THE BIOLOGY, ECOLOGY AND TAXONOMY OF
PHYTOPHTHORA CITRICOLA IN NATIVE PLANT COMMUNITIES IN
WESTERN AUSTRALIA

by

FELICITY J. BUNNY

This thesis is presented for the degree of
Doctor of Philosophy of Murdoch University 1996.
I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution.

Felicity J. Bunny
ACKNOWLEDGMENTS

I would like to express my sincerest gratitude to my supervisors Dr Bryan Shearer and Dr Giles Hardy for their unceasing encouragement and support throughout the period of this project.

My thanks also go to Sue Broughton, Carla Wilkinson, Joanne Robinson and Ian Colquhoun of Alcoa of Australia Limited for assistance, particularly during the extensive sampling and baiting required to determine the distribution of *P. citricola* in the northern jarrah forest; Matthew Williams for statistical advice; Dave Coates and Vicki Hamley for assistance with electrophoresis; Murdoch University for providing glasshouse facilities; and Neil McMulkin of RGC Eneabba for his involvement in the survival trials.

Special thanks go to Brendan, for being there.

I also acknowledge the financial support of the Minerals and Energy Research Institute of Western Australia, and the Department of Conservation and Land Management for provision of facilities.
The objectives of the project were to develop an understanding of the disease dynamics caused by *Phytophthora citricola* in native plant communities in the south of Western Australia. Prior to 1983, the pathogen had only been reported twice from Australian forests. Since then, *P. citricola* has been extensively recorded from plant communities north and south of Perth, and is currently the second most frequently recovered *Phytophthora* species from the northern jarrah forest and the northern sandplains.

The objectives were addressed by examining the biology, ecology and taxonomy of isolates of *P. citricola* local to the southwest. Examination of the intraspecific variation of *P. citricola* by isozyme analysis resolved three major electrophoretic subgroups (SG), and these were aligned with morphological and cultural variation within the species. One electrophoretic SG was confined to forested areas. This SG differed from other SGs in sporangial dimensions, growth rate on two media and *in vitro* sensitivity to phosphonate. A redescription of the species may be warranted.

P. citricola was positively associated with two roads in the northern jarrah forest. Road surfaces were sampled, then soil overburden was removed and the surface of the concreted lateritic layer beneath was sampled. Isolation of *P. citricola* declined away from the road into the adjacent forest and was more frequently recovered from the caprock (up to 1 metre below soil surface) than from the soil surface. The most probable source of introduction was from infested soil on vehicles using the roads.

Oospores were shown to be produced in two soils, a lateritic gravelly loam and sand, and in plants. In soil, the electrophoretic SG confined to the forest (loamy soil) produced only limited numbers of oospores in the sandy soil of the northern sandplain. The restriction of this SG to the forested areas is probably physiological, rather than limited dispersal, with the SG
currently occupying the full extent of its range. Estimation of the relative persistence of oospores, zoospores and plant material colonised by *P. citricola* established that only oospores (either free in soil or in colonised plant material) were important in long term survival in soil. Oospores were still viable after six months at two field sites, and after 18 months in soil in the laboratory.

Phosphonate is currently the most promising method of control of *Phytophthora* induced disease in native plant communities of the southwest. The efficacy of phosphonate against *P. citricola* was examined *in vivo* and *in vitro* against two SGs. Phosphonate successfully inhibited lesion growth of both SGs *in vivo*, but of only one electrophoretic subgroup *in vitro*.

The ecological implications of infestation of native plant communities in the southwest of Australia are discussed.
TABLE OF CONTENTS

Chapter 1. Review of literature .. 1

1.1 Introduction .. 1

1.2 Native plant communities affected by *Phytophthora* in southwestern Australia, and
accompanying soil types .. 2

1.2.1 Climate .. 3

1.2.2 *Phytophthora* species other than *P. citricola* in native plant communities in
southwestern Australia .. 4

1.3 *P. citricola* as a plant pathogen ... 6

1.3.1 *P. citricola* worldwide ... 6

1.3.2 *P. citricola* in southwestern Australia .. 8

1.3.3 Introduced or indigenous status of *P. citricola* in southwestern Australia 10

1.4 Taxonomy of *P. citricola* ... 11

1.4.1 Morphology and cultural characteristics of *P. citricola* ... 13

1.4.2 Molecular taxonomy of *P. citricola* .. 13

1.4.3 Variability in aggressiveness between isolates of *P. citricola* 14

1.4.4 Host specificity of *P. citricola* .. 16

1.5 Life cycle of *P. citricola* ... 17

1.5.1 Survival and reproductive strategies ... 17

1.5.1.1 Sporangium production and zoospore release ... 19

1.5.1.2 Oospores .. 19

1.5.1.3 Saprophyte or parasite? .. 22

1.6 Disease ... 23

1.6.1 Symptomatology .. 23

1.6.2 Dispersal and infection ... 24

1.6.3 Invasion and establishment ... 26

1.6.4 Plant reactions ... 27
1.7 Management and control of disease ... 29
 1.7.1 Physical and protective strategies ... 30
 1.7.2 Biological disease control ... 31
 1.7.3 Chemical disease control .. 32
1.8 Summary and thesis objectives .. 34

Chapter 2. Distribution of *P. citricola* in native plant communities of southwestern Australia ... 37

2.1 Geographical and host range, and assessment of impact of *P. citricola* 37
 2.1.1 Introduction .. 37
 2.1.2 Materials and methods ... 37
 2.1.2.1 Collation of data from external sources ... 37
 2.1.2.2 Sites surveyed and sampling strategy .. 38
 2.1.3 Results .. 39
 2.1.3.1 Symptoms and impact of *P. citricola* infection ... 39
 2.1.3.2 Geographical distribution and relationship to rainfall 39
 2.1.3.3 Association of *P. citricola* with native plant species 42
 2.1.4 Discussion .. 42
2.2 Distribution of *P. citricola* at the soil surface and at depth in the northern jarrah forest 45
 2.2.1 Introduction .. 45
 2.2.2 Materials and Methods ... 46
 2.2.2.1 Association of *P. citricola* with forest roads, and the caprock surface beneath roads .. 46
 2.2.2.2 *P. citricola* in undisturbed forest .. 47
 2.2.2.3 Baiting for presence of *P. citricola* ... 48
 2.2.3 Results .. 48
 2.2.3.1 Association of *P. citricola* with forest roads .. 48
 2.2.3.2 *P. citricola* in undisturbed forest .. 54
 2.2.3.3 Suitability of standard baiting technique for detection of *P. citricola* 54
 2.2.4 Discussion .. 55
Chapter 3. Differentiation of isolates of *P. citricola* into subgroups based on isozyme analysis, growth rates, morphological characters, and variability in aggressiveness 58

3.1 Introduction ... 58

3.2 Materials and methods ... 59

3.2.1 Isozyme analysis .. 59

3.2.1.1 Isolates studied and culture maintenance ... 59

3.2.1.2 Isozyme analysis and scoring.. 59

3.2.1.3 Data analysis ... 60

3.2.2 Variability in growth rates *in vitro* .. 60

3.2.2.1 Media .. 60

3.2.2.2 Incubation conditions ... 64

3.2.2.3 Experimental design and statistical analysis .. 65

3.2.3 Morphology of sporangia and oospores ... 65

3.2.3.1 Oospore dimensions ... 65

3.2.3.2 Sporangia dimensions ... 65

3.2.4 Variability in aggressiveness ... 65

3.2.4.1 Isolates ... 65

3.2.4.2 Host .. 65

3.3 Results ... 66

3.3.1 Isozyme analysis ... 67

3.3.2 Growth rate variability of isolates of electrophoretic types of *P. citricola* 70

3.3.3 Variability in sporangia and oospore dimensions between electrophoretic types of

P. citricola ... 72

3.3.4 Variability in aggressiveness between isolates of *P. citricola* on jarrah (*Eucalyptus

marginata*) clones ... 74

3.4 Discussion .. 76
Chapter 4. Seasonal effect of soil temperature and moisture on survival of different propagules of *P. citricola* at two field sites ... 79

4.1 Introduction ... 79
4.2 Materials and methods .. 80
 4.2.1 Experimental design and treatments .. 80
 4.2.2 Isolates .. 80
 4.2.3 Sites .. 80
 4.2.4 Propagule production and preparation ... 81
 4.2.5 Harvests and assessment of survival ... 84
 4.2.6 Soil temperature and moisture ... 86
 4.2.7 Statistical analysis ... 86
4.3 Results .. 87
 4.3.1 Soil properties ... 87
 4.3.2 Seasonal soil temperatures ... 88
 4.3.3 Zoospore cyst survival ... 89
 4.3.4 Oospore viability .. 92
 4.3.5 Colonised wood plugs ... 96
4.4 Discussion ... 98

Chapter 5. Oospore production by *P. citricola* in plant tissue and two field soils 105

5.1 Introduction ... 105
5.2 Materials and methods ... 105
 5.2.1 Oospore formation in plant tissue ... 105
 5.2.2 Oospore formation in soil .. 106
 5.2.2.1 Inoculum ... 106
 5.2.2.2 Sites .. 107
 5.2.2.3 Assessment and statistical analysis ... 107
5.3 Results .. 107
 5.3.1 Plant material .. 107
5.3.2 Soil ... 109
5.4 Discussion .. 112

Chapter 6. *In vitro* and *in vivo* effects of phosphonate on *P. citricola* isolates of SG 1 and
SG 2 .. 114

6.1 Introduction .. 114
6.2 Materials and methods ... 115
 6.2.1 *In vitro* chemosensitivity to phosphonate .. 115
 6.2.1.1 Extensive screening of isolates ... 115
 6.2.1.2 Intensive screening of isolates ... 115
 6.2.1.3 Oospore production ... 115
 6.2.1.4 Statistical analysis ... 116
 6.2.2 *In vivo* chemosensitivity to phosphonate .. 116
 6.2.2.1 Inoculum production .. 116
 6.2.2.2 Phosphonate application and measurement of concentration 116
 6.2.2.3 Inoculation and harvest ... 117
 6.2.2.4 Statistical analysis ... 117
6.3 Results .. 117
 6.3.1 Effect of phosphonate amendment of media on *in vitro* growth
 of *P. citricola* ... 117
 6.3.1.1 0 and 10 ppm phosphonate .. 117
 6.3.1.2 0, 15, 30 and 50 ppm phosphonate .. 119
 6.3.1.3 Oospore production ... 120
 6.3.1.4 *In vivo* assessment ... 122
6.4 Discussion .. 125

Chapter 7 General Discussion ... 128
LIST OF FIGURES

Fig. 1.1 Life cycle of Phytophthora citricola ... 18
Fig. 1.2 Flow diagram of thesis chapters ... 36
Fig. 2.1 Expression of disease caused by Phytophthora citricola on sandplains north of Perth 40
Fig. 2.2 Distribution of Phytophthora citricola in Southwestern Australia, in relation to rainfall... 41
Fig. 2.3 Taranna Road, Dwellingup. Soil sampled for the presence of Phytophthora citricola 50
Fig. 2.4 Taranna Road, Dwellingup. Soil sampled for the presence of Phytophthora citricola at 10-20 cm depth with the use of a soil corer ... 51
Fig. 2.5 Distribution of Phytophthora citricola along and up to 30 m into adjoining Eucalyptus marginata forest at Taranna Rd ... 52
Fig. 2.6 Distribution of Phytophthora citricola along and up to 10 m into adjoining Eucalyptus marginata forest at Lenna Rd ... 53
Fig. 3.1 Wagner phylogenetic tree ... 69
Fig. 3.2 Growth rates of electrophoretic types (ET) of Phytophthora citricola at various temperatures on CMA and Ribeiro’s medium ... 71
Fig. 3.3 Sporangia of subgroup 1 with elongated necks ... 73
Fig. 3.4 Sporangia of subgroup 1 with elongated necks ... 73
Fig. 4.1 Site of propagule survival trial at Eneabba, with kwongan heathland the dominant vegetation .. 83
Fig. 4.2 Water retention curves for Eneabba and Dwellingup soil ... 88
Fig. 4.3 LD90 of survival of zoospore cysts of six isolates of Phytophthora citricola at two field sites .. 90
Fig. 4.4 Soil matric potential (Ψm) at Dwellingup and Eneabba sites at time of harvest of Phytophthora citricola zoospore cysts ... 91
Fig. 4.5 Germinating oospore recovered from samples placed in field for six months 93
Fig. 4.6 Viable (pink), dead (black) and germinated (transparent) oospores recovered from soil ... 93
Fig. 4.7 Proportion of viable, dead, non-viable and dormant oospores of Phytophthora citricola .95
Fig. 5.1 Phytophthora citricola oospores in banksia tissue .. 108
Fig. 5.2 Phytophthora citricola oospores in banksia tissue .. 108
Fig. 5.3 Variability in size of Phytophthora citricola oospores produced in soil ..111

Fig. 6.1 Response of Phytophthora citricola isolates of subgroup 1 and subgroup 2 (SG1 and SG2) to amendment of medium with 10 ppm phosphonate ...118

Fig. 6.2 Inhibition of fifteen Phytophthora citricola from two isozyme subgroups (SG1 and SG2) by 15, 30 and 50 ppm phosphonate ...119

Fig. 6.3 Plants of Banksia prionotes used for determination of efficacy of phosphonate against Phytophthora citricola ..123

Fig. 6.4 Lesions in Banksia prionotes induced by inoculation with Phytophthora citricola123
LIST OF TABLES

Table 1.1 Host list for Phytophthora citricola ...7

Table 1.2. Soil matric requirements for sporangial formation of several different Phytophthora species ..20

Table 2.1. Native plants from which Phytophthora citricola has been isolated in southwest Australia ..43

Table 2.2. Total number of soil samples yielding Phytophthora citricola from road surface and up to 30 m into adjoining Eucalyptus marginata forest at Taranna Rd ..49

Table 2.3 Total number of soil samples yielding Phytophthora citricola from road surface and up to 10 m into adjoining Eucalyptus marginata forest at Leena Rd ..49

Table 2.4 Numbers of soil samples from Taranna and Leena Rds positive for presence of Phytophthora citricola after first and second baiting ..54

Table 3.1 Details of isolates of Phytophthora citricola used for isozyme analysis61

Table 3.2 Enzyme systems used for isozyme analysis of isolates of Phytophthora citricola64

Table 3.3 Geographical origin of isolates tested for variability in pathogenicity in jarrah clones66

Table 3.4 Allelic frequencies of eight enzyme systems for three subgroups (SG) of Phytophthora citricola ..67

Table 3.5 Unbiased genetic distance between subgroups of Phytophthora citricola68

Table 3.6 Oospore and oogonia diameters (µm) of isolates of three electrophoretic types of Phytophthora citricola ..72

Table 3.7 Means of oospore and oogonia diameters of three electrophoretic types of Phytophthora citricola ..74

Table 3.8 Sporangia dimensions (µm) of seven electrophoretic types of Phytophthora citricola ..74

Table 3.9 Lesion length of Phytophthora citricola and P. cinnamomi 11 days after inoculation of stems of three jarrah (Eucalyptus marginata) clones ..75

Table 4.1. Geographic origin, source of isolation and isozyme subgroup (SG) of isolates of Phytophthora citricola and P. cinnamomi used in propagule survival trial ..81

Table 4.2 Soil physical properties of Eneabba and Dwellingup soils ..89
Table 4.3 Significance of differences in zoospore cyst survival between six isolates of *Phytophthora citricola* placed in the field in autumn, winter, spring and summer, and recovered after 2, 7, 14 and 28 days ... 91

Table 4.4 ANOVA of survival of viable and germinated oospores of eight isolates of *Phytophthora citricola* in soil at Eneabba and Dwellinup ... 94

Table 4.5. Survival of isolates of *Phytophthora citricola* and *P. cinnamomi* in 10 wood plugs maintained in dry soil from Dwellinup and Eneabba sites in the laboratory after 18 months 97

Table 5.1 Soil moisture content (% oven-dried weight) at two field sites at time of inoculation and harvest .. 109

Table 5.2 Numbers of oospores produced in soil at Moore River and Dwellinup by four *Phytophthora citricola* isolates .. 110

Table 6.1 Proportion growth of unamended media of isolates of isozyme subgroups SG 1 and SG 2 in response to 15, 30 and 50 ppm phosphonate .. 120

Table 6.2 Percent inhibition of oospore production by *Phytophthora citricola* isolates of SG 1 and SG 2 in response to phosphonate *in vitro* .. 121

Table 6.3 ANOVA of inhibition of oospore production by two electrophoretic subgroups of *Phytophthora citricola* in response to amendment of Ribiero’s medium with phosphonate 121

Table 6.4 Mean percent inhibition of oospore production in response to phosphonate by isolates of isozyme subgroups SG 1 and SG 2 .. 122

Table 6.5 Stem lesion lengths in *Banksia prionotes* of phosphonate treated and untreated plants after 28 days ... 124

Table 6.6 *In vivo* phosphonate concentration ± standard error of treated *Banksia prionotes* plants, and percentage inhibition of lesions in treated plants and mycelial growth *in vitro* in response to phosphonate ... 124