Regulation of surfactant production by fetal type II pneumocytes and the characterization of fibroblast-pneumocyte factor.

by

Garth Lucas Maker

This thesis is presented for the degree of Doctor of Philosophy at Murdoch University.

School of Biological Sciences and Biotechnology
Murdoch University
Western Australia
2007
A straight line may be the shortest distance between two points,
but it is by no means the most interesting.

The Doctor, ‘Doctor Who’

No. Try not. Do or do not. There is no try.

Yoda, ‘The Empire Strikes Back’

Yes, and this is mine. My magnificent octopus.

Baldrick, ‘Blackadder the Third’
I declare that this thesis is my own account of my research and contains as its main content work that has not previously been submitted for a degree at any tertiary education institution.

Garth Maker
Abstract

The fetal lung undergoes extensive physiological and biochemical maturation prior to birth in preparation for its postnatal function as an organ for gas exchange. Pulmonary surfactant, a substance that reduces surface tension and prevents alveolar collapse, is produced by type II pneumocytes within the lung. Reduced ability to produce surfactant leads to neonatal respiratory distress syndrome. Synthesis of the phospholipid component of surfactant, phosphatidylcholine (PC), is stimulated by fibroblast-pneumocyte factor (FPF), a protein expressed by fibroblast cells within the fetal lung. Although its function is well known, the identity of this important protein has remained a mystery. Recent research has suggested that FPF may be neuregulin-1, a growth factor found in many tissues during development.

Enhanced synthesis of PC (and therefore detection of FPF) is measured using a tissue culture-based method. Primary cultures of lung fibroblasts and type II pneumocytes are prepared, and fibroblast-conditioned medium (FCM) is exposed to the type II cells. Resultant PC synthesis is measured using radioisotope-labeled PC-precursor and a chloroform-based lipid extraction method. Initial results using this method were very inconsistent, so a study was undertaken to determine which parts of the method could be contributing to this inconsistency. Cell density of type II cultures (measured in \(\mu g \) DNA.plate\(^{-1} \)) was shown to have a significant effect on results. Treatment of fibroblasts with 100 nM dexamethasone and exposure of type II cultures to the resultant FCM caused a mean 9.17% increase in PC synthesis, but when only type II cultures with a cell density below 25 \(\mu g \) DNA.plate\(^{-1} \) were analyzed, this value increased to 17.56%. Type II cultures with cell density above this threshold value showed a mean increase in synthesis of only 3.39%. The consistent application of
[³H]-choline chloride also had a significant effect on results. Experiments utilizing phorbol 12-myristate 13-acetate to stimulate fibroblasts were very inconsistent. The mean activity of the initial [³H]-choline chloride solution prepared for these experiments was found to be 2.04 μCi.mL⁻¹, compared to a mean of 4.79 μCi.mL⁻¹ for all other experiments. Observations from this section of the study led to considerable revision of the method used to measure PC synthesis.

Generation of FPF by fetal lung fibroblasts is stimulated by a number of compounds, and several were investigated in order to determine the best way to produce FPF for further analysis. One of these compounds was neuromedin C, which had been shown to cause a significant increase in surfactant secretion. Exposure of fibroblasts to 1 nM neuromedin C led to a mean 3.23% decrease in surfactant synthesis, but this was not significantly different from control. The lack of effect is most likely due to insufficient specific receptors that bind neuromedin C being present.

Quadrupolar ion trap mass spectrometry (MS) was used to analyze FCM and determine if neuregulin-1 (NRG1) could be FPF. A mass spectrum was obtained for recombinant NRG1, with predominant ions of 1068, 1142 and 1246 m/z. All three of these ions were also detected in both control and dexamethasone-treated FCM. Partial fragmentation of 1068 m/z of NRG1 was achieved using MS², and generated a base peak of 1047 m/z. This fragmentation was also observed in 1068 m/z from FCM. LC/MS was utilized to quantify NRG1 in FCM, using a standard curve generated using recombinant NRG1. Control FCM had a NRG1 concentration of 19.85 μg.mL⁻¹, while the concentration in dexamethasone-treated FCM was 41.59 μg.mL⁻¹. FCM which had given no positive response to dexamethasone when tested using the indirect cultured cell system had a control NRG1 concentration of 20.85 μg.mL⁻¹, and a dexamethasone-
treated concentration of 22.84 µg.mL⁻¹. These values were not significantly different from the control value for FCM in those fibroblast cultures that had generated a positive response to dexamethasone. Results of this section of the study have provided strong evidence that NRG1 is a major component of FPF, and a review of the NRG1 signaling pathway further supports this conclusion.

Insulin-like growth factors (IGFs) are functionally related to neuregulins and are known to be important in fetal development. The effect of IGF-II on synthesis of surfactant PC and its subsequent secretion from type II pneumocytes was studied. In terms of PC synthesis, IGF-II was tested at concentrations of 0.4, 0.6 and 0.8 µM. The mean increase in synthesis was found to be 6.00, 6.15 and 6.91%, respectively. These values were not significantly different from control values. Secretion of PC was tested over the concentration range of 0.1 to 1.6 µM, with no significant effect observed. Possible inhibition by IGF-II was also studied, using the known stimulants of secretion, neuromedin C and isoproterenol. No significant effect on the enhanced level of secretion was observed when IGF-II was added with either secretagogue. Lack of an appropriate receptor and/or the possibility that cultured cells may not exactly mimic the situation in vivo are probably the reasons IGF-II has no effect on either synthesis or secretion.
Acknowledgements

First and foremost, I must thank my supervisor, Associate Professor Max Cake, whose unwavering support and enthusiasm for this project have been inspirational. Whenever I was stuck, or had run out of ideas, he always had a new approach or an alternative to get things rolling again. In spite of his hectic schedule, he always made time for a discussion of my work, and I consider myself fortunate to have worked with him. I must also thank his two administrative assistants, Ann Butcher and Maria Waters, who always managed to squeeze me in for a meeting, often at very short notice.

Words cannot adequately express my gratitude to Associate Professor Rob Trengove, whose expertise in separation science enabled this project to achieve its goals. Furthermore, without his timely and generous offer of part-time employment this work would never have been completed, and I thank him for that. I look forward to continuing our collaboration in the years to come. Thanks also go to Dr. Brendan Graham, the Yoda of chromatography; Dr. Peter Solomon for his frank and useful advice on thesis writing; and Dr. Jon Hall for input on both mass spectrometry and the art of writing.

To my many collaborators, I thank you all. To Jolanta, Karen, Edd, Shane and SuQin from Level 1 who shared the monotony of Monday mornings; and to Melvin, Jeremy, Angela and Tony from Separation Science: after all this, we can fix any problem that the capillary LC could possibly have!

Special thanks are reserved for my friend and colleague, Jeremy Shaw. The benefit of having a like-minded friend in the next lab cannot be underestimated, and our
many discussions helped shape this work into what it is today. From a personal perspective, knowing that there was a sympathetic ear next door on whom I could call for support saved my sanity on many occasions. After nearly a decade working together, I sincerely hope we can continue to collaborate in future. Thanks also to Nicole Shaw, and our good friends James and Renee Hockridge, who have provided support and advice throughout this project.

To my family, Len, Di and Yvette, I thank you for your support and understanding throughout this project. I could not have done it without you. To Dave, I say ‘grrrr’. Finally to Vicky, my loving partner, sorry it took so long! Thank you for your never-ending support, good humour and love. Without you, I can honestly say that I would never have even come close to reaching this point. Your endless enthusiasm was a true inspiration, and I am sure you do not realize just how much you helped me.

Now that it is done, I look forward to living some kind of normal life together!

Financial support for this project was provided by the Commonwealth Government, through an Australian Postgraduate Award, and Murdoch University, through a Centres of Research Excellence scholarship. This support is gratefully acknowledged.

Recommended soundtrack for reading this thesis: ‘Between the Lines’ by Mike Stern, ‘The Central Park Concert’ by Dave Matthews Band and ‘Live Art’ by Bèla Fleck and the Flecktones.
Table of contents

Index to figures... xii
Index to plates and tables ... xiv
Abbreviations .. xvi
Units xvii

Chapter 1. General introduction ... 1
 1.1 History of the surfactant system .. 3
 1.2 Lung cell types .. 4
 1.2.1 Tissue culture ... 5
 1.3 The pulmonary surfactant system .. 6
 1.3.1 Composition of surfactant... 6
 1.3.2 Biophysical function of surfactant .. 9
 1.4 Synthesis of surfactant ... 10
 1.4.1 Site and timing of synthesis ... 10
 1.4.2 Synthesis of phospholipids ... 12
 1.4.2.1 Production of phosphatidylcholine... 12
 1.4.2.2 Regulation of PC synthesis .. 13
 1.4.3 Inhibition of the surfactant system .. 14
 1.5 Fibroblast-pneumocyte factor .. 16
 1.5.1 Characteristics of fibroblast-pneumocyte factor .. 16
 1.5.2 Induction of FPF ... 17
 1.5.3 Action of FPF ... 19
 1.5.4 Inhibition of FPF .. 20
 1.6 Secretion of surfactant ... 22
 1.6.1 Factors affecting secretion of surfactant .. 23
 1.7 Clearance and recycling of surfactant .. 27
 1.8 Respiratory Distress Syndrome .. 28
 1.8.1 Biochemistry of NRDS ... 29
 1.9 Proposed study .. 30

Chapter 2. Materials and methods ... 32
 2.1 Animals... 32
 2.2 Preparation of materials for cell culture ... 32
 2.2.1 Materials .. 32
2.2.2 Charcoal treatment of newborn calf serum .. 33
2.2.3 Preparation of rat immunoglobulin G .. 33
2.2.4 Preparation of balanced salts solution .. 34
2.2.5 Preparation of culture media ... 34
2.3 Isolation of fibroblasts and type II pneumocytes .. 34
2.4 Conditions of cell culture .. 36
2.5 Preparation of fibroblast-conditioned medium ... 39
2.6 Initial synthesis experimental method ... 39
2.7 Early synthesis results ... 43
 2.7.1 Dexamethasone .. 43
 2.7.2 PMA .. 45
2.8 Final synthesis experimental method ... 47
2.9 Results from modified method .. 50
 2.9.1 Dexamethasone .. 50
2.10 Experimental reliability ... 52
 2.10.1 Type II pneumocyte cell density ... 53
 2.10.2 Fibroblast plate DNA concentration .. 57
 2.10.3 Percentage recovery using $[^{14}\text{C}]-\text{DPPC}$.. 58
 2.10.4 Initial $[^{3}\text{H}]-\text{choline chloride}$ concentration .. 59
 2.10.5 Plate $[^{3}\text{H}]-\text{choline chloride}$ concentration .. 62
 2.10.6 $[^{3}\text{H}]$ Ratio .. 63
2.11 Discussion ... 64
Chapter 3. Identification of the fibroblast-pneumocyte factor 68
 3.1 Introduction ... 68
 3.1.1 Glucocorticoid response elements ... 68
 3.1.2 The smoking gun .. 69
 3.1.3 Neuregulins ... 70
 3.1.3.1 Functions of neuregulin-1 .. 70
 3.1.3.2 Structure of neuregulin-1 .. 71
 3.1.3.3 Neuregulin receptors .. 72
 3.1.3.4 ErbB2/ErbB3 heterodimers .. 74
 3.1.3.5 Role of neuregulin in lung development .. 76
 3.1.4 HPLC and LC/MS .. 77
 3.1.4.1 High-performance liquid chromatography .. 77
 3.1.4.2 Mass spectrometry .. 79
Index to figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Micrograph of alveolar space with a magnified diagram of the air-liquid interface illustrating the surfactant system.</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Radioactivity of $[^3]$H-choline chloride in MEM$^+$ solution at different times of incubation in a 37°C shaking water bath.</td>
<td>61</td>
</tr>
<tr>
<td>3.1</td>
<td>The proposed mechanism of ErbB2/ErbB3 heterodimer formation</td>
<td>75</td>
</tr>
<tr>
<td>3.2</td>
<td>Schematic of an electrospray ion source.</td>
<td>80</td>
</tr>
<tr>
<td>3.3</td>
<td>Schematic indicating the general structure of a quadrupole ion trap mass spectrometer.</td>
<td>81</td>
</tr>
<tr>
<td>3.4</td>
<td>Schematic cross-section through an ion trap.</td>
<td>82</td>
</tr>
<tr>
<td>3.5</td>
<td>Chromatogram of fibroblast-conditioned medium obtained using HPLC.</td>
<td>85</td>
</tr>
<tr>
<td>3.6</td>
<td>Mass spectrum for neuregulin-1β (10 ng.mL$^{-1}$).</td>
<td>89</td>
</tr>
<tr>
<td>3.7</td>
<td>Mass spectrum for collision-induced dissociation of the 1068 m/z ion of neuregulin-1β.</td>
<td>90</td>
</tr>
<tr>
<td>3.8</td>
<td>Mass spectrum for fibroblast-conditioned medium from control cultures.</td>
<td>92</td>
</tr>
<tr>
<td>3.9</td>
<td>Mass spectrum for fibroblast-conditioned medium from dexamethasone-treated cultures.</td>
<td>93</td>
</tr>
<tr>
<td>3.10</td>
<td>Mass spectrum for collision-induced dissociation of the 1068 m/z ion of fibroblast-conditioned medium</td>
<td>94</td>
</tr>
<tr>
<td>3.11</td>
<td>Chromatogram of neuregulin-1β (10 ng.mL$^{-1}$)</td>
<td>95</td>
</tr>
</tbody>
</table>
Figure 3.12 Chromatogram of neuregulin-1β overlaid on chromatogram of fibroblast-conditioned medium. 96

Figure 3.13 Standard curve for response of neuregulin-1β in quadrupole ion trap mass spectrometer. 98

Figure 3.14 Concentration of neuregulin-1β in fibroblast-conditioned medium. 99

Figure 4.1 Schematic representation of the IGF axis. 107

Figure 4.2 Effect of IGF-II on secretion of surfactant-associated phospholipids from cultured fetal type II pneumocytes. 118

Figure 4.3 Effect of IGF-II on secretion of surfactant-associated phospholipids from cultured type II pneumocytes in response to neuromedin C. 120

Figure 4.4 Effect of IGF-II on secretion of surfactant-associated phospholipids from cultured type II pneumocytes in response isoproterenol. 121
Index to plates and tables

<table>
<thead>
<tr>
<th>Plate 1.1</th>
<th>Transmission electron micrograph of a cultured fetal type II pneumocyte cell engaged in secretion of surfactant.</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate 2.1</td>
<td>Phase contrast photomicrograph of a typical 19-day fetal type II pneumocyte culture.</td>
<td>37</td>
</tr>
<tr>
<td>Plate 2.2</td>
<td>Transmission electron micrograph of a typical 19-day fetal type II pneumocyte culture.</td>
<td>38</td>
</tr>
<tr>
<td>Plate 2.3</td>
<td>Phase contrast photomicrograph of a typical 19-day fetal fibroblast culture.</td>
<td>40</td>
</tr>
<tr>
<td>Table 1.1</td>
<td>Characteristics of the four surfactant-associated proteins, SP-A, SP-B, SP-C and SP-D.</td>
<td>8</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>The direct and indirect effect of dexamethasone on the augmentation of PC synthesis by type II pneumocytes.</td>
<td>44</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>The direct and indirect effect of phorbol 12-myristate 13-acetate on the augmentation of PC synthesis by type II pneumocytes.</td>
<td>46</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>The direct and indirect effect of dexamethasone on the augmentation of PC synthesis by type II pneumocytes, utilizing the modified experimental method.</td>
<td>51</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Mean DNA level of type II cultures (µg.plate(^{-1})).</td>
<td>53</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>The effect of dexamethasone on PC synthesis in type II pneumocytes taking the density of the type II pneumocyte cultures into consideration.</td>
<td>56</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Mean DNA level of fibroblast cultures (µg.plate(^{-1})).</td>
<td>58</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>Mean percentage recovery of the [(^{14})C]-DPPC internal standard.</td>
<td>59</td>
</tr>
</tbody>
</table>
Table 2.8 Mean radioactivity of stock $[^3\text{H}]$-choline chloride solution (μCi.mL$^{-1}$).

Table 2.9 Mean radioactivity of $[^3\text{H}]$-choline chloride solution on individual plates (μCi.mL$^{-1}$).

Table 2.10 Mean ratio of plate 3H and stock $[^3\text{H}]$-choline chloride solution radioactivity.

Table 2.11 The effect of dexamethasone on PC synthesis in type II pneumocytes taking the density of the type II pneumocyte cultures into consideration.

Table 3.1 Variables that should be investigated in initial HPLC method development.

Table 3.2 Variables tested during HPLC method development.

Table 3.3 Gradient used in capillary HPLC runs.

Table 4.1 The direct and indirect effect of IGF-II on the augmentation of PC synthesis by type II pneumocytes.

Table 4.2 The effect of IGF-II on PC synthesis in type II pneumocytes for type II cultures with cell density below 25 μg.plate$^{-1}$.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP</td>
<td>adenosine diphosphate</td>
</tr>
<tr>
<td>AMP</td>
<td>adenosine monophosphate</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>BSS</td>
<td>buffered salts solution</td>
</tr>
<tr>
<td>CID</td>
<td>collision-induced dissociation</td>
</tr>
<tr>
<td>DAD</td>
<td>diode array detector</td>
</tr>
<tr>
<td>DHT</td>
<td>dihydrotestosterone</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulphoxide</td>
</tr>
<tr>
<td>DPPC</td>
<td>dipalmitoylphosphatidylcholine</td>
</tr>
<tr>
<td>EGF</td>
<td>epidermal growth factor</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray ionization</td>
</tr>
<tr>
<td>FCM</td>
<td>fibroblast-conditioned medium</td>
</tr>
<tr>
<td>FPF</td>
<td>fibroblast-pneumocyte factor</td>
</tr>
<tr>
<td>GRE</td>
<td>glucocorticoid response element</td>
</tr>
<tr>
<td>GRP</td>
<td>gastrin-releasing peptide</td>
</tr>
<tr>
<td>HPLC</td>
<td>high-performance liquid chromatography</td>
</tr>
<tr>
<td>IGF</td>
<td>insulin-like growth factor</td>
</tr>
<tr>
<td>IGFBP</td>
<td>insulin-like growth factor binding protein</td>
</tr>
<tr>
<td>IGFR</td>
<td>insulin-like growth factor receptor</td>
</tr>
<tr>
<td>IgG</td>
<td>immunoglobulin G</td>
</tr>
<tr>
<td>MEM</td>
<td>minimal essential medium</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>MW</td>
<td>molecular weight</td>
</tr>
<tr>
<td>NBCS</td>
<td>newborn calf serum</td>
</tr>
<tr>
<td>NRDS</td>
<td>neonatal respiratory distress syndrome</td>
</tr>
<tr>
<td>NRG</td>
<td>neuregulin</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PC</td>
<td>phosphatidylcholine</td>
</tr>
<tr>
<td>PG</td>
<td>phosphatidylglycerol</td>
</tr>
<tr>
<td>PI</td>
<td>phosphatidylinositol</td>
</tr>
<tr>
<td>PKC</td>
<td>protein kinase C</td>
</tr>
<tr>
<td>PMA</td>
<td>phorbol 12-myristate 13-acetate</td>
</tr>
<tr>
<td>SP</td>
<td>surfactant-associated protein</td>
</tr>
<tr>
<td>Symbol</td>
<td>Conversion</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>AU</td>
<td>absorbance units</td>
</tr>
<tr>
<td>Ci</td>
<td>curie</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>dpm</td>
<td>disintegrations per minute</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>g</td>
<td>centrifugal force</td>
</tr>
<tr>
<td>IU</td>
<td>international unit</td>
</tr>
<tr>
<td>kDa</td>
<td>kilodalton</td>
</tr>
<tr>
<td>L</td>
<td>litre</td>
</tr>
<tr>
<td>M</td>
<td>moles.litre⁻¹ (molar)</td>
</tr>
<tr>
<td>m</td>
<td>metre</td>
</tr>
<tr>
<td>m/z</td>
<td>mass to charge ratio</td>
</tr>
<tr>
<td>mAU</td>
<td>milli-absorbance units</td>
</tr>
<tr>
<td>mCi</td>
<td>millicurie</td>
</tr>
<tr>
<td>µCi</td>
<td>microcurie</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>mL</td>
<td>millilitre</td>
</tr>
<tr>
<td>µL</td>
<td>microlitre</td>
</tr>
<tr>
<td>mM</td>
<td>millimoles.litre⁻¹ (millimolar)</td>
</tr>
<tr>
<td>µM</td>
<td>micromoles.litre⁻¹ (micromolar)</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>µm</td>
<td>micrometre</td>
</tr>
<tr>
<td>ms</td>
<td>millisecond</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram</td>
</tr>
<tr>
<td>nM</td>
<td>nanomoles.litre⁻¹ (nanomolar)</td>
</tr>
<tr>
<td>nm</td>
<td>nanometre</td>
</tr>
<tr>
<td>psi</td>
<td>pound per square inch</td>
</tr>
<tr>
<td>V</td>
<td>volt</td>
</tr>
</tbody>
</table>
Chapter 1. General introduction

The air sac, capable of gas exchange with the atmosphere, first evolved during the Devonian period, and allowed primitive fish to move onto land (Possmayer, 1982). In terrestrial vertebrates, including mammals, this air sac is known as the lung. The mammalian lung consists of two lobes and is connected to the upper airway by the trachea and bronchi. Inside the lung, the branching of the bronchi forms the bronchial tree, with each branch terminating in an alveolus. The alveoli are the site of gas exchange with the atmosphere. Human lungs contain approximately 300 million alveoli, which gives the lungs a far greater internal than external surface area (Snell, 2007).

During development, human fetal lungs function within the fluid intrauterine environment, and must adapt to the extrauterine atmosphere at birth. There are many physiological events that must occur to allow this adaptation, and key among them is the induction of the pulmonary surfactant system. Pulmonary surfactant is a complex, surface-active material that is composed of phospholipids and four specific surfactant-associated proteins. The surfactant lines the alveolar surface of the lung (Griese, 1999) (Figure 1.1).

The air-liquid interface within the alveoli is subject to great surface tension which, if unmodified, would lead to progressive atelectasis and respiratory failure. The primary function of pulmonary surfactant is to reduce this surface tension to very low values, and dynamically alter the tension as surface area changes with inspiration and expiration (Johannson and Curstedt, 1997). Surfactant also functions to protect the lung from injury and infection that may be caused by the inhalation of particles and microorganisms (Griese, 1999).

The induction of the surfactant system does not occur until late in gestation, as the lungs are not involved in gas exchange until after birth. Infants that are born
prematurely have immature lungs containing little surfactant, which leads to neonatal respiratory distress syndrome (NRDS) (Griese, 1999). This condition causes extremely high surface tension in the alveoli during expiration, and they tend to collapse, greatly reducing the ability of the lung to obtain sufficient oxygen for bodily needs (Levine and Gordon, 1942).

Figure 1.1: Micrograph of alveolar space with a magnified diagram of the air-liquid interface illustrating the surfactant system (Whitsett and Weaver, 2002).
1.1 History of the surfactant system

The discovery of the surfactant system began in 1805 with the publication of Young’s paper ‘An essay on the collision of fluids’, which was followed a year later by Laplace’s paper on the same topic. The relationship between force, surface tension and radii of curvature defined by these papers became known as the Young-Laplace law (Comroe, 1977). Over 100 years later, Langmuir developed a method to determine molecular dimensions using surface physics and chemistry (Langmuir, 1917), and this led to the development of equipment for measuring surface tension under dynamic conditions.

In 1929, von Neergaard theorized that a relationship might exist between the specialized material lining the lung and the Young-Laplace law. In spite of its potential importance, this work was not recognized until much later. In his 1954 paper, Radford found a ten-fold discrepancy in calculating lung surface area using physical measurement and histological methods. He argued that a surface active substance was unlikely to exist, so the lung must be in a semi-solid state (Radford, 1954). In the same year, Macklin published a paper describing the mucoid film that coats the alveoli. In his description he postulated that this film would maintain a constant surface tension (Macklin, 1954). The following year, Pattle proposed that, in order to prevent alveolar transudation and resulting pulmonary oedema, the surface tension in the lung must be maintained at a low level (Pattle, 1955).

The work of Radford and Pattle prompted Clements to derive a quantitative measurement of alveolar surface tension, under dynamic conditions. These measurements definitively showed the presence of a surface active material that maintained a constant surface tension (Clements, 1957). Clements’ surface tension values were confirmed in 1959 by Avery and Mead, who studied ‘hyaline membrane disease’. They found a three-fold increase in mean surface tension in infants who had
died from this condition (Avery and Mead, 1959). These results led to further studies of the development and induction of the surfactant system in mammals (Buckingham et al., 1968; Comroe, 1977).

1.2 Lung cell types

The induction of the surfactant system is regulated by the interaction between two cell types within the lung: epithelial (type II pneumocyte) and mesenchymal (fibroblast) cells (Smith and Fletcher, 1979).

Type II cells are cuboid in shape and are located in the corners of the alveoli. They have a high number of lamellar bodies, as well as mitochondria, Golgi apparatus and rough endoplasmic reticulum (Ballard, 1986). The primary function of the type II cell is the synthesis and secretion of pulmonary surfactant. Surfactant is stored in the bell-shaped lamellar bodies until its secretion by exocytosis (Bangham and Horne, 1964). Each type II cell contains approximately 150 (± 30) lamellar bodies, with exocytosis occurring at a rate of 15 bodies per hour (Young et al., 1981). The differentiation of the type II cell is a key step in lung maturation and surfactant production.

The ‘timer’ for this differentiation is within the tissue, and involves an interaction between the epithelial (pneumocyte) and mesenchymal (fibroblast) tissues (Smith and Post, 1989). This interaction appears to occur prior to day 13 in fetal rats, and commits the type II cells to their phenotype. A key indicator of this differentiative event is glycogen depletion, which provides an energy source for the formation of lamellar bodies (Smith and Post, 1989).

There are two types of cellular change – proliferation and development. Fibroblasts from the pseudo-glandular stage of lung development stimulate epithelial cell proliferation, while those from the saccular stage stimulate differentiation (Caniggia
et al., 1991). Also, fibroblasts in close proximity to the epithelial cells produce mainly
differentiation factors while those further away produce mainly proliferation factors.
Pneumocyte cells do not respond to proliferation factors once they have developed past
the saccular stage (Caniggia et al., 1991).

Differentiation of epithelial cells (type II pneumocytes) is triggered by the subjacent
mesenchyme (fibroblasts). The fibroblasts respond to glucocorticoids and secrete the
differentiation factor (Caniggia et al., 1991). Glucocorticoids bind more readily to
fibroblasts adjacent to pneumocytes than those located peripherally, because these
adjacent fibroblasts are enriched with glucocorticoid receptors.

1.2.1 Tissue culture

The use of whole lungs in studies of cellular differentiation does not consider the
cellular diversity found within those lungs (Post et al., 1983), requiring individual cell
types to be cultured separately. It has been found that isolated and cultured fetal alveolar
type II cells retain characteristics of in vivo type II cells, in particular the ability to
synthesize and secrete phosphatidylcholine (PC). These cultured cells also retain the
ability to proliferate and respond to fibroblast-pneumocyte factor (FPF) (Post et al.,
1983).

Culture studies found several factors which will enhance the quality of cell culture.
A higher purity of cells is obtained if collagenase is used to disperse cells, and fetal calf
serum is essential for optimal growth (Post et al., 1983). The optimal conditions for
in vitro generation of FPF by fibroblasts were the use of primary cultures, maintenance
of cultures in a medium that does not cause rapid cellular proliferation, and induction of
pyridoxal deficiency to enhance responsiveness to glucocorticoids (Smith, 1981a).
1.3 The pulmonary surfactant system

1.3.1 Composition of surfactant

In the lungs surfactant exists in two pools – the intracellular and extracellular pools. Intracellular surfactant is stored in the type II cells in lamellar bodies (Wright and Clements, 1987). The extracellular pool of surfactant is the layer that lines the alveoli (Schurch et al., 1995). Alveolar material, and that obtained through bronchoalveolar lavage, contains several different morphological and biochemical forms of surfactant. These forms include (Wright and Clements, 1987):

a) densely-packed multilamellar structures that resemble secreted lamellar contents;

b) unique lattice-like structures called tubular myelin;

c) the surface film;

d) multilamellar and unilamellar vesicles; and

e) distinct structures that resemble open-ended bilayers.

Of these forms, it is thought that the lamellar body contents expand and form the complex structure of tubular myelin upon contact with the alveolar space. This process is triggered by calcium, as well as the environmental conditions within the space (King et al., 1983). The process by which the bilayer structures form a monolayer film is not understood.

While the properties of surfactant are well known, and can be readily identified, its exact \textit{in vivo} chemical composition is not known. This is most likely because surfactant is heterogeneous in both chemical composition and morphology (Robertson, 1984). In addition, surfactant isolated for testing is likely to comprise active surfactant,
newly secreted surfactant and surfactant that is ready for recycling and removal from
the alveolar lining.

Pulmonary surfactant contains several types of lipid, including phospholipids,
triglycerides, cholesterol and fatty acids (Johannson and Curstedt, 1997). Of these,
phospholipids are present in the greatest quantities. Phosphatidylcholine comprises
70-80% of surfactant lipids, and phosphatidylglycerol a further 5-10% (King, 1982).
Approximately 60% of surfactant phosphatidylcholine is present in the disaturated form,
with both fatty acids being palmitic acid. This lipid is known as
dipalmitoylphosphatidylcholine (DPPC) (Hildebran et al., 1979). The polar end of the
DPPC molecule contains the choline residue, while the other, non-polar end contains the
two palmitic acid residues. It is currently thought that DPPC is the component of
surfactant responsible for reducing surface tension (Holm et al., 1996).

The role of phosphatidylglycerol (PG) is less well understood. The level of PG
is generally low during gestation and increases either prior to, or shortly after, birth
(Hallman et al., 1977; Egberts and Noort, 1986). Phosphatidylglycerol is the most
variable surfactant component in different mammalian species. It is greatly reduced in
species such as cats (Shelley et al., 1984), and replaced with phosphatidylinositol (PI) in
adult rhesus monkeys (Egberts et al., 1987). Studies on PG-deficient adult rabbits have
shown no obvious changes to surfactant properties or function, although these studies
did use PI to substitute for PG (Beppu et al., 1983; Hallman et al., 1985). Human
infants who are born prior to the pre-natal increase in PG levels are more likely to suffer
from NRDS than those born after (Hallman et al., 1977), suggesting a definite role for
PG in the function of surfactant. It is possible that the presence of PG helps with
alveolar stability (Hallman and Gluck, 1976), or in the association of proteins with
phospholipids (King and Martin, 1980).
Surfactant generally contains 5-10% protein, and these surfactant-associated proteins (SP) interact extensively with the phospholipids. These interactions include changing the structure and properties of lipid layers and films (Yu and Possmayer, 1988; Dhand et al., 1998). There are four surfactant proteins that have been identified: SP-A, SP-B, SP-C and SP-D. The general characteristics of each protein are summarized below (Table 1.1).

Table 1.1: Characteristics of the four surfactant-associated proteins, SP-A, SP-B, SP-C and SP-D (Yu and Possmayer, 1988).

<table>
<thead>
<tr>
<th>Protein</th>
<th>Molecular weight range</th>
<th>Structure</th>
<th>MW of polypeptide chains (kDa)</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP-A</td>
<td>high</td>
<td>octadecamer</td>
<td>26.0</td>
<td>hydrophilic</td>
</tr>
<tr>
<td>SP-B</td>
<td>low</td>
<td>dimer</td>
<td>8.7</td>
<td>hydrophobic</td>
</tr>
<tr>
<td>SP-C</td>
<td>low</td>
<td>monomer</td>
<td>4.0</td>
<td>hydrophobic</td>
</tr>
<tr>
<td>SP-D</td>
<td>high</td>
<td>dodecamer</td>
<td>39.0</td>
<td>hydrophilic</td>
</tr>
</tbody>
</table>

Due to differences in the methods used to isolate surfactant, a precise quantitation of the surfactant proteins has not been obtained. Recent research has shown that the formation and stability of surfactant are critically dependent on SP-B and SP-C (Weaver and Conkright, 2001), while SP-A is important for immune and inflammatory responses (Crouch and Wright, 2001). Other proteins have also been isolated with surfactant, including albumin, immunoglobulins A and G (King et al., 1973; Paciga et al., 1980) and uteroglobin (Guy et al., 1992). The function of these additional proteins is not fully understood, although it is possible that they have roles in immunity and extending the functional life of surfactant (Guy et al., 1992).

Several factors have been shown to affect the composition of surfactant, most notably diet. A deficiency of vitamin A can delay the maturation of lungs in newborn
rats (Chailley-Heu et al., 1999) and reduce the surfactant phospholipid levels by more than 20%. This is probably due to the relationship between plasma retinol levels and expression of key enzymes in the lipid synthesis pathway. It has also been found that vitamin A deficiency can reduce the amounts of SP-A, SP-B and SP-C (Chailley-Heu et al., 1999). Choline-deficient diets can lead to surfactant phosphatidylcholine levels that are nearly 50% lower than those in control rats (Yost et al., 1985).

1.3.2 Biophysical function of surfactant

The surface tension that exists at the alveolar air-water interface opposes lung inflation. The action of pulmonary surfactant is to reduce this surface tension to effectively zero, meaning that the whole of the alveolar space remains open, even during expiration (Griese, 1999). If this did not occur, blood oxygenation would be reduced and the physical work required for adequate breathing would increase. One study has shown that the presence of surfactant may be required to maintain proper function of not only the alveoli, but also the bronchioles leading to them (Enhörning and Holm, 1993). Reduced surface tension is also important for ensuring that the alveoli do not become filled with fluid, as high surface tension can lead to a thick film developing and inundating the sites of gas exchange (Guyton et al., 1984). Surfactant is involved in the removal of foreign material and discarded cells from the alveolar space, as well as possible immune cell functions (Jarstrand, 1984).

The monolayer film is the active form of surfactant. It is enriched with DPPC, indicating that DPPC is the component of surfactant responsible for surface tension-reducing properties (Hildebran et al., 1979). Other lipids and proteins in surfactant are thought to facilitate lipid transport through the aqueous environment of the air-water interface at the alveolar surface. In particular, the hydrophobic proteins SP-B and SP-C play a role in this transport (Gil et al., 1995). It has also been observed that calcium ions
are essential for transport processes in the alveoli (King et al., 1983). The function of SP-A differs from the other proteins, and it is thought to alter the distribution and movement of surfactant within the alveoli, especially through acceleration of lipid movement. SP-A also has a protective function, by minimizing the inhibitory effect of blood proteins (Cockshutt et al., 1990).

1.4 Synthesis of surfactant

1.4.1 Site and timing of synthesis

The two main surfactant phospholipids, dipalmitoylphosphatidylcholine (DPPC) and phosphatidylglycerol (PG), are found only in trace amounts in tissues outside of the lungs (Clements and King, 1976). There is a large body of evidence to suggest that surfactant synthesis takes place in type II pneumocyte cells within the alveoli. Type II cells comprise approximately 15% of all cells within the lung, and are characterized by the presence of a large number of lamellar bodies, which are the site of surfactant storage and the mechanism of secretion (via fusion with the cellular membrane) (Haagsman and van Golde, 1991). Analysis of the phospholipid content of lamellar bodies within type II cells shows that the lipids are almost identical to those found in pulmonary surfactant (Hallman et al., 1981). Culturing of isolated type II cells, and treatment of these cultures with labeled phospholipid precursors produces phospholipids very similar in composition to surfactant (Dobbs et al., 1982; Mason, 1987). It has been shown that immature type II cells have a greatly reduced ability to synthesize lipids, implying a relationship between the development of the lungs and the ability to produce surfactant.

Evidence does exist to suggest that lamellar bodies are not the sole organelle involved in surfactant synthesis. Only some of the enzymes required for surfactant phospholipid synthesis are found within these bodies, and certain key enzymes for
phosphatidylcholine production are absent (Baranska and van Golde, 1977). The autoradiographic study of Chevalier and Collet (1972) provided a wealth of information on the production and storage of pulmonary surfactant. The majority of surfactant lipids are synthesized in the endoplasmic reticulum and transferred to the Golgi apparatus. From here, small lamellar bodies transport the lipids to larger bodies, which are the site of storage and secretion (Chevalier and Collett, 1972). Surfactant proteins are also synthesized in the endoplasmic reticulum and transferred to the Golgi apparatus (Sorokin, 1967). The transfer from the Golgi apparatus to the lamellar bodies probably involves multivesicular bodies, which are found in high concentrations in type II cells. The lamellar bodies are the site where surfactant lipids and proteins are first associated and assembled into the final storage form of surfactant (Williams, 1977). The exact site of production of SP-D is not known (Voorhout et al., 1992; Zhang et al., 2006), implying that other organelles or even cell types may be involved.

In humans, type II cells are identifiable after 20-22 weeks of gestation, but secretion of surfactant is only detected after 30-32 weeks. These results are mirrored in all mammalian species studied to date, where surfactant synthesis seems to begin after the completion of 80-90% of gestational development. Fetal type II cells are actually capable of synthesis of surfactant from early in gestation, but only at low levels. This rises dramatically to that required late in gestation (Fraslon-Vanhulle et al., 1994). Pulmonary fatty acid synthesis peaks during this period, and certain enzymes involved in lipid synthesis, such as fatty acid synthase and acetyl-CoA carboxylase, also show a marked rise in activity (Fraslon-Vanhulle et al., 1994). The surfactant-associated proteins SP-A, SP-B and SP-C, as well as their respective mRNAs, appear during this period and increase in concentration until birth (Smith, 1984), stimulated by hormones such as leptin (Kirwin et al., 2006). The level of mRNA for choline phosphate cytidylyltransferase also increases (Fraslon and Batenburg, 1993).
It has been observed that special pretranslational regulation of several key enzymes involved in increasing the rate of fatty acid synthesis occurs in the pulmonary system during development (Batenburg and Whitsett, 1989; Fraslon and Batenburg, 1993). However hormones, which are vitally important in controlling surfactant synthesis prior to birth, do not seem to initiate the commencement of this synthesis.

1.4.2 Synthesis of phospholipids

The production of surfactant phospholipids begins with a glycerol backbone that is produced from glucose obtained from the bloodstream. The most likely starting point for synthesis of the diacyl glycerolipids is the formation of glycerol-3-phosphate (Kennedy, 1986). Fetal type II cells contain large intracellular glycogen stores, which are the major source of this glycerol-3-phosphate. Fatty acids are obtained from the blood, as well as being synthesized *de novo* from lactate. In particular, lipogenesis is required for the production of palmitate. The enzymes involved in lipogenesis increase in activity towards birth.

Production of phospholipids can be accelerated by several factors. Glucocorticoids act on lung fibroblast cells to produce fibroblast-pneumocyte factor (FPF) (Smith, 1978). Epidermal growth factor (EGF) enhances the rate of production of PC by type II cells (Sen and Cake, 1991) apparently via enhanced release of FPF from lung fibroblasts. FPF is discussed in more detail in 1.5.

1.4.2.1 Production of phosphatidylcholine

In mammals, phosphatidylcholine (PC) is produced by the CDP-choline pathway. Choline is endocytosed and phosphorylated to choline phosphate by choline kinase. A CDP residue is added, and the phosphate removed by the enzyme choline phosphate cytidylyltransferase. The phosphorylcholine moiety is then transferred to
diacylglycerol to produce phosphatidylcholine catalyzed by the enzyme cholinephosphotransferase. The key regulatory step in this pathway is believed to be choline phosphate cytidylyltransferase, which has a high binding affinity for lipids, implying a negative feedback mechanism (Dunne et al., 1996). This pathway produces approximately 90% of the PC synthesized in a given cell (Epstein and Farrell, 1975). The alternative pathway for PC synthesis involves methylation of phosphatidylethanolamine (Batenburg, 1992). Synthesized PC is then converted to DPPC within type II cells. 1-saturated-2-unsaturated-PC is deacylated to lyso-PC and then reacylated with palmitoyl-CoA to produce DPPC (Haagsman and van Golde, 1991).

1.4.2.2 Regulation of PC synthesis

The study of regulation of PC synthesis began with the observation that administration of glucocorticoids to fetal lambs accelerated lung maturation (Liggins, 1969). Treatment of fetal rabbits with the same steroids enhanced the activity of surfactant and the appearance of type II cells (Whitsett et al., 1985). In humans, the administration of glucocorticoids prior to normal maturation leads to increased use of glucose, acceleration of glycogenolysis, increased phospholipid synthesis and enhanced lung maturation (Smith, 1984). It has become clear that mesenchyme-derived factors have a major role in the differentiation and development of type II cells (Smith, 1979). The factor involved in lung development is called fibroblast-pneumocyte factor (FPF), and it acts to stimulate PC synthesis via increased intracellular cyclic AMP levels (Smith, 1979).

There are many different chemicals that can regulate synthesis of PC. Gross and Wilson (1982) found that dexamethasone, a synthetic glucocorticoid, causes a 2.5-fold increase in PC synthesis. This effect has been observed in rats (Gross and
In addition, it has been found that the response to this hormone can be enhanced through an additive or synergistic effect with triiodothyronine (T₃) (Schellenburg et al., 1988). The use of corticosteroids together with insulin and/or prolactin leads to a two-fold increase in lamellar body phospholipid concentration compared to controls (Mendelson et al., 1981). Glucocorticoids also enhance expression of mRNA for SP-B (Ahmad et al., 1996), as well as promoting stability of SP-A mRNA (Seidner et al., 1996).

Dexamethasone has also been shown to block production of transforming growth factor β (TGFβ), which blocks the maturation of type II pneumocytes (Torday and Kourembanas, 1990; McDevitt et al., 2007). It is therefore possible that dexamethasone simultaneously exerts both stimulatory and inhibitory effects on fetal lung fibroblasts.

1.4.3 Inhibition of the surfactant system

The ratio of male: female deaths is 4:1 in the first trimester, 2:1 in the second and nearly 1:1 in late pregnancy. However, after birth it rises again to 2:1, due to the incidence of neonatal respiratory distress syndrome (Torday and Nielsen, 1987). Male infants are at a greater risk of developing NRDS than female infants of the same age (Miller and Futrakul, 1968). This trend is found in most animal models, except avians, where the sex-determination system, and thus the trend in NRDS are reversed (Smith and Post, 1989).

The lecithin/sphingomyelin ratio, as well as the levels of PC and PG in the amniotic fluid of male fetuses is 1.5 to 2 weeks behind female fetuses (Torday et al., 1981; Fleisher et al., 1985). Male fetuses are less responsive to glucocorticoids (Ballard et al., 1980) and fibroblasts derived from male fetuses produce less FPF than those from female fetuses (Torday, 1984). The lungs from female fetuses have greater stability.
(Kotas and Avery, 1980), epithelial cells differentiate sooner to form type II cells (Adamson and King, 1984), and rates of surfactant synthesis are higher than in lungs from males (Nielsen et al., 1982). The most likely cause of these differences are male androgens, which may inhibit lung development in some way. Administration of dihydrotestosterone (DHT) to fetal rabbits decreased the production of surfactant (Nielsen et al., 1982). DHT exerts its effect at a pre-translational level and inhibits production of FPF by fibroblasts (Floros et al., 1987), or reduces the response of type II cells to FPF (Torday and Nielsen, 1987). The fact that sex-based differences in response to steroids and surfactant production also occur in isolated cell cultures suggests that there is also a possible genetic basis for this difference.

Infants of diabetic women born at full-term have a higher incidence of NRDS than infants of non-diabetic women (Robert et al., 1976). It has been found that in these infants, PG is greatly reduced or even entirely absent from the surfactant (Cunningham et al., 1978). It has been proposed that fetal hyperinsulinemia associated with maternal diabetes can antagonize lung development (Obenshain et al., 1970). Insulin has been shown to reduce the stimulatory effect of corticosteroids on PC synthesis (Smith, 1978), although this has not been supported by other work (Mendelson et al., 1981). Mendelson and colleagues (1981) also could not show inhibition of PG synthesis by insulin. Insulin appears to affect the levels of surfactant-associated proteins, as SP-A concentration is significantly lower in the amniotic fluid of diabetic mothers (Katyal et al., 1984). Snyder and Mendelson (1987) showed that inhibition of SP-A synthesis in human lungs by insulin is dose-dependent. In some species fetal hyperglycemia in the absence of hyperinsulinemia has also been seen to block lung maturation (Carlson et al., 1984).
1.5 Fibroblast-pneumocyte factor

1.5.1 Characteristics of fibroblast-pneumocyte factor

Fibroblast-pneumo(no)cyte factor (FPF) is a polypeptide differentiation factor that is present in the culture medium of glucocorticoid-treated lung fibroblasts (Smith and Post, 1989). It is a heat-stable, dialyzable oligopeptide (Smith, 1979) that is inactivated by trypsin (Smith and Post, 1989). It has only one known activity, although there may be more. FPF has an apparent molecular mass in the range of 5 to 15 kDa (Smith and Post, 1989), although it is unknown whether this represents a form of the protein that differs from the active form (Scott and Das, 1993). Studies suggest that both the FPF peptide and its mRNA precursor occur in very low abundance in vivo (Floros et al., 1985).

Epithelial-mesenchyme interactions, such as that facilitated by FPF, are highly organ-specific, but not species-specific, and occur widely (Smith and Fletcher, 1979). FPF has been isolated from human lung fibroblast cultures (Scott and Das, 1993) and similar activity has been found in cats, rabbits, rats, two species of monkey and chickens (Smith and Fletcher, 1979). This activity was not found in newborn rabbits or rats, where the lungs are already developed and the function of FPF is no longer required (Smith and Fletcher, 1979).

FPF activity has been detected in human amniotic fluid from 27 to 40 weeks gestation, although the activity declined with advancing gestation and was inversely related to cell number (Seybold and Smith, 1980). The actual presence of FPF in amniotic fluid is not related to lung maturation in the fetus, and its decrease follows the decrease in total protein content in late gestation (Seybold and Smith, 1980). There is also an inverse relationship between cortisol and FPF levels in human amniotic fluid (Seybold and Smith, 1980), indicating that as the level of cortisol decreases (implying usage within the fetus), the amount of FPF produced increases.
A similar differentiation factor has been found to be responsible for epithelial-mesenchyme interactions in the liver and has been termed fibroblast-hepatocyte factor. It is a heat-stable, low molecular weight protein that is antigenically different from FPF (Dow et al., 1983). Stretch-stimulated surfactant synthesis is known to occur through another epithelial-mesenchyme interaction, mediated by parathyroid hormone-related protein (Torday and Rehan, 2002).

Recent research (Dammann et al., 2003) has suggested that neuregulin-1β (NRG-1), a growth factor involved in many different stages of human development, may be FPF. They found that both fibroblast-conditioned medium (FCM) and NRG-1 had the same stimulatory effect on surfactant synthesis in type II cells, and that the activity of both was blocked by an antibody to NRG-1. Histological observation revealed that lung fibroblast cells secrete NRG-1, and that this secretion increased as surfactant synthesis increased prior to parturition (Dammann et al., 2003). The receptors for neuregulins, ErbB receptors, were up-regulated in type II pneumocyte cells by exposure to dexamethasone (Dammann et al., 2006). This research has provided the strongest evidence yet for the identity of FPF.

1.5.2 Induction of FPF

Surfactant synthesis is under multi-hormonal control and local cell and tissue interactions modulate the endocrine signals (Smith and Post, 1989). The central role is played by endogenous fetal glucocorticoids. In the fetal lung, inactive cortisone is metabolised to the active form cortisol (Smith and Post, 1989). This glucocorticoid activity acts on the fibroblast to produce FPF, which acts on the type II pneumocyte cell (Smith and Post, 1989). The glucocorticoid hormone binds to cytosolic receptors (GR) which are then translocated to the nucleus of the fibroblast (Smith and Post, 1993). There, they bind to glucocorticoid response elements, leading to the induction or
repression of gene transcription ((Smith and Post, 1993). In the rat, glucocorticoid receptor mRNA levels in the whole lung rapidly increase between days 18 and 19 of gestation and decrease again by days 20-22, and following day 19 there is a gradual rise in GR-binding activity (Smith and Post, 1993).

The effect of glucocorticoids on fibroblast cells is inhibited by the presence of actinomycin D during the first, but not the second, 24 hours of incubation, implying that the response involves transcriptional events (Floros et al., 1985). Fractionation of mRNA and subsequent translation produces a peptide that possesses FPF activity (Floros et al., 1985). The glucocorticoid effect is also blocked by the presence of cycloheximide during the first and second 24 hours of incubation, indicating that protein synthesis is required (Floros et al., 1985). The mRNA and protein products are both stable, existing in the cell for some time (Smith and Post, 1989). These results suggest that glucocorticoids act at a pre-translational level to induce production of FPF and that the primary translation products are biologically active (Floros et al., 1985). However, monoclonal antibody to FPF will not recognize the protein unless it has undergone post-translational modification, implying significant changes to the in vivo peptide (Smith and Post, 1989). The low detected activity of translation products indicates that both the mRNA and FPF protein are present in very low abundance (Floros et al., 1985).

Dexamethasone has no overall impact on the activity of fetal lung choline kinase or choline phosphotransferase. Direct exposure of mixed fetal lung cell cultures to cortisol results in a 1.6-fold increase in the incorporation of labelled choline into PC (Post et al., 1986). The effect of glucocorticoids can still be seen in pure type II cell cultures, but a 10-fold increase in hormone concentration is required. Thus, FPF acts not only as a signal transducer, but also as an amplifier (Smith and Post, 1991). The action of glucocorticoids on the fibroblasts is slow, which limits their use as therapy for NRDS through the stimulation of surfactant production and secretion (Smith and Post, 1989).
Epidermal growth factor (EGF) also enhances choline incorporation into PC in type II cells by an indirect mechanism (Sen and Cake, 1991). When glucocorticoids and EGF are added together the effect is not additive and maximal stimulation is the same as with the steroid alone (Sen and Cake, 1991). Both act via a similar mechanism – they produce a stimulatory factor that has a similar chromatographic elution profile. However, EGF does not appear to increase choline phosphate cytidylyltransferase activity so it is possible that it does not act via FPF (Gross et al., 1986).

Thyroid hormones (e.g. triiodothyronine (T3)) appear to enhance the responsiveness of type II cells to FPF (Smith and Post, 1989). Glucocorticoids acting on the mesenchyme and T3 acting on epithelia have a synergistic effect (Smith and Sabry, 1983). T3 has no effect on FPF production, but potentiates the effects of both glucocorticoids and FPF (Smith and Sabry, 1983).

In an analogous situation liver cells from chick embryos grown in mixed cultures, tyrosine aminotransferase (TAT) activity is induced by cortisol stimulation (Dow et al., 1983). However, pure hepatocyte cultures do not respond to cortisol. If cortisol is incubated with mixed cultures and the conditioned medium transferred to pure hepatocytes, TAT activity is detected (Dow et al., 1983). A substance produced by the fibroblasts when exposed to cortisol is capable of inducing TAT activity in the hepatocytes (Dow et al., 1983) and this is known as the fibroblast-hepatocyte factor.

1.5.3 Action of FPF

FPF-enhanced maturation does not lead to changes in lung weight (Smith, 1979). Rather, it is a physiological ‘on switch’ that prepares the type II cells for their postnatal function (Smith and Post, 1989). As little as 1 µg of partially-purified FPF can accelerate lung maturation in fetal rats (Smith, 1979). Exposure of fetal type II cells to FPF enhances the incorporation of radioactively-labelled choline, glycerol and palmitate.
into phosphatidylcholine (Post and Smith, 1984a). It also stimulates the formation of phosphatidylglycerol from labelled glycerol and palmitate. However, it does not affect the synthesis of other phospholipids, specifically stimulating only the production of surfactant phospholipids (Post and Smith, 1984a). The activities of enzymes in this pathway are not significantly altered except for a two-fold increase in the activity of choline phosphate cytidylyltransferase (Post et al., 1986), the rate-limiting enzyme in surfactant phospholipid synthesis (Post and Smith, 1984b). Exposure of fetal type II cultures to cortisol-conditioned fibroblast medium results in a 1.5-fold increase in choline incorporation into PC (Post et al., 1986). This correlates well with the doubling of the choline phosphate cytidylyltransferase activity. Thus, the action of FPF can be measured by increased conversion of choline phosphate to CDP-choline, and decreased cellular levels of choline phosphate (Post et al., 1986).

The effect of FPF is rapid (60 minutes) suggesting that choline phosphate cytidylyltransferase is controlled by enzyme-modulator interactions rather than by changes in the number of enzyme molecules (Post et al., 1986). It is most likely a post-translational effect such as the translocation of inactive enzyme from the cytosol to the endoplasmic reticulum, where it is activated. This is probably controlled by reversible phosphorylation or the effects of long-chain fatty acids or their CoA derivatives on the enzyme (Post et al., 1986). Thus, the general timeline is: glucocorticoid induction of FPF in fibroblasts → FPF induction of cyclic AMP in epithelial cells → enhanced production of saturated phosphatidylcholine (Smith and Sabry, 1983).

1.5.4 Inhibition of FPF

As discussed above, male infants are at a far greater risk of developing NRDS than female infants. Significantly higher 11-oxidoreductase activity and FPF activity are found in cultures derived from female fetuses (Torday, 1984). Mixed cultures from
female lungs synthesized twice as much PC as male cultures, while there were no sex-specific differences in PC synthesis in pure type II cultures (Torday, 1984). Thus, the effect of testosterone is on the fibroblast cells, and their indirect interaction with the type II cells. FPF production is delayed in fibroblasts derived from male fetuses, because of the presence of dihydrotestosterone. This effect cannot be reversed, even if cells are subsequently stimulated with cortisol (Floros et al., 1987). DHT completely blocks cortisol stimulation of PC synthesis (Torday, 1985). Dihydrotestosterone appears to affect events in FPF production that occur at a pre-translational level (Floros et al., 1987).

Insulin also inhibits production of FPF, leading to an increased incidence of NRDS in children of diabetic mothers (Smith and Post, 1989). The stimulatory effect of cortisol on FPF production is abolished in the presence of insulin (Carlson et al., 1984). It was initially thought that insulin blocked activity of choline phosphate cytidylyltransferase, but this is the enzyme that FPF acts on, and it is the production of FPF that is blocked by insulin (Carlson et al., 1984). Fetal hyperglycemia results in pancreatic islet cell hyperplasia and fetal hyperinsulinemia. The hyperinsulinemic fetal state and the associated antagonism of glucocorticoid action leads to a greater incidence of NRDS (Carlson et al., 1984).

There are several other compounds that can inhibit the production or action of FPF. Cortisol stimulation of PC synthesis was reduced by the presence of monoclonal antibodies to FPF. The presence of these antibodies also delays lung maturation in vivo (Post et al., 1984). In late gestation, cortisol inhibits the production of FPF instead of stimulating it (Floros et al., 1987). It has also been suggested that FPF is produced by adult lung fibroblasts, however in adults it appears to inhibit PC synthesis by type II cells (Floros et al., 1987). The anti-glucocorticoid RU486 delays fetal lung maturation,
confirming the vital role of these hormones in natural development (Smith and Post, 1989).

1.6 Secretion of surfactant

Secretion from cells can occur via both constitutive and regulated pathways. Regulated secretion is where a stimulus causes material that has been previously synthesized and stored to be released from a cell. This process is known as classical exocytosis (Michael et al., 2006). The general sequence of events that occurs for secretion of surfactant from the lamellar bodies of type II cells is as follows (Dietl and Haller, 2005):

1. Extracellular stimuli modulate intracellular chemical events;
2. These events cause movement of lamellar bodies towards the apical surface of the cell;
3. The lamellar bodies position themselves adjacent to the apical plasma membrane; and
4. Upon fusion with the apical membrane, the contents of the lamellar bodies are extruded into the alveoli.

The steps linking the initial stimulus to final secretion are not well understood.

Many different models have been used to study secretion. Chemical methods are the most common, and they generally focus on only one component of surfactant, even though surfactant is a heterogeneous mixture. Most studies have used the lipid components to monitor secretion, using whole animals, isolated lung slices and cultured type II cells (e.g. Dobbs et al., 1982; Whitsett et al., 1985). The main drawback to using whole animals is that direct effects on the type II cells cannot be differentiated from
indirect effects via other cells. However, when using cultured type II cells, artifacts can be introduced and effects observed in vitro may be more or less important than in vivo.

1.6.1 Factors affecting secretion of surfactant

The mechanism of surfactant secretion is less well understood than that of surfactant synthesis. Several different types of stimuli are known to enhance secretion, including:

1. hyperventilation (Klass, 1979)
2. cholinergic agents (Corbet et al., 1976)
3. prostaglandins (Oyarzun and Clements, 1978)
4. thyroxine (Redding et al., 1972)
5. leukotrienes (Gilfillan and Rooney, 1986)
6. agents known to elevate cyclic-AMP levels in type II cells, such as β-adrenergic agonists (Brown and Longmore, 1981; Mescher et al., 1983)
7. agents that elevate protein kinase C activity (Sano et al., 1985)
8. agents that increase the intracellular Ca\(^{2+}\) concentration (Dobbs et al., 1986)
9. agents that activate purinoceptors (Gilfillan and Rooney, 1987).

Images of lamellar bodies engaged in exocytosis have been shown in secretion studies involving microscopy (Plate 1.1). The membrane that surrounds the lamellar body fuses with the plasma membrane of the cell (Kliewer et al., 1985). Evidence exists to suggest that most components of surfactant are secreted simultaneously. Specific activity-time curves for PC, DPPC, PG and cholesterol are all very similar (Wright and Clements, 1987), and proteins SP-B and SP-C are secreted with phospholipids (Henry et al., 1996). SP-A and SP-D are secreted independently of the lamellar bodies (Rooney,
Synthesis and secretion are coupled, with high levels of surfactant components leading to inhibition of secretion (Dobbs et al., 1987).

Plate 1.1: Transmission electron micrograph of a cultured fetal type II pneumocyte engaged in secretion of surfactant. A represents a lamellar body that has fused with the cell membrane and is secreting its contents into the alveolar space. B represents an intact lamellar body within the cytosol. Total magnification including photographic enlargement = 46,500x.

Although the mechanism of secretion is not completely known, interaction with several different chemicals gives some information that may be used to build a partial picture of the process. The β-adrenergic agonist terbutaline increases secretion, and it is known to activate cyclic AMP-dependent protein kinase, meaning that a
phosphorylation reaction is likely to be involved (Griese et al., 1992). Cell actin, which has been shown to be closely associated with lamellar bodies, can be phosphorylated via a cyclic AMP-dependent protein kinase. Treatment of type II cells with cyclic AMP alters the intracellular distribution of cytoskeletal β-actin. This evidence suggests that the pathway of secretion involves cyclic AMP-dependent protein kinase-mediated phosphorylation of actin as a key step (Wright and Clements, 1987). Use of A23187 on cells increases cyclic AMP as well as Ca\(^{2+}\), indicating that the intracellular Ca\(^{2+}\) concentration may also affect surfactant secretion (Dobbs et al., 1986). Treatment of cells with ATP causes generation of inositol-1,4,5-trisphosphate and diacylglycerol and these compounds lead to the activation of Ca\(^{2+}\)/calmodulin-dependent protein kinase and protein kinase C (PKC) (Griese et al., 1991; Chander et al., 1995), although down-regulation of PKC has also been observed (Chander et al., 1998). Several regulatory peptides, known to activate these two protein kinases, have also been shown to have an effect on surfactant secretion (Asokananthan and Cake, 1996). Certain compounds, including compound 40/80 and substance P, have been shown to inhibit secretion from type II cells (Rice and Whitsett, 1984; Rice and Singleton, 1986a).

Administration of β-adrenergic agonists prior to delivery has been shown to lower the risk of NRDS (Bergman et al., 1982), which is consistent with the observation that they stimulate secretion of PC. These include isoproterenol, terbutaline, salbutamol and isoxsuprine (Abdel-Latif and Hollingsworth, 1980; Brown and Longmore, 1981; Chander, 1989). Activation of cell-surface receptors by these agonists is likely to activate the Gs protein, which stimulates adenylate cyclase and therefore elevates the level of cyclic AMP (Brown and Longmore, 1981). A further indication that cyclic AMP can elevate secretion is that a permeable analogue, 8-bromoadenosine-3′,5′-cyclic monophosphate, can also increase secretion (Brown and Longmore, 1981).
Purinoceptor agonists are classified as either P1 or P2, depending on the potency of response to ATP, ADP, AMP and adenosine (Brown et al., 1977). Secretion increases in response to P1 agonists, namely AMP, adenosine and non-metabolizable adenosine analogues, as well as P2 agonists, namely ATP and ADP (Chander, 1989). P1 agonists act to increase cyclic AMP levels within type II cells, whereas the action of P2 agonists is less clear. One proposed mechanism is that P2 agonists increase hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP$_2$), which produces diacylglycerol leading to activation of protein kinase C (Fisher et al., 1984). P2 agonists are more potent than P1, causing a five-fold increase in secretion (Rice and Singleton, 1986b).

Phorbol 12-myristate 13-acetate (PMA) is a tetracyclic diterpene isolated from croton oil (Hecker, 1968), and it is a potent tumor promoter. PMA induces secretion of PC, in both a time-dependent and dose-dependent fashion (Dobbs et al., 1982). The molecular structure of PMA is similar to diacylglycerol, which is known to activate protein kinase C, leading to cell-specific phosphorylation (Nishizuka, 1984). These compounds increase the affinity of the enzyme for Ca$^{2+}$, which is required for its activation.

The calcium ion (Ca$^{2+}$) may be a secondary messenger in the regulation of secretion. Calcium ionophores increase the cytosolic Ca$^{2+}$ in type II cells (Page-Robberts, 1972), and this increases the rate of secretion (Marino and Rooney, 1980; Dobbs et al., 1986). Stimulation of type II cells with ATP also increases intracellular Ca$^{2+}$ and PC secretion (Rice and Singleton, 1987).

Treatment of fetal rabbits in vivo with epidermal growth factor (EGF) on day 24 of gestation led to greater lung distensibility and increased deflation stability by day 27. Morphological maturation of the alveoli was enhanced, and the number of type II cells and the number of lamellar bodies per cell were also increased (Catterton et al., 1979). EGF has been shown to act directly on the lung to stimulate the synthesis of PC from
choline (Gross and Dynia, 1984), as well as increasing secretion from fetal rat type II cells (Sen and Cake, 1991). The mechanism by which EGF enhances secretion is not well understood, although it has been observed that treatment with EGF increases intracellular Ca\(^{2+}\) concentration and protein kinase C activity (Berridge, 1987).

1.7 Clearance and recycling of surfactant

Secreted surfactant is removed from the alveoli via three different mechanisms (Bourbon, 1991):

a) Degradation – components are broken down and used to synthesize new surfactant lipids and proteins;

b) Recycling (or Resorption) – components are not degraded, but are taken up by type II cells, incorporated into new lamellar bodies and re-secreted; and

c) Removal – surfactant is removed from the alveolar region either as intact molecules or partially-degraded compounds.

It is possible that if material is not removed from the alveolar region then it could build up to dangerous levels. Removal of surfactant does not occur via the lymphatic system (Tarpey et al., 1983), although macrophages can digest surfactant compounds (King and Martin, 1980). Resorption of surfactant by type II cells is responsible for the majority of the clearance from the alveolar region (Hallman et al., 1981), and isolated type II cells in culture can ingest PC (Chander et al., 1983). It is possible that uptake involves it specifically binding to receptors, followed by endocytosis (Williams et al., 1984). A portion of surfactant is taken up into type II cells, degraded by lysosomes and the resulting degradation products transported to the endoplasmic reticulum for re-synthesis into surfactant (Chander et al., 1983).
The majority of surfactant is reused without being degraded. In rabbits, it has been estimated that as much as 85% of surfactant is reutilized (Magoon et al., 1983). Phosphatidylcholine turnover in the alveoli occurs every 10.1 hours, but the biological half-life of the compound is 41 hours (Jacobs et al., 1983). This difference clearly indicates that PC is reused within the type II cells. PC is thought to be deposited as intact molecules back into lamellar bodies once it has been resorbed (Hallman et al., 1981). Multivesicular bodies are formed as precursor compartments in this recycling process (Jacobs et al., 1985; Fisher et al., 1987).

It is likely to be more energy efficient to recycle surfactant material that has already been produced, rather than to degrade and re-synthesize it. It has been estimated that approximately 10% of the alveolar pool of surfactant is recycled per hour (Jacobs et al., 1985), although the efficiency of reuse varies greatly with age (Jobe et al., 1989). Radiolabelled lipids remain in the alveolar space for several days. The specific activity of lavage and lamellar body lipids gradually becomes equal, and does not fall to zero until over 100 hours post-injection (Hallman et al., 1981). It is possible that recycling is stimulated by β-adrenergic agonists and cyclic AMP (Fisher et al., 1987).

1.8 Respiratory Distress Syndrome

Premature birth is the primary cause of morbidity and mortality in infants less than one month old (Griese and Westerburg, 1998). The major factor contributing to these deaths is neonatal respiratory distress syndrome (NRDS), which is caused by the immaturity of the lungs and a deficiency of pulmonary surfactant (Griese and Westerburg, 1998). Other health effects of NRDS include pulmonary oedema and leakage of plasma contents into the airway (Cott et al., 1987; Liu et al., 1997; Wang and Notter, 1998). There is also a risk of bronchiolar over-distension during inspiration, which can cause epithelial disruption in the airways (Robertson, 1984). Levels of
oedema and unresorbed pulmonary fluid are greater during the early stages of the
disease (DeSa, 1969). Most cases of NRDS are caused by a functionally immature
respiratory system, which produces far less surfactant than is required (Griese, 1999).

Infants with NRDS exhibit a classic histopathological pattern, with liquid- and
fibrin-filled and/or collapsed alveoli and over-distended, aerated terminal airways
(Robertson, 1984). This pattern is known as atelectasis and is caused as the air-liquid
interface rises to the bronchiolar level at end-expiration, as well as increased resistance
to aeration due to capillarity in the conducting airways. NRDS is also known as hyaline
membrane disease, as hyaline membranes are found lining the terminal airways (Griese,
1999).

1.8.1 Biochemistry of NRDS

Avery and Mead (1959) were the first to observe a deficiency of surfactant in the
watery lung extract of infants with what was, at the time, known as hyaline membrane
disease. Infants with NRDS have a complete lack, or greatly reduced amount, of both
PC and PG as well as decreased levels of surfactant phospholipids and SP-A. These
result in an increased alveolar surface tension (Griese, 1999). Infants with NRDS who
die within the first 48 hours of life have been shown to have a specific lack of SP-A
(Markgraf et al., 1990). Other surfactant-associated proteins are not as reduced in
concentration as the lipids, which can modify the activity of surfactant and cause further
problems (Ikegami et al., 1984; Seeger et al., 1985). These problems possibly arise due
to competition or chemical interactions between the proteins and other components of
surfactant.

A hereditary deficiency of SP-B can also cause NRDS, due to changes in the
surfactant protein composition (Nogee et al., 1994). A single amino acid substitution in
the gene coding for SP-B is sufficient to cause NRDS symptoms. Deficiency of SP-C can also reduce the stability of surfactant (Glasser et al., 2001).

1.9 Proposed study

The purpose of the present study was to attempt to identify and better understand the nature of fibroblast-pneumocyte factor. The direct use of FPF to treat NRDS would present a viable alternative to current treatments, and avoid problems associated with inhibition of FPF production by compounds such as insulin and dihydrotestosterone. The study required the optimization of existing protocols for production and detection of the protein via tissue culture. From this, a refined method was established which will improve reproducibility of future results. Several possible stimulants of FPF production were tested to determine which would have the greatest indirect effect on surfactant synthesis. Conditioned medium produced by exposure of cultured fetal lung fibroblasts to these stimulants was then analyzed in an attempt to identify FPF.

Recent literature had indicated that neuregulin-1β is the most likely candidate for FPF (Dammann et al., 2003). Other studies had identified a probable role for NRG1 in lung development (Patel et al., 2000; Liu et al., 2004), and further study of the neuregulin system showed that it could fulfill the functions of FPF. This protein was analyzed using HPLC and quadrupolar ion trap mass spectrometry, and the resultant spectra used to search for FPF in the fibroblast-conditioned media (FCM) produced using the tissue culture system. This method was also used to quantify the amount of neuregulin-1β present in FCM, and to detect any change in its concentration when fibroblasts were exposed to dexamethasone.

The observation that NRG1 could indeed be FPF prompted the examination of similar proteins for possible roles in the surfactant system. The effect of insulin on the production of surfactant has been well-researched (Gross et al., 1980; Snyder and
Mendelson, 1987), and due to similarities to both insulin and the neuregulins (Zorzano et al., 2003) and a demonstrated role in lung development (Maitre et al., 1995), it is possible that insulin-like growth factors (IGFs) may also exert an influence on both synthesis and secretion of surfactant. Tissue culture-based experiments involving the addition of IGF-II, as well as other known agonists and antagonists, were conducted.
Chapter 2. Materials and methods

2.1 Animals

Nineteen-day pregnant rats of the Wistar strain of *Rattus norvegicus* were used for all experiments. The full gestation period of these animals is 22 days, so fetuses were delivered approximately three days premature. Animals were supplied by the Animal Resource Centre (Murdoch, Western Australia). Their mating protocol involves caging male and female rats overnight, followed by vaginal smearing the next morning. If sperm is detected, then conception is considered to have occurred. This is accurate to within eight hours of actual conception and is considered to be day zero. All experiments complied with National Health and Medical Research Council guidelines and were approved by the Murdoch University Animal Experimentation Ethics Committee.

2.2 Preparation of materials for cell culture

2.2.1 Materials

Eagle’s minimal essential medium (MEM) and newborn bovine serum were obtained from Thermo Fisher Scientific, Waltham, MA, USA. Penicillin G, streptomycin sulfate, solubilised β-amphotericin (Fungizone) and 3,5-diaminobenzoic acid were supplied by Sigma-Aldrich, St. Louis, MO, USA. L-glutamine was purchased from Invitrogen Corp., Carlsbad, CA, USA. Chloramphenicol was obtained from NBL Gene Sciences Ltd., Northumberland, UK. Collagenase A (*Clostridium histolyticum*) was a product of F. Hoffman-La Roche Ltd., Basel, Switzerland. FSA Laboratories, Leicester, UK supplied ‘Hi-Safe II’ scintillant. Filters were purchased from Millipore Pty. Ltd., Billerica, MA, USA. All radioisotope-labelled
compounds were supplied by GE Healthcare, Little Chalfont, UK. All other reagents were of analytical grade.

2.2.2 Charcoal treatment of newborn calf serum

Newborn calf serum (NBCS) was incubated with sterile, acid-washed charcoal (50 mg.mL\(^{-1}\) serum) for 30 minutes in a 37°C shaking water bath, to remove endogenous steroids. Charcoal was then removed by two successive centrifugations at 27000 g for 45 minutes at 4°C in a Beckman J2-21M/E centrifuge using a JA-20 rotor (Beckman Instruments, Palo Alto, CA, USA). Serum was filtered through a 0.44 µm Millipore filter to remove remaining charcoal, and then through a 0.22 µm Millipore filter to sterilize. Charcoal-treated newborn calf serum was stored in 11.5 mL aliquots at -20°C.

2.2.3 Preparation of rat immunoglobulin G

Rat immunoglobulin G (IgG) was purified using the method of Hudson and Hay (1976). Serum was obtained from whole blood via centrifugation, and stored at -20°C until purification. The serum was diluted 1:2 with 0.145 M NaCl, followed by the addition of 100% (w/v) (NH\(_4\))\(_2\)SO\(_4\) (buffered to pH 7.2) to a final concentration of 45%. This mixture was stirred for 30 minutes at room temperature and the precipitate collected via centrifugation (at 1000 g for 15 minutes). The precipitate was washed with 45% (NH\(_4\))\(_2\)SO\(_4\) and re-dissolved to the original volume in phosphate-buffered saline (PBS) (pH 7.2). PBS contains 136.9 mM NaCl, 8.1 mM Na\(_2\)HPO\(_4\), 2.68 mM KCl and 1.47 mM K\(_2\)HPO\(_4\). This new mixture was centrifuged at 1000 g for 15 minutes to remove any remaining insoluble material. The supernatant was adjusted to 40% (NH\(_4\))\(_2\)SO\(_4\) and the precipitate washed with a 40% (NH\(_4\))\(_2\)SO\(_4\) solution. This precipitate was re-dissolved in a minimum volume of PBS and dialyzed at 4°C against
two changes of PBS (at least 12 hours per change). Any precipitate was removed via centrifugation and the purified material was lyophilized and stored at 4°C.

2.2.4 Preparation of balanced salts solution

Balanced salts solution (BSS) was prepared by mixing 900 mL MilliQ water, 50 mL 20x saline solution and 50 mL of 20x buffer solution. The solution was adjusted to pH 7.4 and filtered through a 0.22 µm Millipore filter to sterilize. 20x saline solution contains 2.74 M NaCl, 54 mM KCl, 20 mM CaCl$_2$ and 20 mM MgCl$_2$. 20x buffer solution contains 119 mM NaHCO$_3$, 111 mM D-glucose, 27 mM Na$_2$HPO$_4$ and 3 mM NaH$_2$PO$_4$.

2.2.5 Preparation of culture media

Eagle’s minimal essential medium was reconstituted as specified by the manufacturer, and supplemented with 0.2% NaHCO$_3$. This mixture was then adjusted to pH 7.4. L-glutamine, penicillin G and streptomycin sulphate were added to final concentrations of 2.6 mM, 100 IU.mL$^{-1}$ and 100 µg.mL$^{-1}$, respectively. Medium was sterilized by filtration through a 0.22 µm Millipore filter and 3.23 µg.mL$^{-1}$ of Fungizone was then added. This solution is termed MEM$^+$. To produce MEM-complete (MEMc), newborn calf serum was added to a concentration of 10%. Due to a persistent contamination by a chloramphenicol-sensitive bacterium in late 2005, 50 µg.mL$^{-1}$ of this antibiotic was added to the medium from November 2005.

2.3 Isolation of fibroblasts and type II pneumocytes

Sterile techniques were used during all cell isolation procedures, all of which were performed at room temperature unless otherwise stated. Nineteen-day pregnant rats were killed by anaesthesia with 80:20 O$_2$:CO$_2$ followed by asphyxiation with
100% CO₂. Fetuses were delivered by Caesarean section. Fetal lungs were removed and placed in a Petri dish of warm BSS. Any other tissues, such as the heart and thymus, were removed and discarded. Lungs were subsequently minced using a McIlwain tissue chopper (The Mickle Laboratory Engineering Co., Surrey, UK) set at 0.1 mm with two traverses, one perpendicular to the other. Tissue was then placed in a sterile flask containing 0.75 mL warm BSS per lung and collagenase (approximately 0.26 U.mg⁻¹, slight variation between batches) was added to a final concentration of 0.2 mg.mL⁻¹. The flask was gassed with carbogen (95:5 O₂:CO₂) for 90 seconds to ensure cell survival, and incubated for 20 minutes in a 37°C shaking water bath.

Following incubation the tissue was filtered through two layers of sterile French voile gauze into centrifuge tubes. Additional warm BSS was added to ensure that all tissue was transferred from the culture flask to the tube. The mixture was centrifuged at 20 g for two minutes, supernatant was removed and replaced with warm BSS, and the washing procedure repeated. Cells were resuspended in warm serum-free MEM⁺ (10 mL per 20 lungs) and plated onto 6 cm (diameter) Corning tissue culture plates (3 mL per plate). These plates were incubated for 30 minutes at 37°C in a humidified CO₂ incubator (5% CO₂, 95% air) to allow adhesion of fibroblasts. Following incubation, non-adhering cells were suspended by gentle swirling and removed from the plates. To each plate, 3 mL of MEM-complete was added.

The non-adhering cells were used to isolate type II pneumocytes, according to the method of Dobbs et al. (1986). Type II cells lack Fc receptors, whereas most other lung cells possess these receptors and so adhere to plates coated with IgG. Bacteriological plates (Falcon 1001, Falcon Labware, Becton Dickinson, Lincoln Park, NJ, USA) were coated with 3 mL of rat IgG solution (0.5 mg.mL⁻¹) at least 24 hours prior to use, and dried at room temperature under ultraviolet light to maintain sterility. Plates were washed twice with 10 mL of BSS and non-adhering cells from the fibroblast
cultures were transferred onto these plates. IgG plates were incubated in the humidified CO₂ incubator for 60 minutes. Following incubation, plates were removed from the incubator and type II cells were resuspended by gentle panning (so as not to detach other cell types). Type II cells were transferred to a sterile flask and diluted with MEM⁺ to a concentration of 0.185 lungs.mL⁻¹. NBCS was then added to a final concentration of 10%. 3 mL of this cellular suspension (equivalent to 0.5 lungs) was plated onto 6 cm (diameter) Primaria tissue culture plates. After 2-3 days these plates are considered to be confluent cultures consisting of at least 90% type II cells (Plates 2.1, 2.2). This method was validated previously using Papanicolaou staining (Sen, 1991).

2.4 Conditions of cell culture

Cultures were maintained in a water-saturated atmosphere of 5% CO₂ and 95% air and at a temperature of 37°C. The incubator was a Forma Scientific 3157 water-jacketed CO₂ incubator (now supplied by Thermo Fisher Scientific, Waltham, MA, USA). The carbon dioxide level was monitored using a Bacharach Fyrite test kit (Bacarach Instruments Co., Pittsburg, PA, USA). To help maintain a sterile environment, 500 mL of Microshield 5 antiseptic solution (Johnson & Johnson, East London, UK) was added to the water pan, which was changed every month.

Type II cultures were given a media change at 24 hours post-plating. This involved removing media from the plates, washing with 2 mL of BSS and adding 3 mL of MEM⁺ to each plate. Fibroblast cultures were given a media change after 48 hours of culture, and every 48 hours (72 hours over weekends) after that, for 14 days. BSS and MEM⁺ were pipetted into the corner of the plate, so as not to detach cells.

Since the conclusion of tissue culture experiments for this project, it has come to light that there was an error in the laboratory techniques that had been provided at the beginning of the project. Both type II and fibroblast cultures should receive a media
Plate 2.1: Phase contrast photomicrograph of a typical 19-day fetal type II pneumocyte culture.

Type II pneumocytes were isolated and cultured from 19-day fetal rats. A phase contrast photomicrograph of cells was taken after four days in culture using a Kodak Ektachrome 160 tungsten film on an Olympus IMT-2 inverted phase microscope. The overall magnification (including photographic enlargement) was 880x.
Plate 2.2: Transmission electron micrograph of a typical 19-day fetal type II pneumocyte culture.

Type II pneumocytes were isolated and cultured from 19-day fetal rats. A transmission electron micrograph of cells was taken after four days in culture using a Philips CM100 electron microscope. The overall magnification (including photographic enlargement) was 4680x.
change 24 hours after plating, and then every 48 hours, regardless of weekends. Failure to follow this regimen can greatly affect the yield of cells on fibroblast plates.

2.5 Preparation of fibroblast-conditioned medium

After 15 days in culture, fibroblast plates were considered confluent, and free of any type II cell contamination (Plate 2.3), as judged by microscopy. At this time, media was removed from the plates and they were washed twice with 2 mL of BSS. 1.7 mL of MEM was added to each plate as well as 17 µL of additive + vehicle (test) or vehicle only (control). Plates were returned to the incubator for a further 24 hours, after which fibroblast-conditioned medium was collected, transferred to sterile bottles and stored at -80°C. Cells were then harvested from the plates for DNA assay using the method described for synthesis experiments (2.6).

2.6 Initial synthesis experimental method

Fibroblast-conditioned medium (FCM) produced by the above method should contain fibroblast-pneumocyte factor (FPF) (Smith and Post, 1989). To confirm the presence and activity of the protein, it was necessary to test its ability to stimulate synthesis of phosphatidylcholine (PC) by type II cells. The following method has been used in this laboratory for over a decade, and is based on the lipid extraction method of Bligh and Dyer (1959).

FCM was removed from the -80°C freezer and thawed at room temperature. This was demonstrated by Smith (1981a) to have no effect on activity of FPF. FCM was then heat-treated in a 65°C water bath for 60 minutes to remove known inhibitory factors. After cooling to room temperature, it was filtered through a 0.22 µm Millipore syringe filter and diluted 1:4 with MEM (0.8 mL FCM: 2.4 mL MEM). To this diluted
Plate 2.3: Phase contrast photomicrograph of a typical 19-day fetal fibroblast culture.

Pulmonary fibroblasts were isolated and cultured from 19-day fetal rats. A phase contrast photomicrograph of the cells was taken after 15 days culture using a Kodak Ektachrome 160 tungsten film on an Olympus IMT-2 inverted phase microscope. The overall magnification (including photographic enlargement) was 1240x.
media, 24 µL of either additive + vehicle or vehicle only was added, depending on the FCM required. Bottles were thoroughly vortexed to ensure adequate mixing.

Type II plates were removed from the incubator after approximately 72 hours of culture and the media removed. Plates were washed twice with 2 mL of BSS and 3 mL of diluted, supplemented fibroblast-conditioned media was added to each plate. In addition, control plates were produced by adding 3 mL of MEM + plus 30 µL of either additive + vehicle or vehicle only. Plates were returned to the incubator for a further 21 hours incubation.

A solution of 7 µCi.mL⁻¹ [methyl-³H]-choline chloride in MEM⁺ was prepared. The labeled choline, supplied as an ethanol solution, was dried under nitrogen prior to the addition of MEM⁺. Type II plates were removed from the incubator and 500 µL of this [³H]-choline chloride solution was added to each. Plates were swirled to mix and returned to the incubator for a further 6 hours. This incubation time was used as it represents the middle of the linear phase of choline incorporation.

At the conclusion of incubation, plates were removed from the incubator and placed on ice to prevent further lipid synthesis. Media was removed from the plates and discarded. Plates were washed twice with 1 mL of BSS, with cells being scraped from the plate with a spatula at each step. The wash buffer was collected, along with the cells, into a pre-weighed conical centrifuge tube, which was kept on ice until all plates had been harvested. Weighing of tubes provides a preliminary indication of cultures with a poor yield. Tubes were centrifuged at 1000 g and 4°C for two minutes and the supernatant was removed by aspiration and discarded. Centrifuge tubes were again weighed, to allow calculation of the weight of cells harvested from each plate. 400 µL of BSS was added to each tube and the tubes were sonicated using a Braunsonic 1510 sonicator with a microprobe (B. Braun, Melsungen, Germany) at 10 watts for 10 seconds to disrupt the cells.
From this sonicate, two 50 µL aliquots were taken and dried in a 50°C oven to determine DNA content. Lipids were extracted from cells using the method of Bligh and Dyer (1959) as follows: A further 200 µL aliquot of the sonicate was taken and added to a tube containing 2 mL methanol, 1 mL chloroform, 600 µL of MilliQ-H$_2$O, 50 µL of L-3-phosphatidylcholine-$\text{1,2-di[1-}^{14}\text{C]}$palmitoyl (approximately 10000 dpm) as a recovery standard and 20 µL of 2.5 mg.mL$^{-1}$ phosphatidylcholine as a carrier. A further 1 mL of chloroform and 1 mL of MilliQ-H$_2$O were added, the tubes vortexed for 10 seconds and placed in a 4°C refrigerator for at least 48 hours.

The amount of DNA was determined using a method adapted from Hinegardner (1971). DNA assay tubes were removed from the oven after at least 24 hours and 100 µL of a 0.3 g.mL$^{-1}$ 3,5-diaminobenzoic acid solution was added to each. Tubes were placed back in the 50°C oven for a further 45 minutes to allow product development. After this, 1.5 mL of 1.0 M HCl was added to each tube. Tubes were read in a Perkin-Elmer LS-50 luminescence spectrofluorometer (Perkin-Elmer, Waltham, MA, USA) with excitation wavelength at 415 nm and emission wavelength at 505 nm.

During the 48 hours in the refrigerator, the chloroform:methanol extract separated into two layers, with the lower layer containing lipid. The upper water/methanol layer was removed via aspiration and a 400 µL aliquot of the lower layer was taken and placed into a scintillation vial. The contents of the vial were dried by evaporation for two hours and 3 mL of scintillant was added to each vial. Vials were vortexed and left to stand at room temperature for 24 hours prior to counting in a Beckman LS3801 scintillation counter (Beckman Instruments, Palo Alto, CA, USA). Three 50 µL samples from the $[^{14}\text{C}]$-labelled phosphatidylcholine standard were also counted. Tubes were counted for both ^3H and ^{14}C. To determine synthesis of phospholipids, several calculations were performed using data from the experiment.
Chapter 2 Methods

The first calculation was:

\[\frac{^3H \text{ incorporated (dpm)}}{^14C \text{ input (dpm)}} \times \frac{^14C \text{ recovered (dpm)}}{^14C \text{ recovered (dpm)}} \]

This determined the recovery of \(^{14}C\), which was used to obtain the full count for \(^3H\) at 100% recovery. DNA, which was calculated from 50 µL of sonicate, was multiplied by four to give the total from 200 µL of sonicate, the same volume used for lipid extraction. The \(^3H\) value, which had been corrected for recovery, was then divided by the DNA in 200 µL to give dpm incorporated/ng DNA\(^{-1}\). Duplicates were performed for all experiments, and these were averaged to give a mean value. By comparing the control and test values for both direct and indirect treatments, the percentage increase due to FPF was determined. The choline-labelled material produced using this method was previously characterised by TLC (Sen, 1991) and shown to consist almost exclusively (>85%) of phosphatidylcholine.

2.7 Early synthesis results

2.7.1 Dexamethasone

Dexamethasone has been demonstrated to cause a 2.5-fold increase in PC synthesis in rat lung cultures (Gross and Wilson, 1982), but direct exposure of type II cells to dexamethasone has no effect. However, when fibroblasts cells are exposed to dexamethasone and the resultant conditioned medium exposed to type II cultures, PC synthesis is augmented (Smith and Post, 1989). Dexamethasone (Sigma-Aldrich, St. Louis, MO, USA) was stored at 4°C as a 10 µM solution in propylene glycol (Ajax Chemicals, Auburn, NSW, Australia). Following the method described in 2.5, dexamethasone was added to confluent fibroblast plates to a final concentration of 100 nM, as this concentration had previously been shown to give maximal stimulation
Control plates substituted propylene glycol. The resultant FCM was tested for its ability to increase PC synthesis according to the method described in 2.6.

Thirteen pairs of control and test FCM were tested and the results obtained were very inconsistent (Table 2.1). Rather than the expected increase in synthesis, both the direct and indirect treatments showed a mean decrease (14.91 and 26.07% respectively).

Table 2.1: The direct and indirect effect of dexamethasone on the augmentation of PC synthesis by type II pneumocytes.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>PC Synthesis (dpm/ng DNA)</th>
<th>Difference</th>
<th>P-value</th>
<th>Mean type II pneumocyte DNA (µg/plate)</th>
<th>Mean fibroblast DNA level (µg/plate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct (13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>40.05 ± 7.61</td>
<td>↓ 14.91%</td>
<td>22.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>34.08 ± 6.56</td>
<td>↓ 14.91%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indirect (13)</td>
<td></td>
<td></td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>36.29 ± 7.16</td>
<td>↓ 26.07%</td>
<td>24.21</td>
<td></td>
<td>15.37</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>26.83 ± 5.84</td>
<td>↓ 26.07%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primary cultures of lung fibroblasts were grown to near confluence, followed by 24 hours incubation in the presence or absence of 100 nM dexamethasone in MEM\(^+\). The fibroblast-conditioned media (FCM) were collected and stored at -80°C. Prior to use, the media were thawed and incubated at 65°C for one hour, cooled to room temperature and filter-sterilized to remove detached cells and cellular debris. The media were then diluted 1:4 with MEM\(^+\). The effect on PC synthesis by type II pneumocytes was investigated by exposing the cells either to the FCM (indirect) or to MEM\(^+\), with and without dexamethasone (direct). The data represent the mean ± SE. The number of replicates examined for each condition is indicated in parentheses, and each replicate comprised four cultures. Data were compared using single-factor ANOVA.
PC synthesis values (expressed in dpm.ng DNA\(^{-1}\)) were very high for these experiments, being almost double the magnitude previously observed (Sen and Cake, 1991). Standard error values were also very high, as much as 21.8\% in the case of indirect dexamethasone treatments. Single-factor ANOVA (p = 0.18) indicated no significant difference between the direct and indirect treatments.

The manufacturer of the dexamethasone was contacted and confirmed that, while the product has no specific ‘expiry date’, its activity could not be guaranteed more than six months after purchase. As the dexamethasone used was far older than this, it is likely that poor quality reagents were the cause of the inconsistent results obtained in this set of experiments.

2.7.2 PMA

The inconsistent results obtained with dexamethasone led to consideration of possible alternative stimulants of FPF production. 12-O-Tetradecanoylphorbol-13-acetate, more commonly known as phorbol 12-myristate 13-acetate (PMA), is a tetracyclic diterpene isolated from croton oil (Hecker, 1968) that has previously been shown to have a significant effect on PC synthesis via fibroblasts (Sen, 1991). PMA acts via protein kinase C, meaning that it is likely to stimulate FPF production via a different mechanism than glucocorticoids. These factors made it an ideal choice for a second series of experiments. PMA was stored at 4°C as a 0.5 mg.mL\(^{-1}\) solution in dimethylsulphoxide (DMSO) (both from Sigma-Aldrich, St Louis, MO, USA). This solution was diluted with 1\% DMSO in BSS to give a working concentration of 2 µg PMA.mL\(^{-1}\). The vehicle added to the plates was 1\% DMSO in BSS. FCM was generated as described in 2.5 and tested as in 2.6.

Fourteen pairs of control and test FCM were tested, and again the results were very inconsistent (Table 2.2). Both the direct and indirect tests showed a mean decrease
Table 2.2: The direct and indirect effect of phorbol 12-myristate 13-acetate on the augmentation of PC synthesis by type II pneumocytes.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>PC Synthesis (dpm/ng DNA)</th>
<th>Difference</th>
<th>P-value</th>
<th>Mean type II pneumocyte DNA (µg/plate)</th>
<th>Mean fibroblast DNA level (µg/plate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct (14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>21.07 ± 6.57</td>
<td>↓ 24.35%</td>
<td>35.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMA</td>
<td>15.94 ± 3.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indirect (14)</td>
<td></td>
<td></td>
<td>0.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>21.97 ± 5.54</td>
<td>↓ 14.66%</td>
<td>37.25</td>
<td></td>
<td>16.08</td>
</tr>
<tr>
<td>PMA</td>
<td>18.75 ± 4.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primary cultures of lung fibroblasts were grown to near confluence, followed by 24 hours incubation in the presence or absence of 2 µg.mL⁻¹ phorbol 12-myristate 13-acetate (PMA) in MEM⁺. The fibroblast-conditioned media (FCM) were collected and stored at -80°C. Prior to use, the media were thawed and incubated at 65°C for one hour, cooled to room temperature and filter-sterilized to remove detached cells and cellular debris. The media were then diluted 1:4 with MEM⁺. The effect on PC synthesis by type II pneumocytes was investigated by exposing the cells either to the FCM (indirect) or to MEM⁺, with and without PMA (direct). The data represent the mean ± SE. The number of replicates examined for each condition is indicated in parentheses, and each replicate comprised four cultures. Data were compared using single-factor ANOVA.
in PC synthesis (24.35 and 14.66% respectively). Standard error values were again very high, with direct control treatments having an error of 31.8%. Single-factor ANOVA (p = 0.93) showed no significant difference between direct and indirect response to PMA.

2.8 Final synthesis experimental method

The erratic results obtained from the first 29 experiments indicated a possible problem with the experimental methodology. To improve accuracy, several steps were added to the method, mostly to monitor the addition of \[^{3}\text{H}\]-choline chloride to the plates. The entire method for synthesis experiments is presented again, with alterations and additions noted in bold.

FCM was removed from the -80°C freezer and thawed at room temperature. This was demonstrated by Smith (1981a) to have no effect on activity of FPF. FCM was then heat-treated in a 65°C water bath for 60 minutes to remove known inhibitory factors. After cooling to room temperature, it was filtered through a 0.22 µm Millipore syringe filter and diluted 1:4 with MEM\(^+\) (0.8 mL FCM: 2.4 mL MEM\(^+\)). To this diluted media, 24 µL of either additive + vehicle or vehicle only was added, depending on the FCM. Bottles were thoroughly vortexed to ensure adequate mixing.

Type II plates were removed from the incubator after approximately 72 hours of culture and the media removed. Plates were washed twice with 2 mL of BSS and 3 mL of diluted, supplemented fibroblast-conditioned media was added to each plate. In addition, control plates were produced by adding 3 mL of MEM\(^+\) plus 30 µL of either additive + vehicle or vehicle only. Plates were returned to the incubator for a further 21 hours incubation.

A solution of 7 µCi.mL\(^{-1}\) [methyl-\(^{3}\text{H}\)] choline chloride in MEM\(^+\) was prepared. The labeled choline, supplied as an ethanol solution, was dried under nitrogen prior to
the addition of MEM+. The flask was incubated in a 37°C shaking water bath for 10 minutes to ensure all of the choline chloride had gone into solution. Media was removed from type II plates to sterile tubes, and 500 µL of [3H]-choline chloride solution added to each. Tubes were vortexed and a 50 µL sample of each taken for determination of initial 3H content. In addition, three 50 µL samples of the [3H]-choline chloride solution were taken to be counted as well. Media was returned to the plates, which were placed in the incubator for a further 6 hours. Samples for counting were placed in scintillation vials, 3 mL of scintillant was added to each, vials were vortexed and they were left in the dark for at least 24 hours prior to counting.

At the conclusion of incubation, plates were removed from the incubator and placed on ice to prevent further lipid synthesis. Media was removed from the plates and discarded. Plates were washed twice with 1 mL of BSS, with cells being scraped from the plate with a spatula at each step. The wash buffer was collected, along with the cells, into a pre-weighed conical centrifuge tube, which was kept on ice until all plates had been harvested. Weighing of tubes provides a preliminary indication of cultures with a poor yield. Tubes were centrifuged at 1000 g and 4°C for two minutes and the supernatant was removed by aspiration and discarded. Centrifuge tubes were again weighed, to allow calculation of the weight of cells harvested from each plate. 400 µL of BSS was added to each tube and the tubes were sonicated using a Braunsonic 1510 with a microprobe at 10 watts for 10 seconds to disrupt the cells.

From this sonicate, two 50 µL aliquots were taken and dried in a 50°C oven to determine DNA content. Lipids were extracted from cells using the method of Bligh and Dyer (1959) as follows: A further 200 µL aliquot of the sonicate was taken and added to a tube containing 2 mL methanol, 1 mL chloroform, 600 µL of MilliQ-H2O, 50 µL of L-3-phosphatidylcholine-1,2-di[1-14C]palmitoyl (approximately 10000 dpm) as a
recovery standard and 20 μL of 2.5 mg.mL\(^{-1}\) phosphatidylcholine as a carrier. **This mixture was vortexed for 10 seconds and left to stand at room temperature for 10 minutes.** A further 1 mL of chloroform and 1 mL of MilliQ-H\(_2\)O were added, the tubes vortexed for 10 seconds and placed in a 4°C refrigerator for at least 48 hours. The total volume of the organic layer was 2.05 mL.

The amount of DNA was determined using a method adapted from Hinegardner (1971). DNA assay tubes were removed from the oven after at least 24 hours and 100 μL of a 0.3 g.mL\(^{-1}\) 3,5-diaminobenzoic acid solution was added to each. Tubes were placed back in the 50°C oven for a further 45 minutes to allow product development. After this, 1.5 mL of 1.0 M HCl was added to each tube. Tubes were read in a Perkin-Elmer LS-50 luminescence spectrofluorometer (Perkin-Elmer, Waltham, MA, USA) with excitation wavelength at 415 nm and emission wavelength at 505 nm.

During the 48 hours in the refrigerator, the chloroform:methanol extract separated into two layers, with the lower layer containing lipid. The upper water/methanol layer was removed via aspiration and a 400 μL aliquot of the lower layer was taken and placed into a scintillation vial. The contents of the vial were dried by evaporation for two hours and 3 mL of scintillant was added to each vial. Vials were vortexed and left in the dark at room temperature for 24 hours prior to counting in a Beckman LS3801 scintillation counter (Beckman Instruments, Palo Alto, CA, USA). Three 50 μL samples from the \(^{14}\)C-labelled phosphatidylcholine standard were also counted. Tubes were counted for both \(^{3}\)H and \(^{14}\)C, and in most cases were counted either two or three times to confirm values.

To determine synthesis of phospholipids, several calculations were performed using data from the experiment. The first calculation was:

\[
^{3}\text{H incorporated (dpm)} \times \frac{^{14}\text{C input (dpm)}}{^{14}\text{C recovered (dpm)}}
\]
This determined the recovery of 14C, which was used to obtain the full count for 3H at 100% recovery. DNA, which was calculated from 50 µL of sonicate, was multiplied by four to give the total from 200 µL of sonicate, the same volume used for lipid extraction. The 3H value, which had been corrected for recovery, was then divided by the DNA in 200 µL to give dpm incorporated.ng DNA$^{-1}$. Duplicates were performed for all experiments and these were averaged to give a mean value. By comparing the control and test values for both direct and indirect treatments, the percentage increase due to FPF was determined. The choline-labelled material produced using this method was previously characterised by TLC (Sen, 1991) and shown to consist almost exclusively (>85%) of phosphatidylcholine.

Results were tabulated and graphed using Microsoft Excel 2003 (v11.8117) and statistics calculated using SPSS for Windows 14.0.1.

2.9 Results from modified method

2.9.1 Dexamethasone

A new batch of dexamethasone (also from Sigma-Aldrich) was purchased and used as described in 2.7.1. Sixteen pairs of control and test FCM were tested using the modified method (2.8) and the results obtained were much more consistent (Table 2.3). Direct treatment with dexamethasone showed a mean increase of 1.77%, while indirect treatment yielded a 9.17% mean increase. Standard error values were much lower than in the earlier experiments, with the highest being 9.9% over 16 experiments. PC synthesis values (expressed in dpm.ng DNA$^{-1}$) for these experiments were of similar magnitude as those observed previously (Sen and Cake, 1991). Single-factor ANOVA ($p = 0.02$) showed a significant difference between the stimulatory effect of dexamethasone exposure in direct and indirect treatments, indicating that the synthesis
experiments were now a reliable method for detecting the presence of FPF. FCM from these experiments was stored at -80°C for future use in isolating FPF (3.2.1).

Table 2.3: The direct and indirect effect of dexamethasone on the augmentation of PC synthesis by type II pneumocytes, utilizing the modified experimental method.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>PC Synthesis (dpm/ng DNA)</th>
<th>Difference</th>
<th>P-value</th>
<th>Mean type II pneumocyte DNA (µg/plate)</th>
<th>Mean fibroblast DNA level (µg/plate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct (16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>28.34 ± 2.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>28.84 ± 2.84 ↑ 1.77%</td>
<td>31.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indirect (16)</td>
<td></td>
<td></td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>26.82 ± 2.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>29.28 ± 2.65 ↑ 9.17%</td>
<td>26.88</td>
<td>12.84</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primary cultures of lung fibroblasts were grown to near confluence, followed by 24 hours incubation in the presence or absence of 100 nM dexamethasone in MEM$. The fibroblast-conditioned media (FCM) were collected and stored at -80°C. Prior to use, the media were thawed and incubated at 65°C for one hour, cooled to room temperature and filter-sterilized to remove detached cells and cellular debris. The media were then diluted 1:4 with MEM$. The effect on PC synthesis by type II pneumocytes was investigated by exposing the cells either to the FCM (indirect) or to MEM$, with and without dexamethasone (direct). The data represent the mean ± SE. The number of replicates examined for each condition is indicated in parentheses, and each replicate comprised four cultures. Data were compared using single-factor ANOVA.
2.10 Experimental reliability

Several values were calculated to monitor the reliability of the experiments. Type II DNA values were converted to the total DNA per plate, to monitor cell yield from week to week. The mean amount of DNA per plate was also calculated for the fibroblast plates used in a given experiment. By taking a mean of 14C recovered and dividing it by the mean 14C input, the percentage recovery was calculated. This indicated what percentage of total lipids was being extracted and counted for each experiment. The three samples of the [³H]-choline chloride solution were also averaged to monitor the actual amount of ³H being added to the plates for each experiment. The samples taken from each plate immediately after the addition of ³H showed how much ³H was present on each plate at the beginning of incubation. Both of these ³H values were multiplied by 20 and divided by 2.22x10⁶ to convert to µCi.mL⁻¹. The ratio of total and plate ³H radioactivity was also monitored to ensure an accurate 1:7 dilution onto the plate.

It should be noted that although these changes were not implemented until the final five experiments using PMA, data for plate DNA and percentage recovery of lipids were being collected from the first dexamethasone experiment. This allowed these three values to be calculated for all experiments. Values relating to ³H radioactivity could only be calculated for the final five PMA experiments and the second batch of dexamethasone experiments.

To determine if any of the monitored parameters were influencing the results of the synthesis experiments, values for those experiments which gave a positive indirect effect (of FCM on PC secretion by type II cells) were compared with those which showed no indirect effect. Values were also compared between data sets (e.g. dexamethasone, PMA) to determine if the erratic results were due to these
parameters. All statistical comparisons were achieved using single-factor ANOVA, with a confidence level of 95%.

2.10.1 Type II pneumocyte cell density

Comparison of experiments that gave a positive indirect effect in response to the added agent with those that were unresponsive showed that overall there was no significant difference in type II cell density (p = 0.42) (Table 2.4). Standard error values were small, with a mean of 15.3%, indicating that density was consistent within experimental sets. However, there was a clear difference for the second batch of dexamethasone experiments, where the cultures which did not respond to the FCM had a significantly higher cell density of 36.20 µg.plate⁻¹, compared to 24.06 µg.plate⁻¹ for those plates which had a positive response (p = 0.04).

Table 2.4: Mean DNA level of type II cultures (µg.plate⁻¹) for experiments which gave a positive indirect response and those which did not. P-values were obtained using a single-factor ANOVA.

<table>
<thead>
<tr>
<th>Additive</th>
<th>DNA level (µg.plate⁻¹)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive response</td>
<td>No response</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>17.93 ± 2.31</td>
<td>26.16 ± 6.19</td>
</tr>
<tr>
<td>PMA</td>
<td>32.53 ± 5.48</td>
<td>39.14 ± 5.39</td>
</tr>
<tr>
<td>Dexamethasone (new)</td>
<td>24.06 ± 3.16</td>
<td>36.20 ± 4.36</td>
</tr>
</tbody>
</table>

Type II pneumocytes do not culture well from single cells, requiring large groups of cells to be plated. These clumps then spread out across the plate as culture time progresses (Tajbakhsh and Cake, unpublished observations). If the large clumps have not spread out by the time the plates are considered confluent and used for
experiments (i.e. after four days), results will be affected. Cells located on the exterior of the clumps will behave as expected, but those on the interior will not have the same exposure to stimulants (e.g. dexamethasone, FPF) and radiolabelled choline precursor. This means that both synthesis of PC and incorporation of 3H into that PC would be reduced. These interior cells would however contribute to the DNA extracted from the plate, and would therefore decrease the apparent synthesis of PC, which is calculated as dpm.ng DNA$^{-1}$. Visual observation of cultures has shown that for plates with very high cell density (often in excess of 40 μg.plate$^{-1}$) the cells are not distributed evenly across the plate, with many of these cellular clumps still present.

Purification of type II cells prior to plating is achieved through binding of other cells types to IgG, leaving only type II cells in suspension. Large clumps of cells are likely to contain other cells types, such as fibroblasts, and these will be transferred to the type II plate, as they are not exposed to IgG. This means that the type II plates will also contain contaminating fibroblasts which will be exposed as culture time progresses and the clumps spread out. This will have an effect on apparent PC synthesis for two reasons. Firstly, as with clumped type II cells, fibroblasts will not contribute to synthesis but will add to cell density, thereby reducing the calculated level of synthesis. Secondly, when exposed to dexamethasone any fibroblasts cells will produce FPF and thereby increase synthesis of PC in neighbouring type II cells. This latter effect should be cancelled out because of the addition of dexamethasone to all cultures (supplementation), but it is possible that response to dexamethasone may be reduced when fibroblast contamination is high. Confluent cell cultures have also been observed to down-regulate expression of receptors for growth factors (e.g. Csordas et al., 2000).

Following this investigation, the results from the second batch of dexamethasone experiments were analyzed again, this time separating them into those cultures where the cell density was less than 25 μg.plate$^{-1}$ and those where it exceeded this value.
(Table 2.5). This threshold value was determined by analysis based on response to dexamethasone and cell density. The indirect cultures with high cell density (mean = 35.05 µg.plate\(^{-1}\)) showed a 3.39% increase in synthesis from exposure to FCM, compared to those with cell density below the threshold value (mean = 17.80 µg.plate\(^{-1}\)) which showed a 17.56% increase. This result is highly significant (p = 0.003) and indicates that cell density had a considerable impact on the sensitivity of the cultures.

Further investigation using the FCM generated and tested via this method focused only on those samples that had been tested on type II cultures with a cell density below 25 µg.plate\(^{-1}\).

The density of cells on the type II plate may also have influenced the response of experiments using PMA, as the mean cell density for these experiments was 35.84 µg.plate\(^{-1}\). Comparison of cell density between experimental sets indicated that the mean concentration for PMA was significantly higher than for either of the dexamethasone sets (p = 0.01). In the case of the PMA experiments, where results were very inconsistent, it is possible that cell density was a major factor that was not being considered prior to the introduction of the revised method. Analysis of cell density indicates that this value should definitely be monitored in all future experiments to ensure consistency of results. Unfortunately, attempts to produce primary type II cultures with a consistent cell density have not been successful. Primary fibroblast cultures are required, as line cells do not show the same response (Smith, 1981a). It is possible that a cell line could be used to generate type II cultures, and this may improve reliability. Given that this would require a major alteration to the tissue culture procedures in use, this alternative was not explored in this study.
Table 2.5: The effect of dexamethasone on PC synthesis in type II pneumocytes taking the density of the type II pneumocyte cultures into consideration.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>PC Synthesis (dpm/ng DNA)</th>
<th>Difference</th>
<th>P-value</th>
<th>Mean type II pneumocyte DNA (µg/plate)</th>
<th>Mean fibroblast DNA level (µg/plate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 25 µg DNA plate⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct (8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>27.99 ± 5.82</td>
<td></td>
<td></td>
<td>16.29</td>
<td></td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>29.21 ± 6.08</td>
<td>↑ 4.36%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indirect (8)</td>
<td></td>
<td></td>
<td>0.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>22.95 ± 3.55</td>
<td></td>
<td></td>
<td>17.80</td>
<td>15.43</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>26.98 ± 4.14</td>
<td>↑ 17.56%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 25 µg DNA plate⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct (8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>29.20 ± 3.31</td>
<td></td>
<td></td>
<td>42.51</td>
<td></td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>28.79 ± 3.37</td>
<td>↓ 1.4%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indirect (8)</td>
<td></td>
<td></td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>30.31 ± 4.07</td>
<td></td>
<td></td>
<td>35.05</td>
<td>17.46</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>31.34 ± 4.15</td>
<td>↑ 3.39%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primary cultures of lung fibroblasts were grown to near confluence, followed by 24 hours incubation in the presence or absence of 100 nM dexamethasone in MEM⁺. The fibroblast-conditioned media (FCM) were collected and stored at -80°C. Prior to use, the media were thawed and incubated at 65°C for one hour, cooled to room temperature and filter-sterilized to remove detached cells and cellular debris. The media were then diluted 1:4 with MEM⁺. The effect on PC synthesis by type II pneumocytes was investigated by exposing the cells either to the FCM (indirect) or to MEM⁺, with and without dexamethasone (direct). The data represent the mean ± SE. The number of replicates examined for each condition is indicated in parentheses, and each replicate comprised four cultures. Data were compared using single-factor ANOVA.
2.10.2 Fibroblast plate cell density

Comparison of those cultures that gave a positive indirect effect with those that were unresponsive showed that overall there was no significant difference in cell density of the fibroblast cultures (p = 0.90) (Table 2.6). Standard error values were small, with a mean value of 15.1%, indicating that density was consistent between experiments using a given additive. A difference was found for the initial dexamethasone experiments, where positive experiments had a fibroblast density of 10.33 µg.plate\(^{-1}\) compared to 16.88 µg.plate\(^{-1}\) for those that did not respond (p = 0.03). These experiments were very inconsistent, and it is possible that the density of the fibroblasts was one of many factors adversely influencing the results. It is not clear how fibroblast cell density might affect the results, but it is likely to be due to similar issues as those discussed in 2.10.1. The basal level of FPF may be much higher in dense fibroblast cultures, potentially diminishing the observed response to dexamethasone. Conversely, insufficient numbers of cells on a given plate will mean that not enough FPF is produced to stimulate PC synthesis, while too many may limit exposure to stimulants.

A study currently being conducted by an Honours student under my co-supervision has indicated that the level of DNA per plate of fibroblast cultures may not be a reliable indicator of the quality of fibroblasts (in terms of their ability to proliferate). It has been observed that if media changes are not performed every 48 hours, the health of the fibroblast cells can be greatly affected (Ellison, unpublished data). These poor quality cells would still contribute to cell density as calculated using the amount of DNA, but are unlikely to contribute to FPF production. Given that the initial method used for these experiments did not stipulate media changes exactly 48 hours apart, it is possible that some of the fibroblast cultures were in poor health by the time FCM was being generated.
Table 2.6: Mean DNA level of fibroblast cultures (µg.plate⁻¹) for experiments which gave a positive indirect response and those which did not.

P-values were obtained using a single-factor ANOVA.

<table>
<thead>
<tr>
<th>Additive</th>
<th>DNA level (µg.plate⁻¹)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive response</td>
<td>No response</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>10.33 ± 1.80</td>
<td>16.88 ± 1.34</td>
</tr>
<tr>
<td>PMA</td>
<td>17.48 ± 1.91</td>
<td>15.02 ± 1.73</td>
</tr>
<tr>
<td>Dexamethasone (new)</td>
<td>14.02 ± 3.34</td>
<td>10.81 ± 2.66</td>
</tr>
</tbody>
</table>

2.10.3 Percentage recovery using [¹⁴C]-DPPC

Comparison of tests that gave a positive indirect effect with those that did not respond showed that overall there was no significant difference in the percentage recovery of the [¹⁴C]-DPPC internal standard (p = 0.90) (Table 2.7). Standard error values were very small with a mean of 4.4%, indicating that percentage recovery was extremely consistent throughout the entire study. Assuming complete recovery of [¹⁴C]-labelled standard and taking into account that only 400 µL of the chloroform layer was counted, the expected recovery is 100%. The mean value for recovery was 91.78%, showing that the method used is a very reliable way to assess surfactant synthesis. None of the individual experimental sets showed any significant variation in recovery, and comparison between data sets also showed no significant difference (p = 0.55). Percentage recovery did not influence the results obtained in any of the experiments conducted. This further indicates the reliability of the lipid extraction method, as the amount extracted from one experiment to another was consistent.
Table 2.7: Mean percentage recovery of the 14C-DPPC internal standard for experiments which gave a positive indirect response and those which did not. P-values were obtained using a single-factor ANOVA.

<table>
<thead>
<tr>
<th>Additive</th>
<th>14C-DPPC recovery (%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive mean</td>
<td>No response mean</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>95.55 ± 5.95</td>
<td>89.05 ± 7.80</td>
</tr>
<tr>
<td>PMA</td>
<td>87.05 ± 1.60</td>
<td>89.75 ± 1.25</td>
</tr>
<tr>
<td>Dexamethasone (new)</td>
<td>94.30 ± 2.40</td>
<td>95.00 ± 5.00</td>
</tr>
</tbody>
</table>

2.10.4 Initial 3H-choline chloride radioactivity

Comparison of tests that gave a positive indirect effect with those that did not respond showed that overall there was no significant difference in the radioactivity of the 3H-choline chloride solution that was prepared for synthesis experiments ($p = 0.15$) (Table 2.8). Standard error values were low, with a mean of 6.4%, indicating consistency between experiments using a given additive. A contributor to the inconsistency in the results for these experiments may be due to variability in the amount of 3H added to plates during each experiment.

The radioactivity of this stock 3H solution was significantly lower for the PMA experiments than for dexamethasone ($p = 0.000002$). The mean activity for the PMA experiments was 2.04 μCi.mL$^{-1}$ compared with 5.09 μCi.mL$^{-1}$ for dexamethasone. If insufficient 3H-choline chloride was supplied at the beginning of an experiment, it would mean that synthesis of labelled PC would be greatly limited, indicating that 3H activity may have been a major factor in the inconsistent results obtained during these experiments. The random nature of scintillation counting also means that lower values are more difficult to count accurately.
Table 2.8: Mean radioactivity of stock $[^3\text{H}]$-choline chloride solution ($\mu\text{Ci.mL}^{-1}$) for experiments which gave a positive indirect response and those which did not. P-values were obtained using a single-factor ANOVA.

<table>
<thead>
<tr>
<th>Additive</th>
<th>$[^3\text{H}]$-choline chloride radioactivity ($\mu\text{Ci.mL}^{-1}$)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive mean</td>
<td>No response mean</td>
</tr>
<tr>
<td>PMA</td>
<td>1.90 ± 0.09</td>
<td>2.17 ± 0.34</td>
</tr>
<tr>
<td>Dexamethasone (new)</td>
<td>4.80 ± 0.32</td>
<td>5.38 ± 0.16</td>
</tr>
</tbody>
</table>

The process of drying under nitrogen means that the $[^3\text{H}]$-choline will be dried onto the interior surface of the bottle and early results indicated that it does not go back into solution as quickly as previously thought. A study was undertaken to determine the optimum solubilization time for the $[^3\text{H}]$-choline solution. Triplicate $[^3\text{H}]$-choline solutions were prepared exactly as described in 2.8, and these solutions were placed in a shaking water bath at 37°C. Samples were taken for counting at 0, 5, 10, 15, 20, 30, 45 and 60 minutes. Scintillant was added and the samples were kept in the dark for 24 hours prior to counting. The study showed that the solution reached its highest activity (13.5% increase) after 10 minutes incubation (Figure 2.1), so it was decided in all future experiments to incubate the solution for 10 minutes prior to use. The addition of this step to the method meant that the activity could be monitored and kept consistent.
Figure 2.1 Radioactivity of $[^3]$H-choline chloride in MEM$^+$ solution at different times of incubation in a 37°C shaking water bath.

It should be noted that the intended activity of $[^3]$H-choline chloride in this stock solution was 7.0 μCi.mL$^{-1}$, which is much greater than the mean value of 4.55 μCi.mL$^{-1}$ obtained for these experiments. While the values obtained were very consistent, a value closer to the intended activity was not reliably obtained. This is possibly due to insufficient time being allowed for the $[^3]$H-choline to go back into solution following drying, or possibly due to a pipetting error. Pipettes were calibrated regularly, but $[^3]$H-choline chloride is provided in ethanol, and volatile solvents are often difficult to pipette accurately. It is also possible that the activity of the $[^3]$H-choline chloride solution changed over time. However, given that it is supplied as an ethanol solution, activity would be expected to increase over time as ethanol evaporated. For these experiments, it was decided that a consistent value was more important than the desired radioactivity, so the issue was not explored further.
2.10.5 Plate $[^3]$H-choline chloride radioactivity

Comparison of tests that gave a positive indirect effect with those that did not respond showed that overall there was no significant difference in the radioactivity of the $[^3]$H-choline chloride on each plate at the beginning of an experiment ($p = 0.35$) (Table 2.9). Standard error values were very low, with a mean of 4.7%, indicating consistency between experiments using a given additive. This indicates that the amount of $[^3]$H-choline added to each plate was not likely to have been affecting the results obtained in any given experimental set. As with the activity of the stock $[^3]$H solution, values for this parameter were less than the expected value of 1.0 μCi.mL$^{-1}$.

The activity of $[^3]$H solution in the cultures was significantly lower for the PMA experiments than for dexamethasone ($p = 0.001$). The mean activity for the PMA experiments was 0.47 μCi.mL$^{-1}$ compared with 0.69 μCi.mL$^{-1}$ for dexamethasone. This is clearly related to the lower activity of the initial $[^3]$H-choline chloride solution, and will be discussed further in 2.10.6.

Table 2.9: Mean radioactivity of $[^3]$H-choline chloride solution on individual plates (μCi.mL$^{-1}$) for experiments which gave a positive indirect response and those which did not. P-values were obtained using a single-factor ANOVA.

<table>
<thead>
<tr>
<th>Additive</th>
<th>$[^3]$H-choline chloride radioactivity (μCi.mL$^{-1}$)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive mean</td>
<td>No response mean</td>
</tr>
<tr>
<td>PMA</td>
<td>0.51 ± 0.01</td>
<td>0.44 ± 0.04</td>
</tr>
<tr>
<td>Dexamethasone (new)</td>
<td>0.65 ± 0.04</td>
<td>0.73 ± 0.02</td>
</tr>
</tbody>
</table>
2.10.6 3H Ratio

From analysis of the plate 3H radioactivity, it is clear that none of the values were close to the desired value of 1.0 μCi.mL$^{-1}$. However, because the initial activity was much lower than expected, this value cannot be taken alone as an indication of consistency. Instead, the ratio of the two values must be considered to determine if the appropriate dilution is being made onto the plate. This value is expressed as:

\[
\frac{\text{plate radioactivity}}{\text{stock radioactivity}}
\]

The desired value is a ratio of 0.143, with values higher than this representing a higher plate concentration than expected and lower values indicating a low radioactivity.

Comparison of tests that gave a positive indirect effect with those that did not respond showed that overall there was no significant difference in the ratio of the activity on the individual plates and activity of the initial 3H solution ($p = 0.16$) (Table 2.10). Standard error values were low, with a mean of 8.9%, indicating consistency between experimentals using a given additive. The mean value is close to 0.143, being 0.183 ± 0.016, indicating that even though the initial activity is lower than expected, the dilution onto the plate is consistent and close to 1:7. This confirms that the radioactivity of the initial 3H solution is likely to have been more important to the consistency of results than transfer to plates.

The ratio of plate to initial 3H activity was significantly higher for the PMA experiments than for dexamethasone. This shows that, in spite of the fact that the activity of the initial 3H solution was lower, the amount being transferred to plates was on average greater than the 1:7 dilution expected. This is most likely due to pipetting errors. Analysis of the results in 2.10.5 indicates that while the ratio was higher, the actual radioactivity added to each plate was still significantly lower than for the other
experimental set monitored, and so was still likely to have been a major factor in the inconsistency of these results.

Table 2.10: Mean ratio of plate 3H and stock $[^3$H]-choline chloride solution radioactivity for experiments which gave a positive indirect response and those which did not. Expected ratio is 0.143. P-values were obtained using a single-factor ANOVA.

<table>
<thead>
<tr>
<th>Additive</th>
<th>Plate:stock $[^3$H]-choline chloride radioactivity ratio</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive mean</td>
<td>No response mean</td>
</tr>
<tr>
<td>PMA</td>
<td>0.266 ± 0.010</td>
<td>0.190 ± 0.051</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>0.136 ± 0.002</td>
<td>0.137 ± 0.002</td>
</tr>
</tbody>
</table>

2.11 Discussion

Refinement of the methodology used in tissue culture experiments meant that a consistent indirect response to dexamethasone could be obtained. The response observed was also consistent with previous results (Smith, 1978; Gross and Wilson, 1982). Dexamethasone is considered to interact with cytoplasmic glucocorticoid receptors within the fibroblast cell, inducing the steroid-receptor complexes to translocate to the nucleus where they bind to glucocorticoid response elements and enhance transcription of the gene for FPF and other glucocorticoid-regulated proteins (Smith and Post, 1993). Consistency of results for these experiments was very important, as FCM produced by this method has been shown to contain FPF (Smith and Post, 1989), and samples that reliably contained FPF were essential for further attempts at identification.

The indirect response observed with PMA was very inconsistent, and did not reflect previous results (Sen, 1991). The most likely reasons for this have already been
discussed, and it is likely that the lack of response in this study was due to variations in cell density and inconsistencies in the addition of radioisotope-labelled compounds, rather than in the actual biochemical interaction of PMA with fibroblast cells.

The early experiments conducted during this study indicated that the tissue culture system used to test for the presence and activity of FPF was affected by a number of factors. The amount of DNA per plate, used as an indication of the number of cells on a given culture plate, can have a significant effect, and it has become apparent that there is an upper limit to this value for type II cultures. Too many cells on a plate can greatly reduce synthesis of PC, and non-contributing cells will reduce apparent synthesis due to the way this value is calculated. Feedback mechanisms that exist to regulate the surfactant system are also likely to have an impact at high cell density. High density type II pneumocytes would mean increased secretion of surfactant during incubation, and a high level of secreted surfactant has been shown to inhibit further synthesis (Dobbs et al., 1987). The effect of fibroblast cell density is less clear, but is likely to be similar to that for type II cells. The health of fibroblast cells may also be an important factor.

Type II cell density contributed to the lack of response from the cultures with a density above 25 µg DNA.plate\(^{-1}\) in the second batch of dexamethasone experiments, which used the refined method. Indirect experiments with type II cultures with a cell density below the threshold (mean density = 17.8 µg DNA.plate\(^{-1}\)) showed a dexamethasone-induced increase of 17.56% in PC synthesis. Those with cell density above 25 µg DNA.plate\(^{-1}\) (mean density = 35.05 µg DNA.plate\(^{-1}\)) showed a 3.39% increase. The threshold value was used to analyze the results of similar experiments conducted by an Honours student under my co-supervision (Peh, 2006), and a similar trend was revealed (Table 2.11). Indirect experiments with type II culture cell density below 25 µg DNA.plate\(^{-1}\) (mean density = 14.8 µg DNA.plate\(^{-1}\)) showed an increase of
18.1% in PC synthesis, while those with cell density above the threshold (mean density $= 40.5 \, \mu g \, DNA\text{-}plate^{-1}$) showed a 13.3% decrease. These results are consistent with those of this study, further highlighting the effect of type II pneumocyte cell density on PC synthesis as discussed in 2.10.1.

The consistent application of radioisotope-labelled compounds is also very important. Percentage recovery, as measured by the use of a $[^{14}\text{C}]$-labelled internal standard, was very consistent, and so is unlikely to have influenced the results. Accurate delivery of $[^{3}\text{H}]$-choline chloride is also important, and is likely to have caused the erratic results observed when using PMA as a stimulant. The amount of ^{3}H applied to each plate in these experiments very inconsistent, meaning that even if synthesis was stimulated, it would not have been detected at accurate levels.

The modification of the synthesis method has greatly improved reproducibility of results, and has allowed the accurate monitoring of several parameters that had not previously been considered as having a significant effect on the results. It has also meant that the indirect response on type II pneumocytes by FCM produced by exposing fibroblasts to dexamethasone is consistent. The revised method has now been adopted within the laboratory, reducing the likelihood of miscommunication of methodology in future. Any further experiments should utilize the method as described, and should also attempt to further improve the reliability of the monitored values.
Table 2.11: The effect of dexamethasone on PC synthesis in type II pneumocytes taking the density of the type II pneumocyte cultures into consideration (Peh, 2006).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>PC Synthesis (dpm/ng DNA)</th>
<th>Difference</th>
<th>Mean type II pneumocyte DNA (µg/plate)</th>
<th>Mean fibroblast DNA level (µg/plate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 25 µg DNA.plate^{-1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct (9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>29.0 ± 5.8</td>
<td>↓ 8.2%</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>26.6 ± 4.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indirect (9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>26.8 ± 5.2</td>
<td>↑ 18.1%</td>
<td>14.8</td>
<td>3.6</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>31.6 ± 5.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 25 µg DNA.plate^{-1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>22.2 ± 4.5</td>
<td>↓ 0.4%</td>
<td>41.2</td>
<td></td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>22.1 ± 4.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indirect (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>18.7 ± 3.6</td>
<td>↓ 13.3%</td>
<td>40.5</td>
<td>7.5</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>16.2 ± 4.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primary cultures of lung fibroblasts were grown to near confluence, followed by 24 hours incubation in the presence or absence of 100 nM dexamethasone in MEM

The fibroblast-conditioned media (FCM) were collected and stored at -80°C. Prior to use, the media were thawed and incubated at 65°C for one hour, cooled to room temperature and filter-sterilized to remove detached cells and cellular debris. The media were then diluted 1:4 with MEM

The effect on PC synthesis by type II pneumocytes was investigated by exposing the cells either to the diluted FCM or to MEM

with and without dexamethasone. The data represent the mean ± SE. The number of replicates examined for each condition is indicated in parentheses, and each replicate comprised four cultures.
Chapter 3. Identification of the fibroblast-pneumocyte factor

3.1 Introduction

The function of fibroblast-pneumocyte factor (FPF) is well known, but its identity has remained a mystery. Smith (1979) described a heat-stable oligopeptide with only one known activity. It has an apparent molecular mass in the range of 5 to 15 kDa (Smith and Post, 1989) and antibodies have been raised against it (Post et al., 1984). In spite of this information, there was little evidence (or even speculation) as to the actual identity of FPF. It was not known whether it represented a novel protein or one that had been previously described in another system. In order to attempt to identify it, information would need to be gathered to provide a starting point for the investigation.

3.1.1 Glucocorticoid response elements

The effect of glucocorticoid hormones such as dexamethasone on surfactant synthesis is well known, and it is thought that this process is mediated by FPF. Steroid hormones, including glucocorticoids as well as estrogens, progestins and androgens, all mediate their effects by regulating the initiation of transcription of target genes. These hormones cross the cell membrane via diffusion and encounter specific receptors (sequence-specific DNA-binding transcription factors) within the cell (Bentley, 1998). The receptors for steroid hormones are members of a superfamily of large proteins that contain specific functional domains: the ligand- or hormone-binding domain, the DNA-binding domain and the transcription activation domain. The DNA-binding domain mediates the interaction of the receptor with its specific binding site upstream of the promoter region of the target gene. These specific binding sites are known as hormone response elements (HREs) (Bentley, 1998).
Chapter 3

Fibroblast-pneumocyte factor

The original work in characterizing the response element of glucocorticoids was done by Scheidereit and Beato (1984) on mouse mammary tumour virus (MMTV). The hormone receptor binds to four sites within the glucocorticoid response element (GRE) -72 to -192 bases upstream of the primary transcription initiation site. The GRE is defined as an inverted (or palindromic) repeat of a hexamer sequence separated by three nucleotides and under the standard system this is classified as IR3. These GRE sequences have been found in the promoters of many glucocorticoid-responsive genes, including MMTV and tyrosine aminotransferase (Cooney and Tsai, 1994). A consensus sequence has been generated from the combination of a large number of glucocorticoid-responsive genes (Beato, 1989) and has been found to be:

Expression of the gene encoding FPF is enhanced by dexamethasone, most likely through the GRE. In order to identify potential candidate proteins for FPF, both human and rat genomes were Blast searched for this consensus sequence. Unfortunately, this yielded far too many results to sufficiently narrow the search, so this line of investigation was not pursued any further.

3.1.2 The smoking gun

Work by Dammann et al. (2003) found that neuregulin-1β had the same effect on surfactant synthesis by type II pneumocytes as FCM containing FPF. They also found that the addition of a neuregulin-1β antibody to FCM inhibited its effect. This research presented the most compelling evidence yet as to the identity of FPF. The focus of the current study was shifted to focus on determining if neuregulin-1β was in fact FPF.
3.1.3 Neuregulins

The neuregulins are a family of growth factors that continue to be discovered in an increasing number of systems and organisms. The first neuregulin was purified from brain tissue and named the glial growth factor (Brockes et al., 1980). It was also discovered in other mammalian tissues and named acetylcholine receptor inducing activity (Falls et al., 1990), neu differentiation factor (Peles et al., 1992) and heregulin (Holmes et al., 1992). It was not until the early 1990s (Marchionni et al., 1993) that all of these different compounds were determined to be the same protein, which was given the consensus name neuregulin (and is now known as neuregulin-1). The multiple isoforms of neuregulin, many of which differ significantly in molecular weight and have great diversity of activity (Lemke, 1996), elicit cellular responses ranging from proliferation and differentiation to migration and apoptosis (Falls, 2003).

The neuregulins are part of the epidermal growth factor (EGF) family (Prigent and Lemoine, 1992), which consists of a large number of ligands. The isoforms of neuregulin-1 are all generated from a single gene (nrg1) (Lemke, 1996), however three other genes encoding neuregulins have also been discovered: nrg2, nrg3 and nrg4 (Busfield et al., 1997; Zhang et al., 1997; Harari et al., 1999). Little is known about the function of the proteins encoded by these three genes (termed neuregulin-2, 3 and 4, respectively), although they are known to bind to the same receptors as neuregulin-1 (Falls, 2003). NRG2 has been shown to elicit different responses to NRG1 when binding to the same receptor (Crovello et al., 1998). Unless otherwise stated, this review will focus solely on neuregulin-1 (NRG1).

3.1.3.1 Functions of neuregulin-1

Neuregulin-1 was first identified in the neuromuscular system, where it functions as a potent mitogen (Brockes et al., 1980). It is produced by embryonic
neurons shortly after birth (Marchionni et al., 1993; Chen et al., 1994) and is thought to
be involved in nerve cell proliferation, differentiation and survival (Lemke, 1996).
In skeletal muscle cells, it can increase expression of specific genes (Harris et al., 1988)
and also contributes to neuronal control of muscle cell gene expression (Fischbach et
al., 1994). Much of the work on NRG1 has used mammary epithelial cells, where they
perform mitogenic, differentiation and transformation functions (Lupu et al., 1995).
NRG1 is also important in the development of the cardiac (Meyer and Birchmeier,
1995) and pulmonary systems (Patel et al., 2000). The role of NRG1 in lung
development is discussed further in 3.1.3.5. Over-expression of NRG1 is important in a
number of cancers, including breast cancer (Lemke, 1996). Problems with NRG1
signaling are also thought to be involved in a number of disease states, including
schizophrenia (Stefansson et al., 2002).

3.1.3.2 Structure of neuregulin-1

The gene for neuregulin-1 is located on the short arm of human chromosome 8
(Orr-Urtreger et al., 1993). It is 1.4 megabases long and less than 0.3% of this length
actually encodes the functional protein (Stefansson et al., 2002). At least sixteen
different isoforms of NRG1 are formed from this single gene through a combination of
alternative splicing and multiple promoter usage (Steinthorsdottir et al., 2004). Four
splicing hotspots have been identified which seem to produce most of the known
variants (Lemke, 1996), although six exons have recently been identified as likely to
generate further isoforms (Steinthorsdottir et al., 2004). The biological reason for such a
large number of variants is not currently known, although some display different
binding affinity for certain receptors (Kita et al., 1995) and some cell types express only
specific isoforms (Lemke, 1996), implying cell- or tissue-specific functions.
The three main distinguishing characteristics of the NRG1 isoforms are the type of EGF-like domain (α or β), the N-terminal sequence (I, II or III) and whether the protein is transmembrane or soluble (Falls, 2003). The EGF-like domain is the only part of NRG1 that is well characterized and it is very similar to the bioactive domain of epidermal-growth factor (EGF) (Carraway and Burden, 1995). All isoforms of NRG1 contain this domain, meaning that they are all able to interact with the receptors of the EGF family, known as ErbB receptors (Lemke, 1996). This domain has been demonstrated as being essential for activity in all neuregulins (Carraway et al., 1994; 1995). NRG1 isoforms are divided into three types based on differences in the N-terminus. Type I NRG1s have an extracellular heparin-binding, immunoglobulin-like domain. Type II NRG1s share this domain and also possess a kringle domain, while type III NRG1s have a cysteine-rich domain (Esper et al., 2006). All NRG1 isoforms are generated as transmembrane forms, and proteolysis of these generates the soluble forms (Burgess et al., 1995).

3.1.3.3 Neuregulin receptors

Neuregulins interact with receptors in the ErbB family, which contains four distinct receptors (ErbB1-4) that are glycosylated transmembrane proteins and are regarded as the stereotype for receptor tyrosine kinase activity (Citri and Yarden, 2006). The ErbB receptors have been described as a signaling network, with interactions within and between individual receptors (Falls, 2003). The generalized structure of an ErbB receptor is an extracellular domain with two cysteine-rich regions, a transmembrane domain, an intracellular juxtamembrane domain and a cytoplasmic domain with tyrosine kinase activity (Lemke, 1996). This activity catalyzes phosphorylation of tyrosine residues in polypeptide sequences. Proteins then bind to the newly created phosphotyrosine residues and lead to the downstream reactions (van der Greer et al.,
Ligands for ErbB receptors contain an EGF-like sequence with six cysteine residues which is recognized by the receptor (Citri and Yarden, 2006). Binding of a ligand leads to a conformational change in receptor subunits and formation of dimers (Moriki et al., 2001). For example, in the case of ErbB1, this dimer consists of two ErbB1 receptors to which two ligand molecules bind (Lemmon et al., 1997). No NRG1 isoforms have been found that interact with ErbB1, so the focus here will be on the remaining ErbB receptors.

ErbB2 is the best-characterized receptor in the ErbB family, and is also known as c-neu or HER2 (Lemke, 1996). The extracellular structure of ErbB2 is very similar to the ligand-bound form of ErbB1, preventing it from binding any ligands (Garrett et al., 2002). This unusual structure means that it is primed for interaction with other ligand-bound receptors, making it the preferred partner for heterodimerization (Tzahar et al., 1996). It is also incapable of forming homodimers (Plowman et al., 1990). ErbB2 appears to function as an amplifier for the NRG1 signal (Citri and Yarden, 2006), as it is able to interact with a greater number of phosphotyrosine-binding proteins than any of the other receptors (Jones et al., 2006).

Two other ErbB receptors have been identified: ErbB3 (Kraus et al., 1989) and ErbB4 (Plowman et al., 1990). ErbB3 and 4 are very similar to ErbB2 and participate with this receptor in NRG1 signaling. ErbB3 has a defective tyrosine kinase activity due to substitutions in its cytoplasmic domain (Guy et al., 1994), meaning that it cannot transduce a signal on its own. ErbB4 binds a large number of ligands (Citri and Yarden, 2006) and also exists in a number of different isoforms (Rio et al., 2000), making it a very versatile receptor. Heterodimers of ErbB2/ErbB3 and ErbB2/ErbB4 are capable of binding NRG1, as are homodimers of ErbB4 (Sliwkowksi et al., 1994; Tzahar et al., 1994; Chan et al., 1995; Horan et al., 1995; Wallasch et al., 1995). The complexity of interactions within the ErbB family is further increased as receptors interact with each
other, leading to transphosphorylation (Carraway and Cantley, 1994). Studies with knockout mice have indicated that genes for these three receptors and NRG1 itself are essential for embryonic development to proceed past day 10 (Lemke, 1996).

Regulation of these receptors is also complex, with both positive and negative feedback systems. Positive feedback loops exist and prolong the activity of signaling pathways, as well as enhancing the amplitude of the signal (Freeman, 2000). Positive feedback also occurs at a transcriptional level, where genes for other ErbB ligands are up-regulated following receptor-ligand binding (Schulze et al., 2001). Multiple negative feedback systems also exist, and are up-regulated after ligand binding to receptors. Most of these act more slowly than the positive feedback systems (Citri and Yarden, 2006).

3.1.3.4 ErbB2/ErbB3 heterodimers

In terms of cell growth and transformation, ErbB2/ErbB3 heterodimers are the most potent in the ErbB family (Pinkas-Kramarski et al., 1996). ErbB2 cannot bind any known ligands, while ErbB3 cannot transduce a signal, but together they form a functional and powerful receptor (Figure 3.1). Both ErbB2 and 3 are expressed in most epithelial cell layers, while mesenchymal tissues are a source of ligands such as neuregulin (Citri et al., 2003). The potency of these heterodimers is explained by four main factors: the slow rate of ligand dissociation (Karunagaran et al., 1996); relaxed specificity of ligands (Pinkas-Kramarski et al., 1998); ability to limit endocytosis (Worthylake et al., 1999); and coupling to a number of signaling pathways.

Heterodimers of ErbB2/ErbB3 activate several signaling pathways: mitogen-activated protein kinase (MAPK) (Ben-Levy et al., 1994), phosphatidylinositol-3-kinase (PI3K) (Prigent and Gullick, 1994), phospholipase-C\(\gamma\) (PLC\(\gamma\)) (Peles et al., 1991), protein kinase C and the Janus kinase (Jak-STAT) (Liu and Kern, 2002). The most significant of these are MAPK, which is involved in cell proliferation, and PI3K, which
Figure 3.1: The proposed mechanism of neuregulin induced ErbB2/ErbB3 heterodimer formation (Citri et al., 2003).
is a cell survival pathway (Citri et al., 2003). Unlike ErbB1 homodimers, these heterodimers do not interact with pathways that down-regulate mitogenesis, such as Ras-specific GTPase-activating protein (Ras-GAP) (Bar-Sagi and Hall, 2000).

3.1.3.5 Role of neuregulin in lung development

Neuregulin-1 has been discovered in many systems, where it plays a crucial role in development. Its role in the early stages of development in the fetal lung has been partially characterized, such as the triggering of branching morphogenesis (Liu et al., 2004). Functions for NRG1 in the later stages of development, such as in the stimulation of surfactant production, are less well understood. It is only recently that the importance of this signaling has begun to be uncovered.

Research has shown that factors that regulate other facets of lung development, including retinoic acid (RA) and dihydrotestosterone (DHT), have been shown to affect expression of ErbB receptors (Dammann and Nielsen, 1998). Dexamethasone treatment leads to an increase in expression of these receptors and modification of dimerization (Dammann et al., 2006). In the second trimester of gestation, both ErbB2 and ErbB3 can be detected in fetal lung, but not ErbB4 (Patel et al., 2000). Recent observations (Liu et al., 2004) have confirmed that only ErbB2 and ErbB3 are present in the developing lung. Both of these receptors are localized to the epithelial cells, such as type II pneumocytes (Patel et al., 2000). Exposure to recombinant NRG1 caused a four-fold increase in receptor phosphotyrosine content, indicating receptor activation. Increases were also observed in epithelial cell density and proliferation, as well as a decrease in SP-A levels (Patel et al., 2000). These observations are consistent with NRG1 activation of the ErbB2/ErbB3 heterodimer. Activation of both PI3K (Liu et al., 2004) and Jak-STAT (Liu and Kern, 2002) through ErbB2/ErbB3 has been demonstrated in cultures of fetal lung cells.
As indicated in 3.1.2, it was the work of Dammann et al. (2003) that redirected this study towards neuregulin-1. In their work, Dammann et al. used immunostaining to detect NRG1β, and confirmed that it increased in concentration in fetal lung fibroblast cells at the same time as surfactant synthesis commenced in type II cells. These fibroblasts secreted the NRG1β and this stimulated synthesis of surfactant in these type II cells. Fibroblast-conditioned medium and recombinant NRG1β were both observed to increase synthesis and ErbB2 receptor phosphorylation, and this activity was blocked in both cases by an antibody to NRG1β. Immunoprecipitation was used to confirm the presence of NRG1β in FCM (Dammann et al., 2003). This work, combined with the presence of the necessary receptors, presented a compelling case for NRG1β to be FPF, and led to this study’s attempts to confirm this using HPLC and LC/MS.

3.1.4 HPLC and LC/MS

A general introduction to the two techniques used in this chapter is required to indicate why these particular instruments were chosen for this investigation. High-performance liquid chromatography (HPLC) is a widely-used separation technique, while liquid chromatography/mass spectrometry (LC/MS) is a similarly powerful technique for separation and mass analysis of compounds. Both of these techniques are now used in many types of protein and proteomic research.

3.1.4.1 High-performance liquid chromatography

The principles and applications of high-performance liquid chromatography (HPLC) have been widely reviewed, and so only a general overview will be presented here. For further reading, useful books on the topic include Snyder et al. (1997) and Meyer (2004).
The modern form of HPLC is reversed-phase HPLC (RP-HPLC), which involves the use of two phases: a mobile phase (polar) and a stationary phase (non-polar) (Meyer, 2004). The mobile phase is comprised of solvents which are moved through the stationary phase, contained in a packed column, to effect the separation. The mobile phase then moves through a detector, usually utilizing ultraviolet/visible (UV/Vis) spectroscopy, to enable the separated compounds to be visualized (Meyer, 2004). Most mobile phases use a combination of water and a non-polar organic solvent such as acetonitrile or methanol, although many variations have been used for different analyses. There is a similarly large range of stationary phases available, varying in parameters such as composition, hydrophobicity and pore size. The most commonly used stationary phase is silica, which is treated to generate R-groups of a defined length (often 8 (C8) or 18 (C18) carbons) (Snyder et al., 1997).

The basis of the RP-HPLC separation is hydrophobic interaction (Snyder et al., 1997). The relatively non-polar analytes interact with the non-polar stationary phase, with more hydrophobic compounds interacting more strongly. As the concentration of organic solvent in the mobile phase is increased, compounds will elute in order of increasing hydrophobicity. Variation of mobile phase parameters such as composition, pH buffering, and gradient, as well as column chemistry, will affect the retention time of analytes. The properties of the analytes, as well as sample preparation techniques, also have a large impact on separation (Snyder et al., 1997).

HPLC has been widely used in protein and proteomic research, both for analysis of samples and as a cleanup method for other analytical techniques. An excellent review of current progress and advances in the use of HPLC in proteomics was written by Mitulovic and Mechtler (2006).
3.1.4.2 Mass spectrometry

Mass spectrometry is a general term used for a number of instruments that analyze samples based on their mass to charge ratio. In the context of this study, it refers to electrospray ionization-quadrupole ion trap mass spectrometry (ESI-MS). This system is often coupled with an HPLC instrument, and is then termed LC/MS. As with HPLC, only a general overview of the technique will be given. For further reading, Cole (1997) offers a thorough introduction to both electrospray ionization and associated mass spectrometry. Pramanik et al. (2002) also covers a number of advances and applications of this technology.

Prior to mass analysis in a mass analyzer, the sample must be ionized. A range of methods exist for the ionization of compounds, including electron, chemical and photo-ionization. One of the most widely used, and generally considered to be the best for use with proteins, is electrospray ionization (ESI) (Kebarle and Ho, 1997). ESI was developed for ionization of large biological molecules (Fenn et al., 1989), and John Fenn was awarded the 2002 Nobel Prize in Chemistry for its development. The sample, consisting of analytes in solvent (often from an HPLC system), is forced through a small capillary (Figure 3.2). This capillary has a high electric field applied, and this causes the sample to nebulize. Nitrogen gas is also added to assist in the nebulization process. Solvent is evaporated through the use of a heated drying gas (usually nitrogen) and eventually analyte ions free of solvent are obtained. The exact mechanism of ionization is not completely understood, but involves the transfer of charge from the solvent droplets to analyte molecules as droplets become smaller and smaller (Kebarle, 2000). The analyte ions are quasimolecular ions, usually due to the addition ([M+H]⁺) or loss ([M-H]⁻) of proton. Other adducts can form, such as addition of sodium ([M+Na]⁺), due to the chemical composition of the sample (Kebarle and Ho, 1997).
Due to this ionization, the mass spectrometer analyses mass-to-charge ratios (m/z), rather than molecular masses.

Figure 3.2: Schematic of an electrospray ion source, indicating flow of solvent and drying gas (adapted from Agilent, 2003).

The ESI source is interfaced with the trap itself via a capillary (Figure 3.3). Following this are two skimmer lenses, an octopole and a series of lenses, which serve to focus the ions and remove any contaminants and neutral species.

Quadrupole ion trap mass spectrometry (herein referred to as ion trap MS) is a modification of the quadrupole mass spectrometer (QMS). The QMS sets up a radio frequency (RF) quadrupolar field and uses an electrical field to stabilize ions passing through this field (McEwen and Larsen, 1997). In an ion trap MS, the linear quadrupole has been made circular, allowing ions to be selectively trapped and/or ejected from the field (Bier and Schwartz, 1997). The trap itself consists of two end-cap electrodes with a
Figure 3.3: Schematic indicating the general structure of a quadrupole ion trap mass spectrometer (Agilent, 2003).

ring electrode halfway between them, forming a spherical space (Figure 3.4). Ions are trapped within this space using electrical fields, and resonance excitation (using the end-cap electrodes) is used to selectively eject ions from the trap (March, 2000). This functionality allows the instrument to be used for MSn. In classical MSn, a single mass is isolated and collision-induced dissociation is performed (usually using helium). The resulting fragments are analyzed and this process can be repeated a number of times (with the number defining the n value) to provide information on the structure and identity of the isolated compound (Robert, 1994).
Ion trap MS is a popular technique in proteomic research, for several reasons. Electrospray ionization allows the generation of ions directly from solution and is able to impart sufficient energy to ionize intact proteins (Kebarle and Ho, 1997). The ion trap can be used to determine the molecular weight of unknown proteins, and fragmentation can be used in peptide sequencing (Aebersold and Goodlett, 2001). Comprehensive reviews of the many uses of mass spectrometry in proteomics include Aebersold and Goodlett (2001), Griffiths et al. (2001) and Aebersold and Mann (2003).

3.2 Methods

3.2.1 Pretreatment of FCM

Fibroblast-conditioned media from dexamethasone exposed cell cultures, with a mean cell density below 25 µg.DNA plate⁻¹, were used for all analyses using LC/MS. It is likely that FCM from other experiments also contained FPF, but as this was not
demonstrable by the indirect method (where fibroblasts were exposed to an agonist and the resulting FCM harvested and exposed to type II pneumocytes to observe any effect on surfactant phospholipid synthesis), they were excluded. Prior to use in this analysis, FCM had been stored at -80°C immediately after collection from cultures. Treatment of FCM for LC/MS was almost identical to the treatment used prior to tissue culture experiments. FCM was thawed at room temperature, before being heat-treated in a 65°C water bath for 60 minutes. After cooling to room temperature, it was filtered through a 0.22 µm Millipore syringe filter and diluted 1:4 with MilliQ-H₂O.

3.2.2 HPLC

Initial attempts to identify FPF were undertaken using HPLC only, in an attempt to separate the multitude of compounds present in FCM prior to LC/MS. Snyder et al. (1997) have indicated the parameters that should be investigated in initial HPLC method development. These are illustrated in Table 3.1.

Table 3.1: Variables that should be investigated in initial HPLC method development (Snyder et al., 1997).

<table>
<thead>
<tr>
<th>Component</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>column</td>
<td>dimensions, particle size, stationary phase</td>
</tr>
<tr>
<td>mobile phase</td>
<td>solvents, percentage of organic solvent, buffers</td>
</tr>
<tr>
<td>flow rate</td>
<td>-</td>
</tr>
<tr>
<td>temperature</td>
<td>controlled, not controlled</td>
</tr>
<tr>
<td>sample size</td>
<td>injection volume</td>
</tr>
<tr>
<td>detector</td>
<td>wavelengths monitored</td>
</tr>
</tbody>
</table>

Most of these parameters were tested using FCM which had been pretreated as described in 3.2.1. Work was conducted on an Agilent 1100 Series HPLC (Agilent Technologies Ltd., Alpharetta, GA, USA) with a quaternary pump, column thermostat
and diode array detector. The software employed was Agilent Chemstation for LC 3D, Rev. B.09.03. The range of variables which were tested is shown in Table 3.2. All solvents and buffers were HPLC grade.

Table 3.2: Variables tested during HPLC method development, indicating the range tested for each.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Range Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>column length</td>
<td>150, 250 mm</td>
</tr>
<tr>
<td>column internal diameter</td>
<td>2.1, 4.6 mm</td>
</tr>
<tr>
<td>column particle size</td>
<td>5 µm only</td>
</tr>
<tr>
<td>column stationary phase</td>
<td>C\textsubscript{18} only</td>
</tr>
<tr>
<td>mobile phase solvents</td>
<td>water with acetonitrile or methanol</td>
</tr>
<tr>
<td>mobile phase % organic</td>
<td>initial concentration of 1, 5, 10%</td>
</tr>
<tr>
<td></td>
<td>gradient to 100% organic from 10 to 60 min</td>
</tr>
<tr>
<td>mobile phase buffers</td>
<td>trifluoroacetic acid, formic acid, acetic acid</td>
</tr>
<tr>
<td></td>
<td>buffer concentrations of 0.1 to 2%</td>
</tr>
<tr>
<td>flow rate</td>
<td>0.8 to 5.0 mL.min-1</td>
</tr>
<tr>
<td>temperature (column)</td>
<td>not controlled, 25 and 35°C</td>
</tr>
<tr>
<td>injection volume</td>
<td>1.0 to 25.0 µL</td>
</tr>
<tr>
<td>detector</td>
<td>205 to 300 nm, plus full UV spectrum</td>
</tr>
</tbody>
</table>

Particle size and stationary phase composition of the columns were the only parameters for which a range was not tested. Due to the high cost of HPLC columns, all of the above tests were run using two Vydac ‘Protein and Peptide’ C\textsubscript{18} columns: a 218TP5415 (5 µm particle size, 4.6 mm i.d., 150 mm length) and a 218TP52 (5 µm particle size, 2.1 mm i.d., 250 mm length). These columns contain polymerically bonded, endcapped n-octadecyl bond on silica. The pore size on both of these columns is 30 nm, which is required for work with large molecules such as proteins. Additional columns would have been purchased to expand the study, but the emphasis shifted to separation using MS, as detailed in 3.2.4.
Results obtained using HPLC showed a poor separation of the compounds in FCM. An example chromatogram is included to illustrate the problems encountered (Figure 3.5). The majority of the compounds were un-retained and eluted at the beginning of the run, with very little material being effectively separated.

Figure 3.5: Chromatogram of fibroblast-conditioned medium obtained using HPLC. Response is shown in milli-absorbance units (mAU) as a function of time. Detection wavelengths (nm) are indicated by different colours.

Attempts to separate the components of FCM using HPLC proved to be problematic and time-consuming, primarily due to the fact that there was a large number of individual components and because most of the compounds of interest are likely to be present in very low concentrations. A second option for separation involves using a mass spectrometer, such as an ion trap MS, to perform the separation based on mass.
rather than properties such as hydrophobicity. This is becoming a more popular option as more complex systems are investigated (e.g. Lu et al., 2007).

3.2.3 Neuregulin standard

Publication of data indicating that neuregulin-1β (NRG1) was possibly FPF (Dammann et al., 2003) provided a new approach for LC/MS analysis of FCM. A mass spectrum for NRG1 could be obtained and used to search FCM. Recombinant human neuregulin-1β (sold as heregulin-β1) (PeproTech, Rocky Hill, NJ, USA) is a 7.5 kDa form of NRG1 which comprises only the EGF-like domain (the bioactive domain). NRG1 was supplied as a lyophilized powder, was reconstituted in MilliQ-H₂O to a concentration of 100 µg.mL⁻¹ and stored at -20°C until use. Further dilutions were also undertaken with MilliQ-H₂O.

3.2.4 Mass spectrometry

Ion trap mass spectrometry was undertaken utilizing an Agilent 1100 Series LC/MSD Trap (Agilent Technologies Ltd., Alpharetta, GA, USA), operating with Bruker-Daltonik MSD Trap Control software (v 5.1) (Bruker-Daltonik, Bremen, Germany). The MS was calibrated with a 1:5 dilution of Agilent ES Tuning Mix.

Settings for the mass spectrometer were adapted from Mandel and Lopez (2000) and Zumwalt (2005) and then optimized for NRG1. The MS was run in standard mode and at normal scan resolution, scanning for positive ions. The ESI nebulizer was set at 15 psi, with drying gas (N₂) flow at 5 L.min⁻¹ and 325°C. Target mass was initially set to 1000 m/z and changed to 1068 m/z once NRG1 had been detected. Compound stability was 35% and the trap drive level 100%. Scan range was initially 50 to 2200 m/z, although this was reduced to 500 to 1500 m/z when NRG1 was detected. Scan averaging was set at 5, with rolling averages off. Ion Charge Control (ICC) was on.
and set to collect 3×10^4 ions, with a maximum accumulation time of 300 ms. In expert mode, Skim 1 voltage was changed to 15 V, Skim 2 to 6 V and Cap Exit Offset to 60 V. Collision-induced dissociation utilized helium as the collision gas.

Both NRG1 and pretreated FCM were infused directly into the MS at 5 μL.min$^{-1}$ using a KD Scientific 100 syringe pump (KD Scientific Inc., Holliston, MA, USA) and a 500 μL GasTight syringe (Hamilton Company, Reno, NV, USA). The ESI source and spray shield were cleaned after every sample with a 50:50 solution of isopropanol and H$_2$O. Every 24 hours, the source and trap were cleaned by infusing 500 μL of a cleaning solution composed of 50% acetonitrile, 25% isopropanol, 15% cyclohexane and 10% dichloromethane, followed by 500 μL of 50:50 isopropanol and water.

3.2.5 Quantitation of neuregulin

An Agilent 1100 Series capillary HPLC (Agilent Technologies Ltd., Alpharetta, GA, USA), with two binary pumps configured to operate at a maximum flow rate of 20 μL.min$^{-1}$, was connected to the ion trap MS. This LC was equipped with both column and autosampler thermostats and a diode array detector (DAD). This instrument was running Agilent Chemstation for LC 3D, Rev. A.09.01 software. The column used for all work on this instrument was an Agilent Zorbax 300SB-C$_{18}$ capillary column (3.5 μm particle size, 0.3 mm i.d., 100 mm length).

Mobile phase solvents were water and acetonitrile, both buffered with 0.1% formic acid. Flow rate was set at a 5 μL.min$^{-1}$ with a maximum pressure of 400 bar. A 35-minute gradient was used as indicated in Table 3.3, with a 10-minute post-time to ensure the column was completely flushed prior to the subsequent run.
Table 3.3: Gradient used in capillary HPLC runs, indicating percentage of acetonitrile (ACN) at different times in the run. The transition from 10 to 100% is linear over 15 minutes.

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>% ACN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 10</td>
<td>10</td>
</tr>
<tr>
<td>10 - 25</td>
<td>10 - 100</td>
</tr>
<tr>
<td>25 - 35</td>
<td>100</td>
</tr>
</tbody>
</table>

A volume of 1 µL of sample was injected at the start of each run, and the autosampler was kept at 4°C to prevent sample degradation. Column temperature was also kept at 25°C to ensure it remained constant. The DAD was used to collect full spectra (190 to 600 nm) as well as specifically monitoring 254 and 280 nm.

This HPLC method was used in conjunction with the MS method outlined in 3.2.4 to quantify the amount of NRG1 present in FCM. Multiple reaction monitoring (MRM) was used, meaning that only ions at 1068, 1142 and 1246 m/z were monitored. This greatly improved the signal to noise ratio compared to the full scans of FCM.

3.3 Results

3.3.1 Direct infusion mass spectrometry

NRG1 solution (10 ng.mL⁻¹) was infused directly into the MS and showed a mass spectrum characteristic of a protein (Figure 3.6). The protein exists in multiple charge states, due to the many potential binding sites for protons on the molecule. The predominant ions were 1068, 1142 and 1246 m/z. Deconvolution of this spectrum suggested a molecular weight of 7.480 kDa, very close to the actual value of 7.478 kDa. MS² using CID was attempted for 1068 m/z (Figure 3.7), but was only partially successful due to the large amount of energy required to fragment an intact protein.
Figure 3.6: Mass spectrum for neuregulin-1β (10 ng.mL⁻¹) obtained using direct infusion into a quadrupole ion trap mass spectrometer. Intensity is an arbitrary scale and indicates relative abundance of ions in the trap for a given scan.
Figure 3.7: Mass spectrum for collision-induced dissociation of the 1068 m/z ion of neuregulin-1β obtained using direct infusion into a quadrupole ion trap mass spectrometer. This spectrum represents MS². Intensity is an arbitrary scale and indicates relative abundance of ions in the trap for a given scan.
The primary fragment ion was 1047.3 m/z, indicating a neutral loss of 20.7 m/z from the original molecule. Other fragment ions included 958.3, 1010.0 and 1028.7 m/z.

FCM of both control and dexamethasone (test) treatments was also infused directly into the MS. Mass spectra for both types of FCM were complex, with many compounds present, and many of those in multiple charge states (Figures 3.8, 3.9). A key difference is that 1068 m/z is clearly visible in the test FCM, but not in the control FCM. MS² indicated that ions of 1068, 1142 and 1246 m/z were all present in both types of FCM, but these results indicated that the concentration of these ions was likely to be greater in the test FCM. MS² using CID was attempted for 1068 m/z, and the response was identical for both FCM types, indicating that this ion corresponds to the same compound. The resultant fragmentation spectrum (Figure 3.10) displayed ions of 958.3, 1016.5, 1028.7 and 1047.2 m/z. Several of these ions are in common with those generated from NRG1 standard (Figure 3.7), providing strong evidence that the ion at 1068 m/z in FCM is NRG1.

3.3.2 Capillary HPLC

Quantitation of NRG1 in FCM required the use of an HPLC system to deliver the entire sample into the MS simultaneously. A method was developed for NRG1 and subsequently used for the FCM samples (see 3.2.5). The 280 nm chromatogram for 10 ng.mL⁻¹ NRG1 (Figure 3.11) showed that NRG1 was largely un-retained by the column and eluted with a retention time of approximately 2.5 minutes. Control FCM was also run with this method to ensure that it was suitable, and the 280 nm chromatogram for this sample was overlaid with that for NRG1 (Figure 3.12). This comparison showed that if NRG1 was present in FCM, then it was likely to be co-eluting with a large number of other compounds that absorbed strongly at 280 nm.
Figure 3.8: Mass spectrum for fibroblast-conditioned medium from control cultures obtained using direct infusion into a quadrupole ion trap mass spectrometer. Intensity is an arbitrary scale and indicates relative abundance of ions in the trap for a given scan.
Figure 3.9: Mass spectrum for fibroblast-conditioned medium from dexamethasone-treated cultures obtained using direct infusion into a quadrupole ion trap mass spectrometer. Intensity is an arbitrary scale and indicates relative abundance of ions in the trap for a given scan.
Figure 3.10: Mass spectrum for collision-induced dissociation of the 1068 m/z ion of fibroblast-conditioned medium obtained using direct infusion into a quadrupole ion trap mass spectrometer. This spectrum represents MS². Intensity is an arbitrary scale and indicates relative abundance of ions in the trap for a given scan.
Figure 3.11: Chromatogram of neuregulin-1β (10 ng.mL$^{-1}$) obtained using capillary HPLC. Response is shown in milli-Absorbance units (mAU) as a function of time. Detection wavelength was 280 nm.
Figure 3.12: Chromatogram of neuregulin-1β (blue) overlaid on chromatogram of fibroblast-conditioned medium (red) obtained using capillary HPLC. Response is shown in milli-Absorbance units (mAU) as a function of time. Detection wavelength was 280 nm for both analyses.
3.3.3 Quantitation of NRG1

Solutions of NRG1 at concentrations of 0.1, 0.5, 1, 5, 10, 50 and 100 ng.mL\(^{-1}\) were run using the capillary HPLC method described in 3.2.5 and the MS conditions outlined in 3.2.4. The resultant mass spectrum chromatograms were then used to generate a standard curve for NRG1 in the ion trap MS (Figure 3.13). The area under the peak was calculated using the mass spectrometry software, and this area plotted against NRG1 concentration. Samples were run in triplicate and this generated a standard curve with a very strong correlation (R = 0.9978).

Six pairs of control and dexamethasone (test) treatment FCM were analyzed using the same method, and chromatograms generated. To provide comparison, three pairs of FCM from experiments which had shown no indirect response to dexamethasone, in spite of being below the cell density threshold, were also chosen and analyzed. As no suitable internal standard was available, all samples were run in triplicate to reduce standard error. The area under the peak for each sample was calculated and the standard curve used to calculate NRG1 concentration. Results of this analysis showed that mean NRG1 concentration in the control treatment FCM was 19.85 ng.mL\(^{-1}\) (± 1.73 ng.mL\(^{-1}\)), while in the test treatment FCM it was 41.59 ng.mL\(^{-1}\) (± 1.44 ng.mL\(^{-1}\)) (Figure 3.14). For FCM which had shown no indirect response, control FCM contained 20.85 ng.mL\(^{-1}\) (± 3.03 ng.mL\(^{-1}\)) NRG1, while test FCM had a concentration of 22.84 ng.mL\(^{-1}\) (± 1.67 ng.mL\(^{-1}\)). Single-factor ANOVA of these results indicated a significant difference between the test treatment FCM (positive indirect response) and the remaining three FCM samples (p = 7.51x10\(^{-7}\)).
Figure 3.13: Standard curve for response of neuregulin-1β in quadrupole ion trap mass spectrometer. Peak area is calculated by the mass spectrometer software and has no units. The line is a trend line with a correlation of 0.9978.
Figure 3.14: Concentration of neuregulin-1β (ng.mL⁻¹), calculated using ion trap mass spectrometry, in fibroblast-conditioned media (FCM) generated in the absence (control) and presence of 100nM dexamethasone (dexamethasone). Red indicates FCM for which no indirect response to dexamethasone was detected, blue represent FCM for which a positive response was observed.
3.4 Discussion

This study has provided further evidence of a significant role for neuregulin-1 (NRG1) in the fibroblast-pneumocyte factor response observed in fetal lung cells. The presence of this growth factor in such a large number of systems during fetal development shows the breadth of its activity, so its involvement in the surfactant system is unsurprising. It is also known to be involved in earlier stages of lung development, including the stimulation of branching morphogenesis (Liu et al., 2004).

In fact, given the number of systems in which NRG1 has been identified, it is surprising that a role in this system was not postulated prior to 2003.

Neuregulins are related to epidermal growth factor, which has previously been shown to have a significant impact on surfactant synthesis (Sen and Cake, 1991), and the two factors share the same receptors, the ErbB family. Receptors for NRG1 have been shown to be present in the fetal lung at the same time that surfactant synthesis is initiated (Liu et al., 2004). Furthermore, these receptors have only been detected on epithelial cells (i.e. type II pneumocytes) (Patel et al., 2000), while NRG1 expression has been detected in mesenchymal cells (i.e. fibroblasts) (Citri et al., 2003). This localization implies that NRG1 is secreted from fibroblast cells and acts in a paracrine fashion on neighboring type II pneumocytes, exactly as FPF has been proposed to act (Smith and Post, 1989).

Further study of ErbB receptors has found that only ErbB2 and ErbB3 are expressed in the fetal lung (Liu et al., 2004). This implies that the action of NRG1 on type II pneumocytes would be via the ErbB2/ErbB3 heterodimer. Activation of PI3K (Liu et al., 2004) and Jak-STAT (Liu and Kern, 2002) via ErbB2/ErbB3 has been demonstrated in fetal lung cells, but stimulation of surfactant synthesis by NRG1 is likely to occur via protein kinase C (PKC), as known activators of PKC such as EGF (Sawyer and Cohen, 1981) and PMA (Sen, 1991) have been shown to stimulate...
surfactant synthesis. Activation of PKC by ErbB2/ErbB3 signaling has been noted (Citri et al., 2003), although it is not one of the primary pathways for this receptor system. It is likely that ErbB2/ErbB3 increases the activity of phospholipase C\(_\gamma\), which would increase hydrolysis of phosphatidylinositol-4,5-bisphosphate to diacylglycerol and inositol-1,4,5-trisphosphate. The latter compound elevates the intracellular level of calcium and this, together with diacylglycerol, regulates the activity of PKC (Spitaler and Cantrell, 2004). It has been proposed that activity of choline phosphate cytidylyltransferase (CPCT), the rate-limiting enzyme of surfactant synthesis, is regulated by enzyme modulator interactions (e.g. phosphorylation) rather than transcriptional regulation (Post et al., 1986). If NRG1 is acting via PLC and PKC, then it is possible that PKC then acts on CPCT and causes an increase in its activity.

One of the main pathways by which ErbB2/ErbB3 transduces signals involves mitogen-activated protein kinase. The MAPK signaling cascade leads to increased mitogenesis and cellular proliferation (Seger and Krebs, 1995). If NRG1 action on type II cells leads to an increase in MAPK activity as well as PKC, it is likely that it causes type II cell numbers to increase. This mitogenic effect may contribute to the stimulation of surfactant synthesis prior to parturition in vivo, but is unlikely to have an effect in the culture system, as results are expressed as dpm.ng DNA\(^{-1}\).

Elevation of protein kinase C activity (via diacylglycerol) has also been shown to increase secretion of surfactant (Sano et al., 1985; Asokananthan and Cake, 1996). Direct activation of protein kinase C via the ErbB2/ErbB3 heterodimer may lead to an increase in secretion from type II cells. FPF has always been postulated as a direct control on synthesis of surfactant, but not secretion. If FPF is NRG1, then the action of this protein could in fact regulate both synthesis and secretion, and could be considered a regulator for the entire pulmonary surfactant system.
A discrepancy between this work and that of Dammann et al. (2003) is the molecular weight observed for NRG1. Dammann et al. isolated NRG1 with a molecular weight of 44 kDa, while this study focused on the much smaller mass of 7.5 kDa. The 44 kDa form is thought to be a proteolysed soluble form of the 75 kDa transmembrane isoform of NRG1. The 7.5 kDa form is known to comprise only the EGF-like bioactive domain, the only domain possessed by all known isoforms of NRG1. Only this domain is required for the activity of the protein, and so this molecular weight likely represents a fully-processed form of NRG1. It is therefore possible that the quantitation of NRG1 obtained using ions of the 7.5 kDa isoform does not represent the total concentration of NRG1 present in FCM. Other, larger isoforms may be present and are likely to ionize very differently. Some isoforms may not ionize at all if electrospray ionization cannot impart sufficient energy.

Expression of the protein NRG1 by fetal lung fibroblasts is enhanced by dexamethasone. The gene for NRG1, nrg1, therefore probably possesses at least one glucocorticoid response element. These are located upstream of the promoter for a given gene, providing a binding site for glucocorticoid receptors (Bentley, 1998). The gene nrg1 is known to possess multiple promoters that can generate different isoforms of NRG1 (Steinthorsdottir et al., 2004). Depending on the degree of separation of these promoters, it is possible that only particular promoters are preceded by a GRE, meaning that only certain isoforms are expressed when cells are exposed to glucocorticoids. This may mean that compounds other than glucocorticoids that stimulate surfactant synthesis indirectly may act via different promoters, leading to the production of different NRG1 isoforms with different activity. Such convoluted regulation is probably unlikely, but due to the complexity of this system, all aspects of the system must be considered.
Another possibility that must be considered is that in addition to enhancing expression of growth factors, dexamethasone may also suppress expression of inhibitory factors. Torday and Kourembanas (1990) observed that fetal lung fibroblasts produced a growth factor homologous to transforming growth factor β (TGFβ) that blocked the maturation of type II pneumocytes. This has been supported by recent work (McDevitt et al., 2007) which used RT-PCR and microarrays to confirm the expression of TGFβ by fibroblasts. Any increase in synthesis with dexamethasone treatment may therefore be due to a combination of enhanced expression of FPF and inhibition of expression of TGFβ. The compelling evidence that exists for both regulatory pathways indicates that signaling in the developing lung is more complex than initially thought.

The main evidence to indicate that the ions observed in FCM were ions of NRG1 is the partial fragmentation pattern obtained. The pattern matched that of the NRG1 standard for several ions. A more detailed fragmentation pattern, preferably over several MS^n steps would be desired for a definitive identification, but insufficient energy was available through CID to allow for further fragmentation of an intact protein molecule such as NRG1. Thus, it is possible (although unlikely) that the ions observed in FCM were ions of an unrelated compound with an identical m/z. The best approach would be to use a more powerful mass spectrometry technique such as Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). The use of high strength magnetic fields means that this instrument can provide molecular weights accurate to five decimal places, sufficient for definitive identification of a compound (Marshall et al., 1998). This type of high-resolution analysis, combined with proteomic techniques such as Multidimensional Protein Identification Technology (Washburn et al., 2001), would remove any doubt as to the identity of the ions in FCM.
The concentration of NRG1 in FCM from experiments which exhibited no indirect response to glucocorticoids showed no significant difference from control FCM. This clearly established a strong correlation between NRG1 concentration in FCM and increased surfactant synthesis. The reason for the lack of response in some cultures is not clear, and is possibly related to the sensitivity of the tissue culture system that was highlighted in Chapter 2. This particular observation warrants further investigation to determine if a particular aspect of the system can prevent the cells from responding to dexamethasone and secreting NRG1.

Attempts to separate the components of FCM using HPLC were largely unsuccessful. This can be attributed to the complexity of FCM, both in terms of the array of compounds secreted from the cultured lung fibroblasts into the medium, and the composition of MEM itself. Compounds of interest, mostly secreted proteins, are also likely to be present in much lower concentrations than other components. For this reason, further research into NRG1 in this system would be greatly advantaged by improved separation. This may require protein purification techniques to extract the proteins from solution, although important non-protein compounds may be overlooked. A technique such as solid phase extraction may be of use, as it allows compounds to be separated initially on the basis of solubility in different solvents. Other possibilities include HPLC using two columns of differing chemistry, or possibly a column of larger pore size (e.g. 100 nm); use of two-dimensional gel electrophoresis to separate proteins prior to mass spectral analysis; or the use of other forms of mass spectrometry, as detailed earlier. FT-ICR-MS would remove the need for adequate separation on HPLC and allow all of the components of FCM to be identified using mass spectrometry. Identification of all of the compounds present in FCM would be highly advantageous, as
it would provide a much clearer picture of exactly what is secreted from fetal lung fibroblasts.

This study has provided further evidence that FPF, whose molecular identity has been unknown, is most likely NRG1, or at least includes NRG1 as a significant component. The concentration of a particular NRG1 isoform in fibroblast-conditioned medium was shown to increase significantly when fibroblast cultures derived from fetal rat lung were exposed to dexamethasone. Previous findings about the localization of NRG1 and its receptors, the ErbB family, show that the appropriate receptor-ligand system exists for NRG1 to have the effects previously observed for FPF in the surfactant system. Transduction of the signal by ErbB2/ErbB3 can occur via a number of pathways, and it is likely that phospholipase Cγ/protein kinase C provides the signaling pathway in type II pneumocytes. The complexity of regulation of the NRG1 system, from transcription of the nrg1 gene through to receptor interactions, has made it difficult to generate a complete picture of this system from a single study. More research is required into NRG1 isoforms and receptors to fully understand the role of NRG1 in the surfactant system. In spite of the remaining ambiguity, it does seem likely that neuregulin-1 is a major component of the activity of the compound identified as ‘fibroblast-pneumocyte factor’.
Chapter 4. Effect of insulin-like growth factor II on surfactant synthesis and secretion

4.1 Introduction

4.1.1 Insulin-like growth factors

Insulin-like growth factors (IGFs) are a group of growth factors that share similarities in function with the neuregulins (Zorzano et al., 2003). IGFs are involved in many biochemical processes, including cell differentiation, proliferation and apoptosis (Jones and Clemmons, 1995). Two IGFs have been identified to date: insulin-like growth factor I (IGF-I) and insulin-like growth factor II (IGF-II). Specific IGF receptors (IGFRs) and binding proteins (IGFBPs) have also been identified (Yu and Rohan, 2000) (Figure 4.1). Other components of the system include an acid labile subunit (ALS) and several low-affinity IGFBP-related proteins (IGFBP-rPs) (Frystyk, 2004).

Insulin-like growth factor I is a 70-amino acid polypeptide that has been found to be important in growth and injury repair in a variety of organs, including the lung. It shares 49% homology with insulin (Ullrich et al., 1986). Insulin-like growth factor II is a 67-amino acid polypeptide with 47% homology with insulin and 61% with IGF-I (Rinderknecht and Humbel, 1978). The concentration of IGF-II in adult human serum is $660 \pm 124 \text{ ng.mL}^{-1}$, while in adult rat serum it is $11.4 \pm 0.7 \text{ ng.mL}^{-1}$ (Bowsher et al., 1991). Expression and regulation of IGFs is not well understood. IGF concentration is regulated by a number of hormones, including estrogen, follicle-stimulating hormone and luteinising hormone (Yu and Rohan, 2000), but there are likely to be many other mechanisms of regulation that have not yet been identified.

Considerable evidence exists to indicate that IGF-II plays a key role in mammalian development, and is more important in early life than IGF-I (Brisenden et al., 1984). It has been suggested that the main functions of IGF-II occur during fetal
The IGFs are present in circulation as binary complexes with IGFBPs. IGFBPs modulate cell response to IGFs (A); and specific proteases act on IGFBPs to release IGFs (B). IGF can then interact with transmembrane receptors (C).
development and that these roles are taken over by IGF-I post-parturition (Stewart and Rotwein, 1996). The IGF-II gene is expressed during fetal life (Brown et al., 1986; Graham et al., 1986), and IGF-II mRNA has been detected in a number of fetal tissues (Beck et al., 1987). Expression of the IGF-II gene in rat liver is highest during fetal development, begins to decrease post-parturition and is undetectable after weaning (Carr et al., 1995; Langford et al., 1998).

4.1.2 Insulin-like growth factor receptors

Two distinct transmembrane insulin-like growth factor receptors (IGFRs) have been identified: type 1 and type 2.

The type 1 IGF receptor (IGFR-1) is a glycoprotein with a molecular weight of approximately 325 kDa, composed of four subunits (Sara and Hall, 1990). IGFR-1 has 60% structural and functional homology with the insulin receptor (Ullrich et al., 1986), and transduces its effect intracellularly via tyrosine kinase (Humbel, 1990). Both IGFs can bind to IGFR-1, but IGF-I shows a greater affinity than IGF-II (Rechler and Nissley, 1985). IGFR-1 has been detected in a number of systems during fetal development (Humbel, 1990; Baker et al., 1993) and its role is likely to be an essential one, as null mutations in IGFR-1 are lethal (Liu et al., 1993). Levels of IGFR-1 decline post-parturition, but it is still detectable (Baker et al., 1993).

The type 2 IGF receptor (IGFR-2) is a single-chain polypeptide with a molecular weight of approximately 250 kDa, composed of three domains (Sara and Hall, 1990). It is structurally unrelated to either the insulin receptor or IGFR-1, but appears to be identical to the mannose-6-phosphate cation-independent receptor (Kornfeld, 1992). As a result, it is able to bind mannose-6-phosphate-containing proteins such as renin, proliferin and thyroglobulin (Jones and Clemmons, 1995). IGFR-2 has a high affinity for IGF-II and is unable to bind insulin (Massague and Czech, 1982). IGFR-2 acts via a
G-protein secondary messenger system (Nishimoto et al., 1989), but there is much evidence to suggest that IGFR-2 is not involved in any signal transduction pathways (Sakano et al., 1991; Kornfeld, 1992). Instead, IGFR-2 is likely to be involved primarily in regulation of IGF-II levels (Filson et al., 1993).

Insulin and the IGFs are able to bind to each other’s receptors, although with a greatly reduced affinity (Frattali and Pessin, 1993). A hybrid of the insulin receptor and IGFR-1 has also been identified, but its expression is inconsistent (Jones and Clemmons, 1995). This hybrid receptor has a higher affinity for IGF-I than for insulin, but its biological function is not known.

4.1.3 Insulin-like growth factor binding proteins

Circulating IGFs are almost exclusively bound to one of the insulin-like growth factor binding proteins (IGFBPs). Six IGFBPs (IGFBP-1 to IGFBP-6) have been purified and they have a high affinity for both IGFs (Wallen et al., 1997). The amino acid sequences of the IGFBPs show 47% to 60% homology (Murphy, 1998). Most circulating IGF-I is bound to IGFBP-3, forming a 150 kDa complex that regulates transport of IGF-I (Bayes-Genis et al., 2000). The four main functions of IGFBPs are (Jones and Clemmons, 1995):

a) transport and storage
b) clearance and recycling
c) tissue-specific and cell-specific localization
d) modulation of the interaction of IGFs with IGFRs

The affinity of IGFBPs for IGFs is modulated by IGFBP proteases (Blat et al., 1994). Consequently, these proteases are very important in determining the bioavailability of IGFs at a cellular level (Rajah et al., 1995). Several different
proteases have been identified as being able to cleave IGFBPs, and there are likely to be many others that have not been identified. An example is cathepsin D, a lysosomal protease, which can act on all six known IGFBPs (Claussen et al., 1997).

4.1.4 The role of insulin-like growth factors in lung development

Considerable evidence exists to indicate that IGFs play an important regulatory role in the development of the fetal lung. mRNA and peptides for both IGF-I and IGF-II have been detected in lung tissue (Retsch-Bogart et al., 1996), and abundance of these varies with developmental stages (Klempt et al., 1992). Fetal lung cells in culture have been shown to produce both IGFs and IGFBPs (Maitre et al., 1995), and IGFs have been demonstrated to be involved in mitogenesis in similar cultures (Mouhieddine et al., 1994).

IGF-II mRNA is most abundant during early fetal lung development in rats (up to days 16-18), and declines until four weeks post-partum (Klempt et al., 1992; Wallen and Han, 1994). Peptide fragments of IGF-II are also found in the lung, although their abundance varies greatly in different parts of the lung and different developmental stages. The highest levels of these peptides are observed in the time immediately after birth (Kauffman et al., 1974). Elevated cortisol levels decrease the IGF-II concentration in the lung (Li et al., 1993), so it is possible that the rise in cortisol observed in fetal plasma prior to birth may be the cause of the gradual decline in IGF-II levels.

Receptors for IGFs are present in the fetal lung, but the pattern of expression is difficult to interpret. IGFR-1 is detectable in day 14 rat epithelial cells, but not day 18 cells (Maitre et al., 1995), and its expression is almost negligible in human fetal lung cells (Chetty et al., 2004). IGFR-1 is largely expressed post-parturition, when IGF-II is not detected, indicating that IGF-I is likely to be more important to postnatal growth than IGF-II (Maitre et al., 1995). IGFR-2 is expressed in epithelial cells of fetal
rat lung during the early stages of gestation, but it cannot be detected at day 18 or later. It can be found in mesenchymal tissues at this time, but IGF-II is present only in epithelial tissues at this stage of development (Maitre et al., 1995). This evidence indicates that if IGF-II has a role in the surfactant system at birth, it is likely to be through a receptor other than the IGFRs.

Human insulin receptor (IR) is expressed in two distinct forms, IR-A and IR-B. IR-B is the dominant form, and is thought to be essential for the metabolic effects of insulin (Mosthaf et al., 1990). IR-A binds to both insulin and IGF-II with high affinity and is expressed primarily in tumours and fetal tissues (Frasca et al., 1999). It is therefore possible that IR-A is the main receptor for the IGF system in fetal rat lung. In hepatoma cells, dexamethasone causes expression to switch from IR-A to IR-B (Kosaki and Webster, 1993), so the increase in glucocorticoid expression in late gestation may cause the tissues to change to the adult expression of IR-B.

IGFBPs have also been identified in the developing lung, particularly in the later stages of development (Delhanty and Han, 1993). Genes for IGFBP-2 to IGFBP-6 are expressed in fetal rat lung (Wallen et al., 1997) and mRNA for IGFBP-2 to IGFBP-5 has been detected in lung cultures, although the expression appears to be at a different rate to that observed in vivo (van de Wetering et al., 1997). This indicates that regulation of IGFBPs in the developing lung may be controlled by factors extrinsic to the tissue. The most abundant IGFBP in the fetal rat lung is IGFBP-2, which is expressed most during late gestation (Klempt et al., 1992). It is possible that increased production of IGFBPs occurs to bind IGFs and prevent them from interacting with their receptors (Mouhieddine et al., 1994). A potentially important observation made by Mouhieddine et al. (1994) is that expression of IGF-II, IGFR-2 and IGFBP-2 is
increased in growth arrested type II pneumocytes. This may be important for experiments using cultured type II pneumocytes, such as in this study.

The presence of IGFs, IGFRs and IGFBPs in the developing lung, and the changes in distribution and abundance observed indicate that the IGFs are likely to be involved in many different processes during lung growth and maturation. It is therefore possible that they are also involved in regulation of the surfactant system. This potential role for IGFs has not been previously investigated, and given that IGFs are functionally similar to neuregulins, a study was undertaken to determine if IGFs have an effect on synthesis or secretion of pulmonary surfactant.

4.2 Methods

4.2.1 IGF-II preparation

Insulin-like growth factor-II (IGF-II) (Novozymes GroPep, Thebarton, SA, Australia) was supplied as a lyophilized powder and dissolved in 10 mM hydrochloric acid (HCl) to a concentration of 100 μM IGF-II. This stock solution was stored at -80°C until use. This solution was further diluted with 10 mM HCl to provide the required working concentration for each experiment. Control plates in these experiments included 10 mM HCl.

4.2.2 Surfactant synthesis experiments

Tissue culture and surfactant synthesis experiments were carried out as described in the revised method of 2.8. The circulating concentration of IGF-II in fetal rats prior to parturition has been determined to be in the range of 0.4 to 0.7 μM (Daughaday et al., 1982), so experiments focused on the following concentrations: 0.4, 0.6 and 0.8 μM.
4.2.3 Surfactant secretion experiments

In addition to studying the effect of IGF-II on surfactant synthesis, the effect on secretion of surfactant from type II pneumocytes was also examined. Insulin is known to stimulate the rate of surfactant secretion (Snyder and Mendelson, 1987), so it is possible that related compounds like IGF-II may exert a similar effect. As with synthesis, IGF-II was studied at 0.4, 0.6 and 0.8 \(\mu \text{M} \), as well as 0.1, 0.2 and 1.6 \(\mu \text{M} \) as part of a concentration curve.

After 72 hours in culture, type II cells were taken from the incubator, media was removed and plates washed twice with 2.0 mL of BSS. A solution of MEM\(^{+}\) containing 2 \(\mu \text{Ci.mL}^{-1} \) [methyl-\(^{3}\)H]-choline chloride was prepared and placed in a 37\(^\circ\)C shaking water bath for 10 minutes. 2.0 mL of this solution was added to each type II plate and plates were returned to the incubator for 24 hours.

Following incubation, plates were washed with BSS to remove unincorporated choline. 1.7 mL of MEM\(^{+}\) was added to all plates and plates were equilibrated in the incubator for a further 60 minutes. Two plates were then removed from the incubator to determine the amount of phospholipid in media and cells at ‘time zero’. To the remaining plates 17 \(\mu \text{L} \) of IGF-II + vehicle (test) or vehicle only (control) were added. Plates were returned to the incubator for a further three hours.

Plates were removed from the incubator after three hours and briefly stored on ice. Media was transferred to a centrifuge tube and plates washed three times with 0.83 mL of BSS. Wash buffer was also transferred to the same centrifuge tube and plates were placed back on ice. Tubes were centrifuged at 1000 g for two minutes and a 3.5 mL aliquot of the supernatant was added to a screw-capped tube. To this tube, 50 \(\mu \text{L} \) of L-3-phosphatidylcholine-1,2-di[\(^{14}\)C] palmitoyl was added as a recovery standard and 20 \(\mu \text{L} \) of 2.5 mg.mL\(^{-1}\) phosphatidylcholine was added as a carrier. Following this, 13.125 mL of 1:2 chlorform:methanol was added, tubes vortexed and
the mixture left to stand at room temperature. After 10 minutes, 4.375 mL of chloroform was added, tubes vortexed and the contents left to stand for a further 10 minutes. Finally, 4.375 mL of MilliQ-H$_2$O was added, tubes vortexed and placed in a 4°C refrigerator for at least 48 hours. Cells were also harvested for both lipid and DNA assays using the revised method described above for synthesis experiments in 2.8.

Lipid assays for media and cells were completed as described above, with 400 µL samples being taken into scintillation vials, dried, vials filled with scintillant, vortexed and left in the dark for 24 hours before being counted for both 3H and 14C. DNA assays were completed as in 2.8. Calculations to determine mean dpm.ng DNA$^{-1}$, cell density and percentage recovery were also undertaken as described previously. The calculation for percentage secretion was:

\[
\% \text{ secretion} = \frac{\text{dpm in media phospholipids}}{(\text{dpm in media phospholipids}) + (\text{dpm in cellular phospholipids})} \times 100
\]

Results were tabulated and graphed using Microsoft Excel 2003 (v11.8117) and statistics calculated using SPSS for Windows 14.0.1.

4.3 Results

4.3.1 Surfactant synthesis

A total of 31 pairs of control and test FCM were tested, ten at 0.4 µM IGF-II, seven at 0.6 µM and fourteen at 0.8 µM (Table 4.1). Response to IGF-II was small, with direct treatment showing a mean increase in synthesis of 3.34%, and indirect treatment a mean increase of 3.60%. Single-factor ANOVA showed no significant difference between direct and indirect treatments at any of the concentrations tested.
Table 4.1: The direct and indirect effect of IGF-II on the augmentation of PC synthesis by type II pneumocytes.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>PC Synthesis (dpm/ng DNA)</th>
<th>Difference</th>
<th>P-value</th>
<th>Mean type II pneumocyte DNA (µg/plate)</th>
<th>Mean fibroblast DNA level (µg/plate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGF-II 0.4 µM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct (10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>21.24 ± 3.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGF-II</td>
<td>22.01 ± 3.65 ↑ 3.60%</td>
<td></td>
<td></td>
<td>25.54</td>
<td></td>
</tr>
<tr>
<td>Indirect (10)</td>
<td></td>
<td></td>
<td>0.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>19.65 ± 3.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGF-II</td>
<td>20.17 ± 4.06 ↑ 2.65%</td>
<td></td>
<td></td>
<td>26.75</td>
<td>8.30</td>
</tr>
<tr>
<td>IGF-II 0.6 µM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct (7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>25.51 ± 7.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGF-II</td>
<td>26.39 ± 6.66 ↑ 3.44%</td>
<td></td>
<td></td>
<td>20.59</td>
<td></td>
</tr>
<tr>
<td>Indirect (7)</td>
<td></td>
<td></td>
<td>0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>18.44 ± 3.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGF-II</td>
<td>19.35 ± 4.47 ↑ 4.94%</td>
<td></td>
<td></td>
<td>27.26</td>
<td>4.19</td>
</tr>
<tr>
<td>IGF-II 0.8 µM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct (14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>26.92 ± 4.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGF-II</td>
<td>27.73 ± 4.25 ↑ 2.99%</td>
<td></td>
<td></td>
<td>23.18</td>
<td></td>
</tr>
<tr>
<td>Indirect (14)</td>
<td></td>
<td></td>
<td>0.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>23.43 ± 3.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGF-II</td>
<td>24.19 ± 4.04 ↑ 3.22%</td>
<td></td>
<td></td>
<td>24.82</td>
<td>5.08</td>
</tr>
</tbody>
</table>

Primary cultures of lung fibroblasts were grown to near confluence, followed by 24 hours incubation in the presence or absence of either 0.4, 0.6 or 0.8 µM in MEM+. The fibroblast-conditioned media (FCM) were collected and stored at -80°C. Prior to use, the media were thawed and incubated at 65°C for one hour, cooled to room temperature and filter-sterilized to remove detached cells and cellular debris. The media were then diluted 1:4 with MEM+. The effect on PC synthesis by type II pneumocytes was investigated by exposing the cells either to the FCM (indirect) or to MEM+, with and without IGF-II (direct). The data represent the mean ± SE. The number of replicates examined for each condition is indicated in parentheses, and each replicate comprised four cultures. Data were compared using single-factor ANOVA.
(p = 0.86, 0.99 and 0.98 for 0.4, 0.6 and 0.8 µM IGF-II, respectively). As with the results for dexamethasone (2.9), experiments with a type II cell density above the threshold value of 25 µg plate⁻¹ were removed from the data set and the results recalculated.

In the revised data set, a total of 22 pairs of control and test FCM were tested, seven at 0.4 µM IGF-II, six at 0.6 µM and nine at 0.8 µM (Table 4.2). Response at the three different concentrations was very similar, with direct treatment showing a mean increase in synthesis of 4.65%, and indirect treatment a mean increase of 6.35%. The lowest indirect response was at 0.4 µM (6.00%) and the highest at 0.8 µM (6.91%). Standard error values were high, with an error of 31.5% for direct controls at 0.6 µM. PC synthesis values (expressed in dpm ng DNA⁻¹) for these experiments were generally consistent with those observed previously (Sen and Cake, 1991). Single-factor ANOVA showed no significant difference between the direct and indirect treatments at any of the concentrations tested (p = 0.90, 0.93 and 0.89 for 0.4, 0.6 and 0.8 µM IGF-II, respectively). While still not significant, the level of response to the various concentrations of IGF-II for the revised data set was much more consistent, indicating that type II cell density was affecting the calculated results of synthesis experiments.

4.3.2 Surfactant secretion

Initial secretion experiments tested a range of IGF-II concentrations from 0.1 to 1.6 µM to determine if there was any significant response (Figure 4.2). The control cultures had a mean secretion rate of 1.48% (± 0.07%), while the greatest response from IGF-II was observed at 0.4 µM with a secretion rate of 1.69% (± 0.08%). A mean value of only 1.18% (± 0.15%) was seen at 1.6 µM IGF-II. The secretion rate for the other three concentrations tested (0.1, 0.2 and 0.8 µM) fell between these two values. Single-factor ANOVA revealed no significant differences in secretory response between any of
Table 4.2: The effect of IGF-II on PC synthesis in type II pneumocytes for type II cultures with cell density below 25 µg/plate-1.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>PC Synthesis (dpm/ng DNA)</th>
<th>Difference</th>
<th>P-value</th>
<th>Mean type II pneumocyte DNA (µg/plate)</th>
<th>Mean fibroblast DNA level (µg/plate)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGF-II 0.4 µM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct (7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>23.61 ± 3.99</td>
<td>↑ 4.90%</td>
<td>13.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGF-II</td>
<td>24.76 ± 4.52</td>
<td>↑ 4.90%</td>
<td>13.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indirect (7)</td>
<td></td>
<td></td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>22.85 ± 4.35</td>
<td>↑ 6.00%</td>
<td>14.68</td>
<td>4.86</td>
<td></td>
</tr>
<tr>
<td>IGF-II</td>
<td>24.22 ± 5.01</td>
<td>↑ 6.00%</td>
<td>14.68</td>
<td>4.86</td>
<td></td>
</tr>
<tr>
<td>IGF-II 0.6 µM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct (6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>29.30 ± 9.23</td>
<td>↑ 4.47%</td>
<td>14.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGF-II</td>
<td>30.61 ± 8.31</td>
<td>↑ 4.47%</td>
<td>14.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indirect (6)</td>
<td></td>
<td></td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>28.11 ± 6.37</td>
<td>↑ 6.15%</td>
<td>15.01</td>
<td>4.43</td>
<td></td>
</tr>
<tr>
<td>IGF-II</td>
<td>29.84 ± 7.24</td>
<td>↑ 6.15%</td>
<td>15.01</td>
<td>4.43</td>
<td></td>
</tr>
<tr>
<td>IGF-II 0.8 µM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct (9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>29.48 ± 6.37</td>
<td>↑ 4.57%</td>
<td>13.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGF-II</td>
<td>30.83 ± 5.40</td>
<td>↑ 4.57%</td>
<td>13.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indirect (9)</td>
<td></td>
<td></td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>25.47 ± 5.20</td>
<td>↑ 6.91%</td>
<td>13.67</td>
<td>3.23</td>
<td></td>
</tr>
<tr>
<td>IGF-II</td>
<td>27.23 ± 5.82</td>
<td>↑ 6.91%</td>
<td>13.67</td>
<td>3.23</td>
<td></td>
</tr>
</tbody>
</table>

Primary cultures of lung fibroblasts were grown to near confluence, followed by 24 hours incubation in the presence or absence of either 0.4, 0.6 or 0.8 µM in MEM+. The fibroblast-conditioned media (FCM) were collected and stored at -80°C. Prior to use, the media were thawed and incubated at 65°C for one hour, cooled to room temperature and filter-sterilized to remove detached cells and cellular debris. The media were then diluted 1:4 with MEM+. The effect on PC synthesis by type II pneumocytes was investigated by exposing the cells either to the FCM (indirect) or to MEM+, with and without IGF-II (direct). The data represent the mean ± SE. The number of replicates examined for each condition is indicated in parentheses, and each replicate comprised four cultures. Data were compared using single-factor ANOVA.
Figure 4.2: Effect of IGF-II on secretion of surfactant-associated phospholipids from cultured type II pneumocytes.

Type II cells were isolated from lungs of 19-day fetal rats and, after reaching confluence, were incubated for a further 24 hours with $[^3\text{H}]-\text{choline chloride}$ in order to label cellular phosphatidylcholine. The cells were then washed thoroughly and equilibrated for one hour at 37°C in serum-free medium prior to the addition of the indicated concentrations of IGF-II. The percentage of total cellular $[^3\text{H}]-\text{phosphatidylcholine}$ secreted into the media in the subsequent three hours was determined using the method outlined in 4.2.3. The data represent the mean ± SE. For comparison, the mean control response is also shown.
the concentrations tested ($p = 0.12$). Standard error values were small, indicating consistency between experiments.

The initial experiments showed that IGF-II had no significant effect on surfactant secretion. However, some compounds have been shown to act synergistically or antagonistically with other secretagogues (Sullivan et al., 2003). To investigate this possibility, the effect of IGF-II was examined with two known stimulants of secretion, neuromedin C and isoproterenol. Both compounds have been shown to increase surfactant secretion from type II pneumocytes at 1.0 nM (neuromedin C) (Asokananthan, 1996) and 1.0 µM (isoproterenol) (Asokananthan and Cake, 1996). Neuromedin C is the biologically active C-terminal end of gastrin releasing peptide, a peptide with a wide range of signaling roles in mammalian systems ((Sunday et al., 1988). Isoproterenol (also known as isoprenaline) is a β-adrenergic agonist that is synthetically derived from noradrenalin (Gogarten et al., 2001). Both of these compounds have been previously shown in this laboratory to have no effect on cell viability, using media LDH as a reporter.

Neuromedin C at 1.0 nM gave rise to a mean secretion rate of 4.59% (Figure 4.3), which was significantly higher than the mean control value of 1.55% ($p = 4.76 \times 10^{-7}$). IGF-II at 0.4 µM showed a mean secretion rate identical to the control value. The exposure of type II cells to the combined effects of 1.0 nM neuromedin C and 0.4 µM IGF-II yielded a secretion rate (4.24%) which was not significantly different ($p = 0.26$) from the elevated level seen with 1.0 nM neuromedin C alone. Standard error values were small, indicating consistency between experiments.

Exposure to isoproterenol at 1.0 µM resulted in a mean PC secretion rate of 4.44% (Figure 4.4), which was significantly higher than the mean control value of 1.56% ($p = 7.63 \times 10^{-8}$). The effects of IGF-II at 0.4 µM and 0.8 µM were almost
Figure 4.3: Effect of IGF-II on secretion of surfactant-associated phospholipids from cultured type II pneumocytes in response to neuromedin C.

Type II cells were isolated from lungs of 19-day fetal rats and, after reaching confluence, were incubated for a further 24 hours with [³H]-choline chloride in order to label cellular phosphatidylcholine. The cells were then washed thoroughly and equilibrated for one hour at 37°C in serum-free medium prior to the addition of IGF-II (0.4 µM) and/or neuromedin C (1.0 nM). The percentage of total cellular [³H]-phosphatidylcholine secreted into the media in the subsequent three hours was determined using the method outlined in 4.2.3. The data represent the mean ± SE.
Figure 4.4: Effect of IGF-II on secretion of surfactant-associated phospholipids from cultured type II pneumocytes in response to isoproterenol.

Type II cells were isolated from lungs of 19-day fetal rats and, after reaching confluence, were incubated for a further 24 hours with $[^3]$H-choline chloride in order to label cellular phosphatidylcholine. The cells were then washed thoroughly and equilibrated for one hour at 37°C in serum-free medium prior to the addition of isoproterenol (1.0 μM) and/or the indicated concentration of IGF-II. The percentage of total cellular $[^3]$H-phosphatidylcholine secreted into the media in the subsequent three hours was determined using the method outlined in 4.2.3. The data represent the mean ± SE.
identical to the mean control value, with secretion rates of 1.55% and 1.52%, respectively. The exposure of type II cells to the combined effects of 1.0 μM isoproterenol and 0.4 μM IGF-II yielded a secretion rate (4.53%) which was not significantly different (p = 0.75) from the elevated level seen with 1.0 μM isoproterenol alone. The combination of 1.0 μM isoproterenol and 0.8 μM IGF-II yielded a secretion rate of 4.74%, which was also not significantly different (p = 0.42) from the rate observed with 1.0 μM isoproterenol.

4.4 Discussion

The previously-described effects of insulin on surfactant synthesis and secretion, and the relationship between insulin and IGFs, suggested that IGF-II might have an impact on the surfactant system. Insulin delays maturation of fetal rat lungs and decreases the number of lamellar bodies present in type II cells (Gross et al., 1980). It also causes an increase in SP-B levels, at the expense of SP-A, which leads to an increase in secretion (Snyder and Mendelson, 1987). If insulin and IGF-II act through the same or similar mechanisms in the fetal lung, IGF-II would be expected to decrease synthesis and increase secretion of surfactant.

The results of this study indicate that IGF-II had no significant effect on synthesis in either a direct or indirect manner, nor did it have any significant effect on secretion. The main receptor for the biological action of IGF-II in most systems is thought to be IGFR-1, and it is likely that this is the primary receptor in type II pneumocytes immediately post-parturition. However, IGFR-1 is not present in detectable concentrations in type II pneumocytes derived from fetal rats at day 18 of gestation (Maitre et al., 1995), suggesting that it may not be present in the type II cultures used in this study. The absence of this receptor may account for the lack of a significant effect on synthesis or secretion of surfactant. It has been shown that, at this
stage of development, IGF-II may act through IR-A (Frasca et al., 1999). This receptor does have a high affinity for IGF-II, but its abundance in fetal lung tissue has not been characterized. It is therefore possible that IR-A may not be present in fetal lung fibroblasts and type II pneumocytes, or may exist only at a very low level, meaning that IGF-II is unable to exert a significant effect on the surfactant system through this receptor.

Recent research (Siddle and Soos, 1999) has suggested that there are many atypical insulin and IGF receptors that are yet to be fully characterized. These receptors may arise from processes such as glycosylation, splicing or hybridization (Le Roith et al., 1995). Some atypical receptors are able to bind IGF-II with reasonable affinity, and so may be important in IGF signaling. An example is the insulin-receptor-related receptor (IRR), which shares 55% homology with IR-B and IGFR-1 (Shier and Watt, 1989). The possible absence of the primary receptors for IGF-II in lung cells may indicate that receptors such as IRR are involved in the IGF system in fetal lung cells. The variable affinity and effect of these receptors (e.g. Zhang and Roth, 1992) may have contributed to the lack of response to IGF-II observed in this study.

The important role of IGFBPs in modulating the action of IGF-II must also be considered. The expression of IGFBPs is different in culture than it is in vivo, implying that control of this system is exogenous to the tissue (van de Wetering et al., 1997). The IGFBPs may not have been present in the tissue cultures used in these experiments or may have been expressed at much higher levels than normal, possibly affecting the action of IGF-II. The potential absence/presence in excess of the other proteins of the IGF system must also be considered. The role of the IGFBP-related proteins is still not known and they may be involved in regulation of the effects of IGF-II. Further study is
needed to determine if any IGF-related proteins are present in either fibroblast or type II pneumocyte cultures and if so, which, and at what levels.

Previous research (Mouhieddine et al., 1994) has shown that growth-arrested type II cells show an increase in expression of IGFR-2 and IGFBP-2. Confluent type II pneumocyte cultures may be considered to be non-proliferating, as they occupy the entire culture plate. The main role of IGFR-2 and IGFBP-2 appears to be to bind IGF-II and remove it from circulation, rather than being involved in any signaling pathways (Filson et al., 1993; Mouhieddine et al., 1994). As the regulation of some components of the IGF axis have been shown to be exogenously controlled, binding of IGF-II by receptors and binding proteins may not be solely concentration-dependent. If the type II cultures used in this study up-regulated IGFR-2 and/or IGFBP-2, then the IGF-II used in these experiments may have bound to either the IGFR-2 receptor or the binding protein and not been able to exert any significant effect on the synthesis or secretion of surfactant. The IGFBP proteases, required to free IGF-II from the IGFBPs, may not have been present in the system meaning that, once bound, the IGF-II could not be freed to interact with appropriate receptors. The lack of any significant effect of IGF-II observed in this culture system may therefore not be representative of that which occurs in vivo.

The primary role of IGF-II in some tissues is the enhancement of cellular activities such as proliferation and differentiation (Jones and Clemmons, 1995), so it was thought that IGF-II might cause an increase in surfactant synthesis and secretion through enhanced proliferation of cultured cells. However, research by Fraslon and Bourbon (1992) has shown that IGF-II does not lead to increased proliferation of type II cells. Increased cell density on type II plates would, in fact, probably have had a negative effect on synthesis, as detailed in 2.10.1. Fraslon and Bourbon (1992) did find
that IGF-II could increase lung fibroblast cell numbers, but mean cell density of fibroblast cultures for IGF-II treatments was lower than for experiments with other compounds (as discussed in 2.10.2). The results obtained indicate that the mitogenic effects of IGF-II were unlikely to have been a significant factor in these experiments.

Analysis of the results for surfactant synthesis indicated that cell density of type II cultures was again likely to be affecting the results observed. While removal of cultures with a density above 25 μg.DNA plate$^{-1}$ did not reveal significant differences between direct and indirect treatments, the calculated results were far more consistent. This consistency at three different concentrations provides further evidence that IGF-II had no effect on the surfactant system. The density of type II cultures clearly had an effect on the reliability of the results obtained, further reinforcing the need to develop a method of producing primary type II cultures with a consistent density.

Insulin-like growth factor II did not behave as expected in the surfactant system, with no significant effect on either synthesis or secretion. As has been discussed, the complexity of the IGF system means that there are many possible reasons for this lack of effect. The most likely reason is the absence of the preferred receptor, IGFR-1. However, the receptors that IGF-II acts through in the fetal lung have not been definitively identified, although there are several possible candidates. These receptors, such as IR-A, have differing abundance and affinity for IGF-II and these factors may have greatly reduced the response of this system to IGF-II. The potential up-regulation of IGFR-2 and IGFBPs may have removed IGF-II from the system and prevented it from interacting with other receptors. IGF-II is clearly involved in many important developmental processes in the fetus, including lung development (Maitre et al., 1995), but the results of this study indicate that it is unlikely to be a significant factor in modulating surfactant production.
Chapter 5. General discussion

As it is studied further, the complexity of the pulmonary surfactant system is revealed, both in terms of cellular interaction and regulation. One of the most perplexing mysteries of this system has been the identity of the fibroblast-pneumocyte factor (FPF), the fibroblast-expressed protein that triggers surfactant synthesis in type II pneumocytes. This study has provided further evidence that neuregulin-1 (NRG1), a growth factor found in many stages of development, is at least one of the components, if not the major component, of FPF. It also provided more insight into the surfactant system, and the method that is commonly used to study synthesis and secretion of surfactant.

This study used capillary HPLC coupled with quadrupole ion trap mass spectrometry to analyze fibroblast-conditioned medium (FCM) for FPF. Previous research (Dammann et al., 2003) had indicated that NRG1 was possibly FPF, and that it possessed the same activity when exposed to type II pneumocyte cells, so analysis was focused on this protein. The concentration of NRG1 was significantly higher in FCM from fibroblast cultures treated with dexamethasone than control cultures. Importantly, FCM generated in the presence of dexamethasone, but which failed to stimulate PC synthesis in type II cells, was shown to contain a level of NRG1 comparable to controls. These findings strongly indicated that NRG1 is at the very least a major component of the response to FPF that has been observed in the past, if not FPF itself.

The finding that NRG1 is involved in this stage of the development of the surfactant system is not surprising, and indeed logical when neuregulin signaling is examined. Expression of NRG1 has been demonstrated in mesenchymal cells (Citri et
al., 2003), such as the fibroblast cells that express FPF. Receptors for NRG1, the ErbB receptors, have been observed in epithelial cells (Patel et al., 2000), such as the type II pneumocytes in which FPF is known to stimulate surfactant synthesis. The timing of this stimulation also fits well with previous observations, as ErbB receptors have been shown to be present in the fetal lung at this time (Liu et al., 2004). The findings of this study have shown that dexamethasone enhances expression of NRG1 by fibroblasts. Combination of all of this information allows a hypothetical picture of this system to be proposed.

Dexamethasone (and likely other glucocorticoids) acts on fibroblast cells through its receptor, leading to increased expression of a number of glucocorticoid-responsive genes. One of these genes is nrg1, which is expressed as NRG1, in a transmembrane isoform. This isoform is proteolysed to an unknown number of soluble forms, including at least a 44 kDa form (Dammann et al., 2003) and the 7.5 kDa form isolated in this study. These soluble isoforms are secreted by the cell, via some form of exocytosis, where they interact with adjacent type II pneumocytes. These type II cells contain both ErbB2 and ErbB3 receptors (Liu et al., 2004). NRG1 binds to ErbB3, which in turn binds to ErbB2 to form the ErbB2/ErbB3 heterodimer. This heterodimeric receptor then transduces its effects on the cell via a number of possible pathways. The most likely pathway for effect on surfactant synthesis (and possibly secretion) is activation of phospholipase Cγ (PLC). PLC increases hydrolysis of phosphatidylinositol-4,5-bisphosphate to diacylglycerol and inositol-1,4,5-trisphosphates which in turn regulates cellular levels of calcium (Ca^{2+}). These compounds regulate activity of protein kinase C (PKC) (Spitaler and Cantrell, 2004), which phosphorylates choline phosphate cytidylyltransferase (CPCT), the rate-limiting enzyme of surfactant synthesis. If this pathway, or something very similar,
exists in the fetal lung, then it is essentially what would be expected of FPF. This makes the case even stronger for NRG1 being FPF.

It is also possible that PKC acts on other enzymes, including those involved in surfactant secretion. This indicates a possible role for NRG1 in regulation of both synthesis of surfactant and its subsequent secretion into the alveolar space. FPF was originally proposed as a direct regulator of synthesis, but any role in secretion was not studied. If NRG1 is acting via a pathway similar to that described above, it is distinctly possible that it actually represents a regulator for the entire surfactant system. This would make it a very powerful compound and highlight its importance in the final stages of lung development around parturition. The fact that NRG1 is essential for lung maturation is certainly feasible given the vital roles for NRG1 in other developmental events, such as cardiac morphogenesis.

The proposed role for NRG1 as a ‘super-regulator’ of the surfactant system means that it could potentially be a very effective treatment for infants suffering from neonatal respiratory distress syndrome (NRDS). If NRG1 was used as a direct treatment, it would avoid the problems encountered with dihydrotestosterone, and possibly insulin, and the side-effects from current treatment procedures involving glucocorticoids. It would also provide a more rapid response, as it could act directly on the type II pneumocytes, as opposed to glucocorticoids which act on the fibroblasts to enhance expression of FPF. Treatment with NRG1 may also enhance secretion and possibly even have mitogenic effects on the lung tissues. Of course, care must be taken to establish if NRG1 is involved in other pathways at this specific stage of development, and if there exists the possibility for over-dose of NRG1 in these systems. The findings of this study provides a potential new option for treatment of NRDS, which warrant further exploration. There is currently no evidence as to whether NRG1 can cross the placenta, but it is known to be involved in signaling during implantation (Brown et al.,
If it is able to cross the placenta, it may be able to administer NRG1 at the onset of premature labor, rather than post-partum, when NRDS may already have occurred.

Insulin-like growth factors (IGFs) are related to neuregulins in terms of function, so the effect of IGF-II on surfactant synthesis and secretion was also investigated. It was expected to have a similar effect to insulin, in that it would decrease synthesis (Gross et al., 1980) and increase secretion (Snyder and Mendelson, 1987). These expectations were not met, with no significant effect being observed on either synthesis or secretion. The complexity of the IGF system means that there are a number of possible reasons for this lack of an effect.

The primary receptor for IGFs is IGFR-1, but this receptor is not found in fetal lung cells at the time of stimulation of surfactant synthesis (Maitre et al., 1995). The secondary IGFR, IGFR-2, is thought to function primarily in binding IGF-II and removing it from circulation (Filson et al., 1993). The most likely receptor for action of IGF-II in the fetal lung in late gestation is an isoform of the insulin receptor, known as IR-A. This receptor has a lower affinity for IGF-II than for insulin, which may explain why no effect was observed. It has also been found that growth-arrested type II pneumocyte cells increase expression of IGFR-2 and IGFBP-2, one of the IGF binding proteins (Mouhieddine et al., 1994). The function of both of these molecules is to bind IGFs and remove them from circulation, implying that increased expression of these may have prevented IGF-II from having any significant effect. It is therefore likely that the combination of a lack of an appropriate receptor and a regulatory system that is different in culture to in vivo meant that IGF-II showed no significant effect on either synthesis or secretion of surfactant.
Analysis of FCM by mass spectrometry could not have been undertaken without a reliable method to generate FCM known to contain FPF. Early results from experiments to confirm the presence of FPF were very inconsistent. This led to a thorough examination of all of the steps of tissue culture and related experimental methods to determine which could be contributing to the unreliability of the experiments. Several parameters were identified, mostly related to the density of cultures or the addition of radioisotopes used in the experiments. This study led to the creation of a revised method, which was used for all subsequent experiments, including all those for which FCM was collected for analysis. This revised method can now be used for all future studies in this laboratory, and will reduce the variation that has been observed in the past.

The most significant effect on reliability was due to variations in the cell density of the type II pneumocyte cultures. This work, done in conjunction with an Honours student (Peh, 2006), found that cultures with a cell density above a threshold value of $25 \ \mu g.mL^{-1}$ showed a mean decrease in phosphatidylcholine (PC) synthesis in response to dexamethasone-treated FCM, while those with density below the threshold showed a mean increase. When the results of experiments involving FCM generated in the presence of dexamethasone were separated on this basis, the mean indirect response to dexamethasone was elevated from a 9.17% to a 17.56% increase. Results for the PC synthesis experiments using IGF-II were also subdivided according to cell density, and response to IGF-II was higher for cultures below the threshold. The reasons for these density-related effects are not clear, although they are likely to be due to the nature of type II cell cultures. Type II pneumocyte cultures are generated from clumps of cells (Tajbakhsh and Cake, unpublished observations), and if these do not spread evenly across the plate, it is possible that not all cells will be exposed to the agonist. These cells will not contribute to synthesis, but will contribute to the level of DNA, causing an
apparent decrease in response. Fibroblast cell density affected results of some experiments, but much less so and not as consistently.

This section of the study also found that the application of the radioisotope-labeled precursor was not as consistent as previously thought, and that it could have been having a major effect on the variability of results. The erratic results of experiments using phorbol 12-myristate 13-acetate were due in part to inconsistent application of $[^3]$H-choline chloride. If insufficient precursor was available to cells, the response detected would have been reduced. In general, this part of the study served to highlight the sensitivity of the method used to even slight variations in some parameters, providing an understanding of why consistent results were initially difficult to obtain.

The findings of this study have provided more evidence that NRG1 is a major component of FPF. A study is currently in progress to examine the direct and indirect effect of recombinant NRG1 on synthesis and secretion of surfactant phospholipids. Fibroblast cells do not contain receptors for NRG1 at this stage of development (Patel et al., 2000), so it is unlikely that treatment of fibroblast cells with NRG1 will yield a significant indirect response. It is more likely that the direct effect of NRG1 on type II cells will be significant, as this should be equivalent to exposing the cells to FPF. It is also possible that NRG1 will enhance surfactant secretion from type II cells, acting through Ca$^{2+}$ and/or protein kinase C.

Further avenues for research also exist in studying NRG1 isoforms and the ErbB receptors. This study focused on only one of at least 16 different isoforms, and one other has already been observed in FCM (Dammann et al., 2003). Different isoforms are known to interact differently with receptors (Kita et al., 1995), so the presence of more than one form in FCM indicates the possibility of multiple roles for NRG1 in this
intercellular signaling pathway. The identification of all NRG1 isoforms that are involved in this system would be a major step, as would determining whether exposure of fibroblasts to different compounds (e.g. dexamethasone, EGF) leads to expression of different isoforms of NRG1. Localization of specific ErbB receptors may also be an important aspect of this signaling system. While ErbB2 and ErbB3 have been identified as present in these tissues at this stage of development, the cultures used should be analyzed to ensure that this expression pattern is consistent. It is possible that the conditions of cell culture led to modified receptor expression (as observed for IGF-II), and if ErbB4 is involved in this system, it could mean that subsequent signaling pathways are quite different. A full study of expression of both NRG1 and ErbB receptors by these cultures is important to provide a clear picture of the total involvement of NRG1 in regulation of the surfactant system.

As detailed in 3.4, the use of a more powerful mass spectrometry technique, such as Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), would allow some of the limitations of ion trap MS to be overcome. Use of FT-ICR-MS would allow the majority of compounds present in FCM to be separated with sufficient resolution for positive identification (Marshall et al., 1998). However, it must be considered that while a high-resolution technique such as FT-ICR-MS would certainly provide many answers, it is expensive. For this reason, further work on separation of the components of FCM, using a combination of HPLC and other separation/purification/fractionation techniques should be undertaken. If a reliable method can be developed, future work on these important secretions would be greatly advantaged.

As outlined in 2.11, more work is also required on the tissue culture methodology used in this study. Primarily, a procedure for obtaining primary type II pneumocyte cultures with cell density consistently below 25 μg.plate⁻¹ is needed to
ensure that results of experiments are not affected by density. Considerable time has been spent on this problem, but a dedicated study has not been undertaken. All of the conditions of culture, from setup to maintenance, should be examined to determine if such consistency is attainable. Primary cultures are definitely required for fibroblasts, but it may be possible to use cell line cultures for type II pneumocytes. Results obtained from indirect experiments using primary and cell line type II cultures should be compared to assess whether cell line cultures could be used in future.

The role of FPF has been known for three decades, but its existence has remained a mystery. Confirmation of the identity of FPF represents a significant step in research into the surfactant system, and this study has contributed to that identification, making a strong case for NRG1. Research into the important role of FPF has dwindled in the last two decades, possibly because its unknown identity has meant that the work lacked direction. The findings of this study have provided a new direction for this research, allowing the focus to be shifted to NRG1 and its ErbB receptors. The complexity of the neuregulin system means that there is a considerable scope for future work, and many questions to answer before a more complete picture can be uncovered.

This study has provided a considerable amount of new information related to the surfactant system. It has examined the effects of insulin-like growth factor II and neuromedin C on surfactant synthesis and, in the case of IGF-II, surfactant secretion. A revised method has been developed for tissue culture and related experiments, which will provide future research with more reliable results. Most significantly, it has achieved its primary goal of confirming the identity of the fibroblast-pneumocyte factor as neuregulin-1, and has also provided more information on the role of neuregulin-1 in the pulmonary surfactant system.
References

Agilent (2003), Agilent 1100 Series LC/MSD Trap Techniques and Operation (H8966A), Alpharetta, USA: Agilent Technologies Ltd., 1.

Bangham AD and Horne RW (1964), "Negative staining of phospholipids and their structural modification by surface active agents as observed in the electron microscope", Journal of Molecular Biology, 8: 660-668.

Bentley PJ (1998), Comparative vertebrate endocrinology, Melbourne: Cambridge University Press.

Carr JM, Owens JA, Grant PA, Walton PE, Owens PC and Wallace JC (1995), "Circulating insulin-like growth factors (IGFs), IGF-binding proteins (IGFBPs) and tissue mRNA levels of IGFBP-2 and IGFBP-4 in the ovine fetus", *Journal of Endocrinology*, 145(3): 545-557.

Chevalier G and Collett AJ (1972), "In vivo incorporation of choline-\(^3\)H, leucine-\(^3\)H and galactose-\(^3\)H in alveolar type II pneumocytes in relation to surfactant synthesis: A quantitative radioautographic study in mouse by electron microscopy", *The Anatomical Record, 174*: 289-310.

Corbet AJS, Flax P and Rudolph AJ (1976), "Reduced surface tension in lungs of fetal rabbits injected with pilocarpine", *Journal of Applied Physiology, 41*: 7-14.

Dammann CEL, Nielsen HC and Carraway KL III (2003), "Role of neuregulin-1β in the developing lung", *American Journal of Respiratory and Critical Care Medicine, 167*: 1711-1716.

Dobbs LG, Gonzalez RF, Marinari LA, Mescher EJ and Hawgood S (1986), "The role of calcium in the secretion of surfactant by rat alveolar type II cells", Biochimica et Biophysica Acta, **877**: 155-166.

Dobbs LG, Mason RJ, Williams MC, Benson BJ and Sueishi K (1982), "Secretion of surfactant by primary cultures of alveolar type II cells isolated from rat", Biochimica et Biophysica Acta, **713**: 118-127.

Egberts J, Beintema-Duddeldam A and de Boers A (1987), "Phosphatidylinositol and not phosphatidylglycerol is the important minor phospholipid in Rhesus monkey surfactant", Biochimica et Biophysica Acta, **919**: 90-92.

Egberts J and Noort WA (1986), "Gestational age-dependent changes in plasma inositol levels and surfactant composition in the fetal rat", Pediatric Research, **20**: 24-27.

Enhorning G and Holm BA (1993), "Disruption of pulmonary surfactant's ability to maintain openness of a narrow tube", Journal of Applied Physiology, **74**: 2922-2927.

Epstein MF and Farrell PM (1975), "The choline incorporation pathway: Primary mechanism for de novo lecithin synthesis in fetal primate lung", Pediatric Research, **9**: 658-666.

Esper RM, Pankonin MS and Loeb JA (2006), "Neuregulins: Versatile growth and differentiation factors in nervous system development and human disease", Brain Research Reviews, **51**: 161-175.

Falls DL, Harris DA, Johnson FA, Morgan MM, Corfas G and Fischbach GD (1990), "Mr 42,000 ARIA: A protein that may regulate the accumulation of acetylcholine receptors at developing chick neuromuscular junctions", CSH Symposium of Quantitative Biology, **55**: 397-406.

Gross I and Dynia DW (1984), "Do EGF and glucocorticoids act at the same metabolic sites in fetal rat lung?" *Pediatric Research*, 18: 392A.

Guy J, Dhanireddy R and Mukherjee AB (1992), "Surfactant-producing rabbit pulmonary alveolar type II cells synthesize and secrete an antiinflammatory protein, uteroglobin", *Biochemical and Biophysical Research Communications*, 189: 662-669.

Hecker E (1968), "Carcinogenic principles from the seed oil of Croton tiglium and from other Euphorbiaceae", Cancer Research, 28: 2338-2349.

Hudson L and Hay FC (1976), Practical Immunology, Oxford: Blackwell Scientific Publications.

Le Roith D, Werner H, Beitner-Johnson D and Roberts CT, Jr. (1995), "Molecular and cellular aspects of the insulin-like growth factor I receptor", Endocrine Reviews, 16: 143-163.

References

Rice WR and Singleton FM (1986a), "Regulation of surfactant secretion from isolated type II pneumocytes by substance P", *Biochimica et Biophysica Acta*, 889: 123-127.

Rice WR and Whitsett JA (1984), "Inhibition of surfactant release from isolated type II cells by compound 40/80", *Biochimica et Biophysica Acta*, 805: 261-267.

References

Smith BT (1979), "Lung maturation in the fetal rat: Acceleration by injection of fibroblast-pneumonocyte factor", Science, 204: 1094-1095.

Smith BT and Fletcher WA (1979), "Pulmonary epithelial-mesenchymal interactions: Beyond organogenesis", Human Pathology, 10(3): 248-250.

References

Torday JS and Kourembanas S (1990), "Fetal rat lung fibroblasts produce a TGFβ homolog that blocks alveolar type II cell maturation", Developmental Biology, 139(1): 35-41.

References

Zhang L, Ikekami M, Korhagen TR, McCormack FX, Yoshida M, Senior RM, Shipley JM, Shapiro SD and Whitsett JA (2006), "Neither SP-A nor NH2-terminal domains of
