responses were recorded, indicating the need to set at least two sets of thresholds in an automated or semi-automated classification algorithm. It also highlighted the necessity of atmospheric and BRDF corrections.

It is therefore recommended that future research apply atmospheric and BRDF corrections at the pre-processing stage prior to analysis when utilising a temporal series of NOAA-AVHRR data. Secondly, it is necessary to investigate additional FAA within the four biogeographic regions to enable thresholds to be set in order to develop an algorithm. This algorithm must take into account the variation in a fire’s spectral response which may result from fire intensity, vegetation type, background soil influence or climatic factors.
TABLE OF CONTENTS

ABSTRACT ... I

TABLE OF CONTENTS ... III

LIST OF TABLES ... VII

LIST OF FIGURES .. X

ACKNOWLEDGEMENTS ..XIX

1 **INTRODUCTION** .. 1
 Definitions ... 1
 Fire Effects ... 1
 Research Questions: .. 1
 Hypotheses: .. 2
 Study Area .. 3

2 **BACKGROUND** ... 4
 2.1 **INTRODUCTION** ... 4
 2.2 **REMOTE SENSING & FIRE** .. 6
 2.3 **METEOROLOGY** ... 20
 2.3.1 **Climate & Weather** ... 20
 2.3.2 **Climate & Remote Sensing** ... 21
 2.3.3 **Climate & Fire** ... 22
 2.3.4 **Climate & Vegetation** .. 22
 2.4 **FIRE ECOLOGY AND PHENOLOGY** .. 23

3 **GENERAL METHODS** ... 28
 3.1 **INTRODUCTION** ... 28
3.2 CASE STUDY SELECTION ... 29
 3.2.1 Case Study Selection Criteria .. 29
 3.2.2 Case Studies 1 - 4 ... 30
3.3 SATELLITE DATA .. 31
 3.3.1 NOAA-AVHRR ... 32
 3.3.2 LANDSAT TM ... 33
 3.3.3 Image Processing ... 34
3.4 CLIMATE DATA ... 38
 3.4.1 Source .. 38
 3.4.2 Compilation ... 39
 3.4.3 Procedures .. 41
3.5 VEGETATION DATA ... 43
 3.5.1 Source .. 43
 3.5.2 Analysis ... 43
3.6 SOIL DATA .. 44
 3.6.1 Source .. 44
 3.6.2 Analysis ... 45
3.7 IBRA REGIONS ... 45
3.8 KIMBERLEY DEM ... 47
3.9 ALGORITHM ... 48

4 CASE STUDY 1 ... 49

 4.1 STUDY AREA DESCRIPTION & ANCILLARY DATA ANALYSIS 49
 4.1.1 Introduction .. 49
 4.1.2 Location ... 51
 4.1.3 Climate ... 51
 4.1.4 Soils .. 54
 4.1.5 Vegetation ... 56
 4.1.6 Land Use .. 57
 4.2 SATELLITE DATA ANALYSIS – RAW, ATMOSPHERIC & BRDF CORRECTED 59
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1</td>
<td>Introduction</td>
<td>59</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Methods</td>
<td>64</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Results</td>
<td>74</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Discussion</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>CASE STUDY 2</td>
<td>108</td>
</tr>
<tr>
<td>5.1</td>
<td>STUDY AREA DESCRIPTION & ANCILLARY DATA ANALYSIS</td>
<td>108</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Introduction</td>
<td>108</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Location</td>
<td>109</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Climate</td>
<td>110</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Topography and Soils</td>
<td>111</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Vegetation</td>
<td>112</td>
</tr>
<tr>
<td>5.1.6</td>
<td>Land Use</td>
<td>112</td>
</tr>
<tr>
<td>5.2</td>
<td>SATELLITE DATA ANALYSIS – RAW, ATMOSPHERIC & BRDF CORRECTED</td>
<td>114</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Introduction</td>
<td>114</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Methods</td>
<td>114</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Results</td>
<td>114</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Discussion</td>
<td>129</td>
</tr>
<tr>
<td>6</td>
<td>CASE STUDY 3</td>
<td>133</td>
</tr>
<tr>
<td>6.1</td>
<td>STUDY AREA DESCRIPTION & ANCILLARY DATA ANALYSIS</td>
<td>133</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Introduction</td>
<td>133</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Location</td>
<td>134</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Climate</td>
<td>134</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Topography and Soils</td>
<td>135</td>
</tr>
<tr>
<td>6.1.5</td>
<td>Vegetation</td>
<td>136</td>
</tr>
<tr>
<td>6.1.6</td>
<td>Land Use</td>
<td>136</td>
</tr>
<tr>
<td>6.2</td>
<td>SATELLITE DATA ANALYSIS – RAW, ATMOSPHERIC & BRDF CORRECTED</td>
<td>138</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Introduction</td>
<td>138</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Methods</td>
<td>138</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1. Sensor characteristics for NOAA-AVHRR (Craig *et al.* 1995).......................... 9

Table 2. Depiction of contextual algorithm using a 3x3 kernel of eight pixels (Craig *et al.* 2002).. 13

Table 3. Examples of techniques used for mapping FAA.. 14

Table 4. The RGB algorithm used by DLI SRSS to map FAA (Craig *et al.* 2002)........ 19

Table 5. The location and no. of passes for case studies 1 - 4... 30

Table 6. The 10 bands supplied by DLI SRSS... 32

Table 7. Geocoding Wizard Options.. 33

Table 8. Descriptions of the soil units found within the study transect as given by the Atlas of Australian Soils (Northcote *et al.* 1968).. 54

Table 9. Reclassified soils according to colour and percent cover.................................... 55

Table 10. Descriptions of the vegetation associations found within the study transect (Hopkins *et al.* 2001)... 56

Table 11. Reclassified vegetation according to type and percent cover.......................... 57

Table 12. The bands derived from processing software for NOAA-16 AVHRR............. 65

Table 13. Pre-fire vs post-fire separability for the visible and NIR channels (raw, atmospheric and BRDF corrected). ... 91
Table 14. Pre-fire vs post-fire NDVI separability for the 3 groups: raw, atmospheric and BRDF corrected.

Table 15. Pre-fire vs post-fire separability for GEMI and VI3.

Table 16. Descriptions of the soil units found within the study transect as given by the Atlas of Australian Soils (Northcote et al. 1968).

Table 17. Reclassified soils according to colour and percent cover.

Table 18. Description of the vegetation associations found within the study transect (Hopkins et al. 2001).

Table 19. Pre-fire vs post-fire separability for the visible and NIR channels (raw, atmospheric and BRDF corrected).

Table 20. Pre-fire vs post-fire NDVI (raw, atmospheric and BRDF corrected) separability.

Table 21. Pre-fire vs post-fire separability for GEMI, GEMI3 and VI3.

Table 22. Description of the vegetation associations found within the study transect (Hopkins et al. 2001).

Table 23. Pre-fire vs post-fire separability for the visible and NIR channels (raw and atmospheric corrected).

Table 24. NDVI pre-fire vs post-fire separability (raw and atmospheric corrected).

Table 25. Pre-fire vs post-fire separability for GEMI, GEMI3 and VI3.
Table 26. Descriptions of the soil units found within the study transect as given by the Atlas of Australian Soils (Northcote et al. 1968)..........................157

Table 27. Description of the vegetation association found within the study transect (Hopkins et al. 2001)...158

Table 28. Pre-fire vs post-fire separability for the visible and NIR channels (raw and atmospheric corrected)..168

Table 29. Pre-fire vs post-fire NDVI (raw and atmospheric corrected) separability........170

Table 30. Pre-fire vs post-fire separability for GEMI, GEMI3 and VI3.........................172
LIST OF FIGURES

Figure 1. Location of case study sites within northern Western Australia.3

Figure 2. Number of times the Kimberley Region burned over the interval 1993-2001 (Department of Land Information 2002a). ... 7

Figure 3. Pilbara Region Fire History from 1995-2001 (Department of Land Information 2002b). .. 8

Figure 4. The characteristic growth pattern of spinifex (Cheney and Sullivan, 1997).24

Figure 5. Showing the relationship between rate of forward spread and a) degree of grass curing and b) dead fuel moisture content (Cheney and Sullivan, 1997)......................25

Figure 6. The accumulation of spinifex in a ‘step-like’ manner following a fire27

Figure 7. Summary of the steps taken to analyse FAA’s ...28

Figure 8. An example of a NOAA-AVHRR image acquired from DLI31

Figure 9. An example of a Landsat TM Quicklook image available for download from the ACRES website. ... 32

Figure 10. Overview of the CAPS process and derived output ..35

Figure 11. The dialog box used to export part of a raster image via XYZ_ASCII_grid37

Figure 12. The 13 Bureau of Meteorology stations from which data were acquired39

Figure 13. The steps required to create a digital climate coverage40
Figure 14. Conversion Dialog Box within ArcView... 43

Figure 15. Map of IBRA (v5.1) regions covering Australia (Environment Australia 2000). ... 46

Figure 16. a) The pseudocolor image - blue indicates areas of low elevation and red indicates high elevation b) Sun-shading has been applied to highlight the relief across the study area... 47

Figure 17. The elevation map derived for the study area... 48

Figure 18. Hummock grasslands found within the Great Sandy Desert biogeographic region (Environment Australia 2000)... 50

Figure 19. Synoptic charts illustrating high fire danger days a) October 26 b) November 11 c) November 12 d) November 19 e) November 20 f) November 23 (Bureau of Meteorology 2003). ... 52

Figure 20. Rainfall recorded for the year 2001 at Mandora station.. 53

Figure 21. The area of tenure types (%) within the Great Sandy Desert biogeographic region... 58

Figure 22. The area of land uses (%) within the Sandy Desert Basin for 1996/97...................... 58

Figure 23. Illustrating the satellite (θ) and solar zenith (θ_o) angles (after Lee et al. 1975, modified). ... 61

Figure 24. Mean daily variations - Channel 4 brightness temperature for burnt, unburnt and mixed pixel areas... 75
Figure 25. Mean daily variations - Channel 5 brightness temperature for burnt, unburnt and mixed pixel areas. 76

Figure 26. Mean pre-fire (□) vs post-fire (■) brightness temperatures for channels 4 and 5. ... 77

Figure 27. Mean daily variations - Channel 1 reflectance (TOA) for burnt, unburnt and mixed areas. .. 78

Figure 28. Mean daily variations - Channel 2 reflectance (TOA) for burnt, unburnt and mixed pixel areas. .. 79

Figure 29. Mean daily variations - Channel 3A reflectance (TOA) for burnt, unburnt and mixed pixel areas. .. 79

Figure 30. Mean channel 1 (TOA) vs solar corrected channel 1 reflectance for burnt, unburnt and mixed pixel areas. .. 80

Figure 31. Mean channel 2 (TOA) vs solar corrected channel 2 reflectance for burnt, unburnt and mixed pixel areas. .. 81

Figure 32. Comparisons of the observed & solar corrected reflectance for channel 1. 82

Figure 33. Comparisons of the observed & solar corrected reflectance for channel 2. 82

Figure 34. Mean daily variations of the original channel 1 vs atmospheric corrected channel 1 reflectance. .. 83

Figure 35. Mean daily variations of the original channel 2 vs atmospheric corrected channel 2 reflectance. .. 84
Figure 36. Comparison of observed & atmospheric corrected channel 1 reflectance........ 85

Figure 37. Comparison of observed & atmospheric corrected channel 2 reflectance........ 85

Figure 38. Comparisons of atmospheric and BRDF corrected nadir reflectance for channel 1 and 2. .. 86

Figure 39. Comparisons of atmospheric and BRDF corrected nadir reflectance for channel 1 and 2, with the satellite zenith cycle. ... 87

Figure 40. Comparisons of atmospheric and BRDF corrected nadir reflectance for channel 1 and 2, with the solar zenith cycle... 87

Figure 41. Comparisons of atmospheric and BRDF corrected nadir reflectance (unburnt days only) for channel 1 and 2. ... 88

Figure 42. Atmospheric vs BRDF corrected nadir reflectance (unburnt days only) for channel 1 and 2, with the satellite zenith. ... 89

Figure 43. Atmospheric vs BRDF corrected nadir reflectance (unburnt days only) for channel 1 and 2, with the solar zenith cycle... 89

Figure 44. Pre-fire (□) vs post-fire (■) corrected reflectances: a) atmospheric and b) BRDF for the visible and NIR channels. ... 90

Figure 45. a) raw (i.e. TOA) reflectance b) BRDF corrected reflectance 90

Figure 46. Mean daily variations in NDVI for burnt, unburnt and mixed pixel areas. 93

Figure 47. Comparisons of the observed and atmospheric corrected NDVI for October 26 (non-fire day). .. 94
Figure 48. Temporal profile of raw and BRDF corrected NDVI for Set 1. 95

Figure 49. Temporal profile of raw and BRDF corrected NDVI for Set 2. 96

Figure 50. Pre-fire (□) vs post-fire (■) raw, atmospheric and BRDF corrected NDVI. 97

Figure 51. Temporal profile of GEMI and VI3 for Set 2. ... 98

Figure 52. Pre-fire (□) vs post-fire (■) GEMI and VI3. .. 99

Figure 53. An example of spinifex and scattered trees found within the Pilbara Region (Environment Australia 2000). ... 109

Figure 54. Monthly rainfall recorded at Telfer Aero for 2001. .. 110

Figure 55. The area of tenure types (%) within the Pilbara biogeographic region. 113

Figure 56. The area of land uses (%) within the De Grey River Basin for 1996/97. 113

Figure 57. Mean daily variations in channel 4 brightness temperatures. 115

Figure 58. Mean daily variations in channel 5 brightness temperatures. 116

Figure 59. Mean pre-fire (□) vs post-fire (■) brightness temperatures for channels 4 and 5. ... 117

Figure 60. Mean daily variations – Channel 1 reflectance (TOA) for burnt, unburnt and mixed areas. ... 118

Figure 61. Mean daily variations – Channel 2 reflectance (TOA) for burnt, unburnt and mixed pixel areas. ... 118
Figure 62. Mean daily variations – Channel 3A reflectance (TOA) for burnt, unburnt and mixed pixel areas. ...119

Figure 63. Comparisons of atmospheric and BRDF corrected nadir reflectance for channel 1 and 2. ..120

Figure 64. Comparisons of atmospheric and BRDF corrected nadir reflectance for channel 1 and 2, with the satellite zenith cycle. ...121

Figure 65. Comparisons of atmospheric and BRDF corrected nadir reflectance for channel 1 and 2, with the solar zenith cycle. ...122

Figure 66. Pre-fire (□) vs post-fire (■) corrected reflectance: a) atmospheric and b) BRDF for the visible and NIR channels. ...123

Figure 67. a) Raw (i.e. TOA) reflectance b) BRDF corrected reflectance.123

Figure 68. Mean daily variations in NDVI for the Pilbara site...125

Figure 69. Temporal profile of raw and BRDF corrected NDVI for the Pilbara site......126

Figure 70. Temporal profile of GEMI, GEMI3 and VI3..127

Figure 71. Pre-fire (□) vs post-fire (■) GEMI, GEMI3 and VI3..128

Figure 72. The Central Ranges biogeographic region is characterised by a plateau and small mountain ranges (Environment Australia 2001). ...134

Figure 73. Monthly rainfall recorded for the year 2001 at Giles station............................135

Figure 74. The area of tenure types (%) within the Central Ranges.................................137
Figure 75. The area of land uses (%) within the Mackay Basin for 1996/97..........................137

Figure 76. Mean daily variations - Channel 1 reflectance (TOA) for burnt, mixed and unburnt areas. ...140

Figure 77. Mean daily variations – Channel 2 reflectance (TOA) for burnt, mixed and unburnt areas. ...140

Figure 78. Mean daily variations – Channel 3A reflectance (TOA) for burnt, mixed and unburnt areas. ...141

Figure 79. Comparisons of atmospheric and BRDF corrected nadir reflectance for channel 1 and 2. ..142

Figure 80. Comparisons of atmospheric and BRDF corrected nadir reflectance for channel 1 and 2, with the satellite zenith cycle. ..143

Figure 81. Comparisons of atmospheric and BRDF corrected nadir reflectance for channel 1 and 2, with the solar zenith cycle. ..144

Figure 82. Pre-fire (□) vs post-fire (■) corrected reflectances: a) atmospheric and b) BRDF for the visible and NIR channels. ..145

Figure 83. Mean daily variations in raw NDVI for the Central Ranges site.146

Figure 84. Temporal profile of raw and BRDF corrected NDVI for the Central Ranges site..147

Figure 85. Temporal profile of GEMI, GEMI3 and VI3...148

Figure 86. Pre-fire (□) vs post-fire (■) GEMI, GEMI3 and VI3..149
Figure 87. An illustration of sparse vegetation found within Dampierland biogeographic region (Environment Australia 2000).. 155

Figure 88. Monthly rainfall recorded for the year 2001 at Bidyadanga station. 156

Figure 89. The area of tenure types (%) within the Dampierland biogeographic region. 158

Figure 90. The area of land uses (%) within the Sandy Desert Basin for 1996/97.......... 159

Figure 91. Mean daily variations in Channel 1 reflectance (TOA) for burnt, mixed and unburnt areas. .. 162

Figure 92. Mean daily variations in Channel 2 reflectance (TOA) for burnt, mixed and unburnt areas. .. 162

Figure 93. Mean daily variations in Channel 3A reflectance (TOA). 163

Figure 94. Mean daily variations in atmospherically corrected Channel 1 reflectance. 164

Figure 95. Mean daily variations in atmospherically corrected Channel 2 reflectance. 164

Figure 96. Comparisons of atmospheric and BRDF corrected nadir reflectance for channel 1 and 2. .. 165

Figure 97. Comparisons of atmospheric and BRDF corrected nadir reflectance for channel 1 and 2, with the satellite zenith cycle. ... 166

Figure 98. Comparisons of atmospheric and BRDF corrected nadir reflectance for channel 1 and 2, with the solar zenith cycle... 167

Figure 99. Pre-fire (□) vs post-fire (■) corrected reflectances: a) atmospheric and b) BRDF for the visible and NIR channels. ... 168
Figure 100. Mean daily variations in NDVI .. 169

Figure 101. Mean daily variations in raw and BRDF corrected NDVI 170

Figure 102. Temporal profile of GEMI, GEMI3 and VI3 ... 171

Figure 103. Pre-fire (□) vs post-fire (■) GEMI, GEMI3 and VI3 172
ACKNOWLEDGEMENTS

I would like to gratefully acknowledge the assistance given by the following:

BOM - Graham deHoedt & David Jones (Interpolation), Gary McCall & John Relf (Climate data)

CESBIO - Gerard Dedieu (SMAC)

CSIRO - Peter Turner (CAPS), Ross Mitchell (Aerosols & Atmospheric correction)

Department of Agriculture - Damian Shepherd (Beard’s Digital Vegetation Maps & Digital Atlas of Australian Soils), Avril Howcroft (Digital Data Licensing Agreement), Andrew Craig (Paper & Information)

DLI SRSS - Andrew Buchanan (DEM), Ron Craig (NOAA), Belinda Heath (NOAA), Jackie Marsden (NOAA & MODIS), Stefan Maier (BRDF), Peter Sanders (TM), Richard Smith (Supervisor), Mike Steber (CAPS & IDL), Miguel Tovar

ER Mapper - Michael Rotondo (Home license: 1 year)

NGIS - Paul Gager & David Bebbington (ER Mapper licensing)

Murdoch University - Halina Kobryn (Supervisor), Ross Lantzke (SPSS & Excel), Tom Lyons (Climate data), Jennifer Robinson (Supervisor), Ross Taplin (Statistics).

QDNR - Lisa Collett
Research Systems, Inc. - Jaye Lampe (ENVI & IDL)

Tropical Research Institute - Jose Pereira (NOAA)

UWA - Julie Delaney (Use of ArcInfo), Andrew Inglis (Kimberley DEM)

In addition I would like to especially thank Roger and my family for all their support throughout this thesis.