Intensification of Single Stage Continuously Stirred Tank Anaerobic Digestion Process using Carriers

By
Herawati Budiastuti
Ir. (Diponegoro University)
MEngSc. (The University of Queensland)

A dissertation submitted for the degree of Doctor of Philosophy

School of Environmental Science
Murdoch University
Western Australia
March, 2004
I hereby declare that this thesis is my own account of my research and contains as its main content work which has not been previously submitted for a degree at any tertiary education institution. Any contribution made to the research by others is explicitly acknowledged in the thesis.

Herawati Budiastuti

The following paper has been published from this research:

Abstract

The Continuously fed Stirred Tank Reactor (CSTR) is a popular design for anaerobic treatment of wastewater. This reactor type is simple in design and operation, independent of biomass type and low in capital costs. The CSTR has, however, to be operated at long Hydraulic Retention Times (HRT) of the order of 16 to 30 days since biomass is continuously lost with the effluent. Various alternate concepts of reactor design have, therefore, been developed to allow more rapid treatment. Treatment can be enhanced by retaining biomass within the digester so that the HRT is decoupled from solid biomass retention time (SRT). Unlike in continuous stirred tank digesters where the SRT is equal to HRT, the SRT in other designs are much greater than the HRT. This allows the wastewater to be treated at high throughputs while retaining the biocatalyst (or biomass) mediating the treatment within the digester.

In this study the operation of a CSTR was intensified by separating SRT from HRT while taking into account the economical aspects. The intensification of operation is defined as increasing wastewater throughput or organic loading rate while at the same time maintaining efficiency of treatment and robustness to reject disturbances (changes in wastewater concentration and flow rate). The operation of existing CSTR was intensified by addition of carriers. It is hypothesized that by providing surfaces (or carriers) for bacterial attachment within the continuous stirred tank digester, biomass will be better retained and the wastewater throughput can be increased. The carriers or surfaces employed in this study were light carrier elements (shredded granular rubber tire having a density of 0.96 g/cm³) that move gently with the water in the reactor. This carrier material is much cheaper compared with other commercial
carrier materials. This reactor type, called an Anaerobic Moving Bed Reactor (AMBR), was applied in this study to treat high strength synthetic wastewater, containing molasses as the main substrate.

The improvement of reactor performance was clearly shown by the capability of the system to be operated without any difficulties at HRT of 6 days at an OLR of 5.8 g COD/l/d or at HRT of 1 day at an OLR of 4 g COD/l/d. The carriers were shown to be effective in retaining biomass aggregates.

The AMBR was further intensified by changing the feeding strategy. It was shown that in stirred tank digester without carriers an intermittent feeding strategy resulted in better microbial capacity to degrade higher chain volatile fatty acids like propionic and butyric acids than the continuous feeding mode. An increase in degrading capacity of the intermittently fed digester was shown via degradation rates of pulse additions of propionic and butyric acids and by its capability of handling all changes in loading rates imposed. The continuously fed digester, receiving constant feed, on the other hand, suffered more when loading rates were changed, and the degradation rates of propionic and butyric acids were slower.

The intermittent feeding mode was then implemented on the AMBR, and it was operated as a sequencing batch reactor with a fill, react, settle and decant period in each cycle. The sequencing batch mode when applied to the AMBR (now called an Anaerobic Moving Bed Sequencing Batch Reactor or AMBSBR) could increase capability of the digester to handle higher shock loads. At 3.8 d HRT the AMBSBR could handle an OLR of 10.8 g COD/l/d as opposed to 7.4 g COD/l/d by the AMBR. At 2.5 d HRT the AMBSBR could handle an OLR of 6.4 g COD/l/d while the AMBR
could only be loaded at an OLR of 4.2 g COD/l/d. The ratio of SRT to HRT was at least 15 for this reactor. The reactor was able to handle concentrated feed flow rates at longer cycles or more dilute feed flow rates at frequent shorter cycles.

The proposed operational strategies were verified by using a structured mathematical model which was developed based on the IWA ADM1 model. Several modifications were implemented to the model to obtain better predictions. The modified model was capable in predicting all the trends of the operating variables from both continuously and intermittently fed reactors. None of the two model versions (ADM1 and modified models) was, however, able to predict the increased propionate degradation capacity in intermittently fed digesters. The reason for this was the assumption of fixed stoichiometry of fermentative reactions for glucose mineralisation. By modifying the fractions of glucose mineralisation a better fit between experimental results and the model could be obtained.
Acknowledgment

I would like to express my sincere gratitude to Dr Pratap Pullammanappalil as my principal supervisor. His supervision, expert guidance and valuable comments throughout the course of this work have made significant contributions in making this thesis available.

Likewise, I would like to express my sincere gratitude to my associate supervisor, Dr Ralf Cord-Ruwisch, who has given direction in my research and critical but positive comments, and his patience and support during this study.

My special thanks also go to the staff of Workshop, Kleber Claux, Fritz Wagner, Ernest Etherington and John Snowball. Kleber and Ernie fabricated the Anaerobic Moving Bed Reactor (AMBR) and modified Schott bottles to become stirred tank reactors. Fritz and John made up the water seal and U-tube gas displacement systems. I also appreciate their immediate help whenever needed.

The financial aid of the Australian Agency for International Development (AusAID) is gratefully acknowledged.

I thank the Polytechnic of ITB, which is now called the National Polytechnic of Bandung, Indonesia for the opportunity to come to Australia for further studies.
I also thank

- Dr Abdul Haris from Queensland University who helped with initial set up of the AMBR during his 3 month visit to Murdoch University.

- Gaurav Chada from Indian Institute of Technology, Mumbai, India who helped starting the modelling work during his 4 month stay in Murdoch University.

- Rick Hughes from CSIRO who analysed the surface area of granular rubber tire carriers.

- Peter Fallon in the Centre for Microscopy and Microanalysis for his help in examining the attached bacteria under Scanning Electron Microscope.

- Victoria Whiffin and Katty Third for their help and discussion during GC analysis, and together with Brenton, Lachlan and Stephanie for their critical discussion and friendship.

- Dr Suresh Nair for his valuable support and being a good and kind office-mate for the last 2 years as well as his help in editing this thesis.

- Roselina Stone, Carol Dowse, John McGowan, Prof Arthur Mc Comb, Dr Muriel Thomson and Dr Yunhua Kuang in the Centre for Organic Waste Management (COWM) for their friendship, making the stay enjoyable and their support to complete this journey.

- My Indonesian fellows, especially the ones in Westminster Presbyterian Church, Bull Creek for their friendship and who were there to listen my complaints during a bad mood.

- My husband Thomas Tentu Bukit, my son Ido Salomo Bukit, and my daughter Laura Ofelia Astuti Bukit for their unfailing love, support and patience.

- Last but not least, my mother, Tasmiyati Soeyono for her continuous prayer, blessing and moral support during the past 4 years.
Most of all, glory and honour be to God who was and is at all light and difficult times my source of wisdom, strength and inspiration.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>vi</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>ix</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xvi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xxii</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xxvi</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction

1.1 General Introduction | 1 |
1.2 Objective of the Study | 6 |
1.3 Organization of the Thesis | 7 |

Chapter 2 Literature Review

2.1 Introduction | 9 |
2.2 Anaerobic Digestion | 10 |
2.2.1. Hydrolysis and Fermentation | 11 |
2.2.2. Acetogenesis and Homoacetogenesis | 15 |
2.2.3. Methanogenesis | 17 |
2.3 Anaerobic Reactor Configurations for Enhanced Biomass Retention | 20 |
2.3.1. Non-Attached Biomass Digesters | 23 |
2.3.2. Attached Biomass Digesters | 25 |
2.4 Assessment for Reactor Performance | 37 |
Chapter 5 Performance of Anaerobic Moving Bed Reactor (AMBR) under Disturbances

5.1 Introduction .. 95
5.2 Experimental Methods .. 96
5.2.1 Reactor Performance during Normal Loads, when Organic Loading and Hydraulic Loading were altered and during Combination of Organic and Hydraulic Shock Loads 96
5.2.2 Sampling and Analysis ... 97
Chapter 5

5.3 Results ………………………………………………………….. 98
5.3.1 Reactor Performance during Normal Loads ………………… 98
5.3.2 Reactor Performance when Organic Loading was Increased … 99
5.3.3 Reactor Performance when Hydraulic Loading was Altered … 105
5.3.4 Reactor Performance under Combination of Organic and Hydraulic Over Loads …………………... 110
5.4. Discussion ……………………………………………………… 112
5.4.1 Reactor Performance during Normal Loads …………………. 112
5.4.2 Reactor Performance when Organic Loading was Increased ……………………………………………………… 113
5.4.3 Reactor Performance when Hydraulic Loading was Altered….……………………………………..………. 119
5.4.4 Reactor Performance under Combination of Organic and Hydraulic Over Loads ……………………………………… 122
5.5 Conclusions …………………………………………………….. 123

Chapter 6

6.1. Introduction …………………………………….…………... 125
6.2. Experimental Methods ………………………………..……….. 126
6.2.1. Reactor Start-up and Operation ………………………….. 126
6.2.2. Propionic Acid, Glycerol and Butyric Acid Pulse ……….. 127
6.2.3. Ability of Biomass to Handle Shock Loads ……………… 127
6.2.4. Revival of Activity after Shutdown …………………… 128
6.2.5. Sampling and Analysis …………………………………… 128
6.3. Results ……………………………………………………… 130
6.3.1. Reactor Performance during Normal Loads and Increases in Loading Rates .. 130
6.3.2. Effect of Propionic Acid Pulses .. 137
6.3.3. Effect of Glycerol Pulse .. 139
6.3.4. Effect of Butyric Acid Pulses .. 140
6.3.5. Ability of Biomass to Handle Shock Loads 141
6.3.6. Revival of Activity after Shutdown 145
6.4. Discussion .. 146
 6.4.1. Reactor Performance during Normal Loads and Increases in Loading Rates 146
 6.4.2. Reactor Performance after Propionic Acid, Glycerol and Butyric Acid Pulses 148
 6.4.3. Reactor Performance during Shock Loads 150
 6.4.4. Revival of Activity after Shutdown 152
6.5. Conclusions ... 153

Chapter 7 Operation of Anaerobic Moving Bed Sequencing Batch

 Reactor (AMBSBR) .. 154
 7.1. Introduction ... 154
 7.2 Experimental Methods ... 156
 7.2.1 Switch from AMBR to AMBSBR 156
 7.2.2 Effect of Settle Phase Duration on Quality of Decanted Liquid .. 157
 7.2.3 Settling Characteristics of Biomass 158
 7.2.4 Effect of Increased Organic Loads, Shorter HRTs, and Shorter Cycles .. 158
7.3 Results ... 160

7.3.1 Switch from AMBR to AMBSBR 160

7.3.2 Effect of Settle Phase Duration on Quality
of Decanted Liquid .. 163

7.3.3 Settling Characteristics of Biomass 164

7.3.4 Performance of AMBSBR at Increased Organic Loads ... 165

7.3.5 Performance of AMBSBR at Shorter HRTs 169

7.3.6. Performance of AMBSBR at Shorter Cycles 170

7.4. Discussion ... 172

7.4.1. Performance of AMBSBR 172

7.4.2. Performance of AMBSBR at Increased Organic Loads ... 174

7.4.3. Performance of AMBSBR at Shorter HRTs
and Shorter Cycles .. 177

7.4.4. SRT in the AMBSBR ... 180

7.5. Conclusions .. 181

Chapter 8 Modelling Anaerobic Degradation of Carbohydrates
under Different Feeding Strategies 183

8.1. Introduction .. 183

8.2. Model Description .. 184

8.2.1. Description of Original Kinetic Model 184

8.2.2. Assumptions used in the Model 185

8.3. Model Development .. 188

8.3.1. Constitutive Relations 188

8.3.2. Conservation Balances 195

8.4. Model Implementation ... 197
List of Figures

Fig. 2.1 Steps in anaerobic digestion involving four groups of bacterial activities ... 10

Fig. 2.2 Rain barrel model of carbon and electron flow in methanogenic degradation Schink (1988) 41

Fig. 3.1 Schematic of the anaerobic moving bed reactor (AMBR) 51

Fig. 3.2 Experimental set up of the anaerobic moving bed reactor (AMBR) 51

Fig. 3.3 Granular rubber tire carriers .. 52

Fig. 3.4 Schematic diagram of the stirred tank reactors (STR) 53

Fig. 3.5 Experimental set up of STRs .. 54

Fig. 3.6 Plastic U-tube displacement biogas measurement system 56

Fig. 3.7 Plexiglass U-tube displacement biogas measurement system 57

Fig. 3.8 Acetic acid standard curve ... 62

Fig. 3.9 Propionic acid standard curve .. 63

Fig 3.10 Butyric acid standard curve ... 63

Fig 4.1 Accumulation of methane in the presence and absence of carriers 73

Fig. 4.2 Effect of OLR on biogas production rate, carbon removal efficiency and pH during start-up period 74
Fig. 4.3 Effect of OLR (or HRT) on biogas production rate, COD removal efficiency and pH .. 75

Fig. 4.4 Performance of AMBR at lower HRTs 77

Fig. 4.5 Change in effluent VS concentrations and corresponding OLR and HRT ... 78

Fig. 4.6 Solid concentration distribution along the reactor height 79

Fig. 4.7 Performance of digester after removal of carriers at 3.8d HRT and 4.2 g COD/l/d ... 80

Fig. 4.8 Scanning Electron Micrographs of the plain carriers (0 day) 82

Fig. 4.9 The Scanning Electron Micrograph of the carriers at 90 days operation period ... 83

Fig. 4.10 The Scanning Electron Micrograph of the carriers at 180 days operation period ... 83

Fig. 5.1 Response of the digester at an OLR of 4.2 g COD/l/d and 3.8d HRT ... 98

Fig. 5.2 Response of the system to a step change in organic load from 4.2 to 5.1 g COD/l/d at the same HRT of 3.8d 100

Fig. 5.3 Response of the system to organic shock load of 6.4 g COD/l/d 101

Fig. 5.4 Response of the system to an organic shock load of 7.4 g COD/l/d 103

Fig. 5.5 Response of the system to an organic shock load of 10.8 g COD/l/d .. 104
Fig. 5.6 Accumulation of glucose or other intermediate metabolites during organic shock load of 10.8 g COD/l/d 105

Fig. 5.7 Response of the digester to a decrease in HRT from 3.8 to 2.5d for 8 hours ... 106

Fig. 5.8 Response of the digester to a decrease in HRT from 2.5 to 1.5d 107

Fig. 5.9 Response of the digester to a decrease in HRT from 1 to 0.75d 109

Fig. 5.10 Response of the digester to a decrease HRT from 1 to 0.5d 110

Fig. 5.11 Response of the digester to both organic (from 4.2 to 6.4 g COD/l/d) and hydraulic shock (3.8 to 2.5 d) loads 112

Fig. 6.1 VFA profiles and methane accumulation in the intermittently fed digester at an OLR of 1.3 g COD/l/d (a), 1.9 g COD/l/d (b), and 3.8 g COD/l/d (c) ... 132

Fig. 6.2 VFA profiles and methane accumulation in the continuously fed digester at an OLR of 1.3 g COD/l/d (a), 1.9 g COD/l/d (b), and 3.8 g COD/l/d (c) ... 133

Fig. 6.3 Profiles of VFA in the effluent and methane gas production during continuous operation in the intermittently fed reactor at an increase of OLR from 1 to 1.3 (a), from 1.3 to 1.9 (b) and from 1.9 to 3.8 g COD/l/d (c) .. 135

Fig. 6.4 Profiles of VFA in the effluent and methane gas production during continuous operation in the continuously fed reactor at an increase of OLR from 1 to 1.3 (a), from 1.3 to 1.9 (b) and from 1.9 to 3.8 g COD/l/d (c) .. 136
Fig. 6.5 VFA profiles and methane accumulation in the intermittently fed digester after 5.5 mM propionic acid pulse …………………………… 138

Fig. 6.6 VFA profiles and methane accumulation in the continuously fed digester after 5.5 mM propionic acid pulse …………………………… 138

Fig. 6.7 VFA profiles and methane accumulation after 20 mM glycerol pulse in the intermittently fed reactor ……………………………… 139

Fig. 6.8 VFA profiles and methane accumulation after 20 mM glycerol pulse in the continuously fed reactor ……………………………… 140

Fig. 6.9 VFA profiles and total gas accumulation after 6.5 mM butyric acid addition in the intermittently fed reactor ……………………………… 141

Fig. 6.10 VFA profiles total and gas accumulation after 6.5 mM butyric acid addition in the continuously fed reactor ……………………………… 141

Fig. 6.11 Profiles of VFA and methane accumulation during batch tests in serum bottles containing sludge from intermittently fed digester at 2 times (a), 3 times (b) and 4 times (c) normal load of 3.8 g COD/l/d ……………………………… 143

Fig. 6.12 Profiles of VFA and methane accumulation during batch tests in serum bottles containing sludge from continuously fed digester at 2 times (a), 3 times (b) and 4 times (c) normal load of 3.8 g COD/l/d ……………………………… 144
Fig. 7.1 VFA profiles and accumulation methane on the first day
after the switch from AMBR. OLR: 4.2 g COD/l/d, HRT: 3.8 d … 160

Fig. 7.2 VFA profiles and accumulation methane on the second day
after the switch from AMBR. OLR: 4.2 g COD/l/d, HRT: 3.8 d 161

Fig. 7.3 VFA profiles and accumulation methane after 1 month
of AMBSBR operation. OLR: 4.2 g COD/l/d, HRT: 3.8 d 162

Fig. 7.4 VFA profiles and accumulation methane at an OLR of 6.4 g COD/l/d
and HRT of 3.8d ... 166

Fig. 7.5 VFA profiles and accumulation methane at OLR of 7.4 g COD/l/d
and HRT of 3.8d ... 167

Fig. 7.6 VFA profiles and accumulation methane at OLR of 10.8 g COD/l/d
and HRT of 3.8d ... 168

Fig. 7.7 VFA profiles and methane accumulation over two cycles, the first one
at an OLR of 10.8 g COD/l/d
and the second cycle at 4.2 g COD/l/d 168

Fig. 7.8 VFA profiles and methane accumulation at OLR of 6.4 g COD/l/d
and HRT of 2.5d ... 169

Fig. 7.9 VFA profiles and methane accumulation at 16h cycle 171

Fig. 7.10 VFA profiles and methane accumulation at 8h cycle 172

Fig. 8.1. A schematic of the relationships between each group of bacteria
in the anaerobic ecosystem model 187

Fig. 8.2. Comparison between model predictions and experimental data
under intermittent feeding at an OLR of 1.25 g COD/l/d. 205
Fig. 8.3. Comparison between model predictions and experimental data during propionic acid addition under continuous feeding 206

Fig. 8.4. Comparison between model predictions and experimental data during propionic acid addition under intermittent feeding 207

Fig. 8.5 Comparison between model predictions (with modification of fractions of glucose fermentation reactions) and experimental data during propionic acid addition under intermittent feeding. 208

Fig. 8.6 Comparison between model predictions (with modification of fractions of glucose fermentation reactions) and experimental data during propionic acid addition under intermittent feeding.... 209

Fig. 8.7 Comparison between model simulations of intermediate degradation occurred in continuously feeding reactor and in intermittently feeding reactors ... 210

Fig. 8.8 Comparison between model simulations of propionic acid degradation occurred in continuously feeding reactor and in intermittently feeding reactors 211
List of Tables

Table 2.1 Equations and standard Gibbs free energy changes
during acetogenesis (Thiele and Zeikus, 1988) 16

Table 2.2 Equations and standard Gibbs free energy changes
during methanogenesis (Thiele and Zeikus, 1988) 19

Table 2.3 Definitions of common terms used in this thesis 35

Table 3.1 Chemical composition of the feed (16 g COD/l) 59

Table 3.2 Chemical composition of trace metal solution (TMS) 59

Table 3.3 Parameters determined using standard methods (APHA, 1995) 60

Table 3.4 Analysis conditions for VFAs 62

Table 4.1 Aggregates in digester and solids in effluent 77

Table 4.2 Development of bacterial attachment on carriers 81

Table 4.3 Activity differences due to the addition of the carriers
after 200, 290 and 380 days of operational periods 82
Table 4.4 Carrier characteristics ... 84

Table 4.5 Comparison of the performance of AMBR
with that of other reactor designs .. 90

Table 5.1 Total VFA concentrations after step loading 99

Table 5.2 Net accumulation and disappearance of VFAs during shock loads 115

Table 5.3 Effect of decreasing HRT to VS concentrations in the effluent 121

Table 6.1 Experiments performed during intermittently
and continuously feeding modes .. 129

Table 6.2 Total VFA, efficiency methane gas production and solid contents
in the intermittently (R1) and continuously fed digesters (R2) 131

Table 6.3 Initial propionic acid degradation rates (r_{PA}) and total VFA
in the intermittently and continuously fed digesters 137

Table 6.4 Total VFAs and methane production resulting after shock loading
2, 3 and 4 times the normal load of 3.8 g COD/l/d sludge
from intermittently and continuously fed digesters 142
Table 6.5 Propionic acid degradation rates (r_{PA}) and total VFA in the intermittently and continuously fed digesters during restart-up period

Table 7.1 Effect of settle phase duration on quality of decanted liquid

Table 7.2 Decrease of SS in the decanted liquid

Table 7.3 Increase of settling time of biomass aggregates due to sequencing batch of operation

Table 7.4 Comparison of the performance of AMBSBR and AMBR at the same HRT of 3.8d

Table 7.5 Performance of AMBSBR and AMBR at the same OLR of 6.4 g COD/l/d and 2.5 d HRT

Table 7.6 Performance of AMBSBR at the same OLR of 6.4 g COD/l/d and 2.5d HRT at different cycle periods

Table 7.7 Profiles of VFA concentrations at 16h and 24h cycles at the same feed concentration of 16 g COD/l

Table 7.8 Comparison between SRT and HRT ratio of CSTR and high-rate anaerobic reactors
Table 8.1 Glucose utilization stoichiometry used in the model 185

Table 8.2 List of Constitutive Variables used in the Model 191

Table 8.3 List of state variables used in the model 192

Table 8.4 List of product and biomass yield coefficients used in the model .. 193

Table 8.5 List of Constants used in the model 194

Table 8.6 List of Fitting Parameters used in the model 195

Table 8.7 Stoichiometry of catabolic and anabolic reactions used in the model .. 200

Table 8.8 Combining catabolic and anabolic reactions for aceticlastic methanogenesis .. 201

Table 8.9 Comparison between predicted and observed intermediate, methane production rate, bacterial concentrations and gas composition .. 203

Table 8.10 Comparison between predicted bacterial concentrations in the continuously and intermittently fed reactors 212
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMBR:</td>
<td>Anaerobic Moving Bed Reactor</td>
</tr>
<tr>
<td>AMBSBR:</td>
<td>Anaerobic Moving Bed Sequencing Batch Reactor</td>
</tr>
<tr>
<td>ADM1:</td>
<td>Anaerobic Digestion Model No. 1</td>
</tr>
<tr>
<td>COD:</td>
<td>Chemical Oxygen Demand</td>
</tr>
<tr>
<td>CSTR:</td>
<td>Continuously fed Stirred Tank Reactor</td>
</tr>
<tr>
<td>HRT:</td>
<td>Hydraulic Retention Time</td>
</tr>
<tr>
<td>L/D:</td>
<td>Length to diameter ratio</td>
</tr>
<tr>
<td>MPR:</td>
<td>Methane Production Rate</td>
</tr>
<tr>
<td>STR:</td>
<td>Stirred Tank Reactor</td>
</tr>
<tr>
<td>OLR:</td>
<td>Organic Loading Rate</td>
</tr>
<tr>
<td>SRT:</td>
<td>Solid Retention Time</td>
</tr>
<tr>
<td>SS:</td>
<td>Suspended Solids</td>
</tr>
<tr>
<td>VSS:</td>
<td>Volatile Suspended Solids</td>
</tr>
<tr>
<td>VFAs:</td>
<td>Volatile Fatty Acids</td>
</tr>
<tr>
<td>ΔGo°:</td>
<td>The standard Gibbs free energy</td>
</tr>
<tr>
<td>h:</td>
<td>hours</td>
</tr>
<tr>
<td>d:</td>
<td>days</td>
</tr>
<tr>
<td>l:</td>
<td>litres</td>
</tr>
<tr>
<td>M:</td>
<td>molar (or mole/l)</td>
</tr>
<tr>
<td>mM:</td>
<td>millimolar</td>
</tr>
<tr>
<td>Pa:</td>
<td>Pascal</td>
</tr>
</tbody>
</table>