SO$_2$/O$_2$ AS AN OXIDANT
IN HYDROMETALLURGY

By

Wensheng Zhang

B.Eng., M.Eng.

This thesis is presented
for the degree of Doctor of Philosophy of
Murdoch University
Western Australia

February 2000
I declare that this thesis is my own account of my research and
contains as its main content work
which has not previously been submitted for a degree
at any tertiary education institute.

Wensheng Zhang

February, 2000
ABSTRACT

The oxidation of Fe(II), Mn(II) and As(III) by SO₂/O₂ has been studied in acid media, and various applications to hydrometallurgical processes investigated. The kinetics and mechanism of oxidation are reviewed and detailed mechanistic pathways are proposed and rationalised against observed experimental data.

The kinetics of iron catalysed SO₂/O₂ system has been studied at 80 °C as a means of generating Fe(III) and H₂SO₄ for subsequent leaching reactions. The rate of Fe(II) oxidation in the range of optimum SO₂/O₂ ratio can be expressed by equation:

\[r = k_{\text{obs}} [\text{Fe(III)}] [\text{SO}_3^{2-}] / f_{\text{obs}}(\text{H}^+) \]

for 0-0.02 M Fe(III) where \(f_{\text{obs}}(\text{H}^+) \) is a function of pH. Both Fe(II) and SO₂ are oxidised with the ratio Fe(III)/H₂SO₄ about 2. Above 9% SO₂ in the gas mixture by volume and pH 1, dithionate was detected, and the proportion of dithionate to sulphate increased with higher SO₂/O₂ ratio. A radical chain reaction mechanism is proposed, involving the formation of a ferric sulphite complex and decomposition to produce the sulphite radical SO₃⁻. This is followed by a fast reaction with O₂ to form peroxo-monosulphate SO₅⁻, which is responsible for the autoxidation of Fe(II).

In order to examine the application of SO₂/O₂ to the leaching of copper sulphides with Fe(III) and regeneration of Fe(III), the oxidation of 0.1M and 0.5M iron(II) with O₂ and with SO₂/O₂ mixtures are compared in the presence of CuSO₄ at 80 °C. The Cu/SO₂/O₂ system oxidises Fe²⁺ at a faster rate than the Cu/O₂ system, particularly at low concentrations of Fe²⁺. With O₂, the rate is second order with respect to Fe²⁺ concentration; but with SO₂/O₂, the rate is independent of Fe²⁺. It is proposed that copper catalyses the oxidation of Fe²⁺ by O₂ through a mechanism that involves the formation of ionic CuO₂⁺ and H₂O₂ as the oxidant. In contrast, oxidation by SO₂/O₂ involves the peroxo-monosulphate radical that is inhibited by Cu²⁺. The free radical scavenger, hydroquinone, inhibits the oxidation of Fe²⁺ with SO₂/O₂, but has little effect on the oxidation with O₂. It is shown that when high concentrations of Fe²⁺ and Cu²⁺ are oxidised by SO₂/O₂, the reaction is initially dominated by the Cu/O₂ mechanism, but is overtaken by the Fe/SO₂/O₂ mechanism as Fe²⁺ is consumed. Leaching studies with pure Cu₂S and Cu₂S concentrate showed that whilst higher
levels of Fe(III) were attained using SO$_2$/O$_2$, no improvement in copper recovery was achieved at 80 °C due to slow leaching CuS or CuFeS$_2$. Addition of Cl$^-$ ion, however, benefited copper recovery and Fe(III) regeneration.

Oxidation of Mn(II) is similar to Fe(II), but the rate is dependent on pH up to pH 6. The mechanism involves Mn(III) rather than Fe(III). It has been found that selective precipitation of iron then manganese can be achieved from nickel-cobalt solutions using SO$_2$/O$_2$ at pH 3 but not at pH 5. Applications for Mn removal from typical nickel laterite leach solutions and cobalt ore leach solutions are examined.

The kinetics and mechanism of As(III) oxidation by SO$_2$/O$_2$ and by UV light/O$_2$ are also examined in conjunction with Fe(II), with the aim of precipitating insoluble ferric arsenate from leach solutions or waste water. The rate of oxidation with the Fe/SO$_2$/O$_2$ system is fast, and complete oxidation of 100 mM As(III) is achieved in about 2 hours between 25 °C and 60 °C. The following empirical rate expression was established over the range 0-100 mM As(III), 0-10 mM Fe(III), and pH 0.5-2.

$$-\frac{d[\text{As(III)}]}{dt} = k_1[\text{Fe(III)}][\text{As(III)}]^{0.5}[\text{H}^+]^{-0.2}$$

where $k_1 = (5.76 \pm 0.7) \times 10^{-3}$ ([mM]$^{0.5}$/min) at 25°C and $E_a = 20$ kJ/mol. With the UV/Fe/O$_2$ system, the rate of oxidation of trace As(III) (0.1 mM) was similar, but the rate was much slower with 6.5 mM As(III). Fundamentally the Fe/SO$_2$/O$_2$ system is more suitable for oxidising more concentrated As(III) solutions found in hydrometallurgical processes. The combination of both SO$_2$/O$_2$ and UV light, offers faster kinetics for the oxidation of dilute As(III) solutions than either of the individual systems in the presence of low concentrations of Fe(III).

To demonstrate the application of SO$_2$/O$_2$ to the recovery of arsenic, leaching studies are reported on a nickel smelter fume containing low levels of arsenic, followed by precipitation of ferric arsenate using SO$_2$/O$_2$. It was found that only partial leaching of arsenic could be achieved with H$_2$SO$_4$ or NaOH at various concentrations and further studies with other high arsenic fumes are recommended. A dilute H$_2$SO$_4$ leach is proposed for optimum recovery, selectivity, and reagent use.
ACKNOWLEDGEMENTS

I wish to express my deepest gratitude to my supervisors, Associate Professor Pritam Singh and Adjunct Professor David Muir for their initiation, guidance and invaluable advice, and their assistance given throughout the course of this work. I am very grateful to Associate Professor Glenn Hefter and Dr. Gamini Senanayake for their discussions and help given.

I acknowledge with thanks the financial support from Murdoch University and from the A. J. Parker Cooperative Research Centre for Hydrometallurgy through the awards of scholarships. Thanks also go to the Education Managers of A. J. Parker CRC, Dr. Steve La Brooy and Professor John L. Robins. I record my special thanks to Telfer Mine in Western Australia for providing the high purity chalcocite specimen, and the Nickel Division, Western Mining Resources Limited for providing the nickel smelter fume samples.

Many thanks are due to all those in the Department of Chemistry & Mineral Science, and MPS Store at Murdoch University who provided help during my study. In particular, I am grateful to John Biddle and Doug Clarke for their time and efforts in assisting me in many ways, to Ken Seymour and Stewart Kelly for their help in using XRD analysis, and to Kleber Claux for his assistance in mechanical work. My warmest thanks to Dr. W van Bronswijk for his help in using the Raman spectrometer at Curtin University of Technology. Special thanks also go to Dr. E. Krause in Inco Technical Services Limited, Canada, for his comments and discussions on part of this work.

Finally my most sincere thanks to my parents and my family, my wife and my daughters, and my gratitude for their love, support and encouragement.
PUBLICATIONS

The following papers have been published from the work described in this thesis.

Paper to be submitted for publication

"Oxidative precipitation of manganese with SO$_2$/O$_2$ from nickel and cobalt", to be submitted to *Hydrometallurgy*.
TABLE OF CONTENTS

Abstract .. iii

Acknowledgment .. v

Publications .. vi

List of Figures .. xiii

List of Tables ... xvii

Chapter 1 Introduction .. 1
 1.1 SO₂/O₂ Oxidising Systems and their Applications in Hydrometallurgy 1
 1.2 Scope of this Study .. 6
 1.3 Objective of this Study ... 8
 1.4 Summaries of this Work .. 8

References .. 10

Chapter 2 Literature Review .. 15
 2.1 Chemistry of Aqueous SO₂ and S(IV) Species .. 15
 2.1.1 Equilibrium of S(IV) Species in Aqueous Solution 15
 2.1.2 Structure of SO₂(aq) and HSO₃⁻ ... 17
 2.1.3 Redox Properties ... 18
 2.1.4 Formation of Transition Metal-S(IV) Complexes 20
 2.2 Transition Metal Catalysed Oxidation of SO₂ by O₂ 22
 2.2.1 Inner Sphere Electron transfer Mechanism ... 23
 2.2.2 Free Radical Mechanism .. 26
 2.2.3 Combined radical and Non-Radical Mechanism 27
 2.3 Oxidation of Iron(II) with SO₂/O₂ and O₂ Alone ... 29
 2.3.1 Oxidation of Fe(II) with SO₂/O₂ ... 31
 2.3.2 Oxidation with O₂ Alone ... 36
 2.3.3 Oxidation of Fe(II) by O₂ in the Presence of Copper 38
 2.3.4 Oxidation of Fe(II) with SO₂/O₂ in the Presence of Copper 39
 2.4 Leaching of Metal Sulphides with SO₂/O₂ Mixture 40
 2.4.1 Leaching of ZnS with SO₂/O₂ ... 40
Chapter 3 Experimental ... 61

3.1 Material and Reagents ... 61

3.2 Apparatus ... 62

3.2.1 Gas Supply System .. 62

3.2.2 Reactor Units ... 62

3.2.2.1 SO$_2$/O$_2$ Reactor .. 62

3.2.2.2 UV Light Reactor ... 66

3.2.2.3 Comparison of Impellers ... 66

3.2.2.4 Determination of Gas Flow Rate and Stirring Rate 68

3.2.3 Monitoring System .. 70

3.2.3.1 Control of Solution pH ... 70

3.2.3.2 Measurement of Eh ... 71

3.2.3.3 Measurement of Dissolved O$_2$ 72

3.3 Experimental Methods ... 73

3.3.1 General Procedures ... 73

3.3.2 Determination of Fe(II) Oxidation End Point 74

3.4 Analysis .. 76

3.4.1 Determination of SO$_2$ and Sulphite Species in Solution 76

3.4.2 Analysis of Arsenic(III) and Total Arsenic 76

3.4.3 Analysis of Iron .. 77

3.4.4 Determination of Mn(II) .. 78

3.4.5 Chemical Estimation of Dithionate 79

3.4.6 Raman Spectroscopy of Sulphur Species 81

3.4.6.1 Preparation of Standard Sodium Dithionate 81

3.4.6.2 Qualitative Speciation ... 82

3.4.6.3 Quantitative Determination by Standard Addition Method .. 85
3.4.6.4 Quantitative Determination by the Internal Standard Method

References .. 87

Chapter 4 Iron(II) Oxidation by SO₂/O₂ in Acid Media 88

4.1 Introduction .. 88

4.2 Kinetics of Oxidation of Iron(II) with SO₂/O₂ Mixture 89

4.2.1 Stoichiometry and Basic Kinetic Features .. 89

4.2.2 Effect of Fe(III) or Fe(II) ... 92

4.2.3 Effect of SO₂/O₂ Ratio .. 93

4.2.4 Effect of Solution pH .. 96

4.2.5 Effect of Temperature ... 97

4.2.6 Summary .. 98

4.3 Evidence of Formation of Free Radicals and Peroxy Species 99

4.3.1 Effect of Hydroquinone ... 99

4.3.2 Maximum Solution Eh with Fe(III)-SO₂/O₂ System 101

4.3.3 Effect of Fe(III) Concentration on Solution Eh 103

4.3.4 Estimation of Concentration of the Intermediate Peroxy Species 104

4.4 Formation of Sulphate and Dithionate .. 104

4.5 Proposed Mechanism for oxidation of Fe(II) with SO₂/O₂ 107

4.6 Rationalisation of Mechanism with Observations 110

4.7 Summary and Conclusions .. 116

References .. 118

Chapter 5 Effect of Copper on Iron(II) Oxidation with SO₂/O₂ in Acidic Media ... 121

5.1 Introduction .. 121

5.2 Results and Discussion .. 121

5.2.1 Comparison of O₂ and SO₂/O₂ on Iron(II) Oxidation in the Presence of Cu(II) .. 121

5.2.2 Effect of Copper on Formation of H₂SO₄ .. 126

5.2.3 Effect of Cu²⁺ on Solution Eh ... 127

5.2.4 Effect of Hydroquinone .. 128

5.3 Summary and Conclusions .. 130

References .. 131
Chapter 6 Ferric Leaching of Copper Sulphide with SO$_2$/O$_2$

in Acidic Media .. 133

6.1 Introduction ... 133

6.2 Leaching of Chalcocite .. 135

6.2.1 Material ... 136

6.2.2 Effect of Iron Concentration ... 137

6.2.3 Effect of the Presence of Chloride Ions .. 139

6.2.4 Consumption or Generation of H$_2$SO$_4$ Using SO$_2$/O$_2$ 141

6.3 Leaching of Copper Sulphide Concentrate .. 143

6.3.1 Material and Experimental Conditions ... 143

6.3.2 Effect of SO$_2$/O$_2$ Ratio .. 145

6.3.3 Effect of Pre-Reduction with SO$_2$... 146

6.3.4 Effect of Temperature .. 148

6.4 Conclusion .. 150

References .. 151

Chapter 7 Oxidative Precipitation of Manganese with SO$_2$/O$_2$

Mixture in Acidic Media ... 154

7.1 Introduction .. 154

7.2 Oxidation of Mn(II) ... 156

7.2.1 Effect of Ratio SO$_2$/O$_2$.. 156

7.2.2 Effect of pH ... 159

7.2.3 Effect of Presence of Iron with Manganese .. 160

7.2.3.1 Initial Addition of FeSO$_4$.. 161

7.2.3.2 Initial Addition of Fe$_2$(SO$_4$)$_3$... 164

7.2.4 Effect of Temperature .. 165

7.2.5 Effect of Hydroquinone .. 165

7.3 Discussion on Mn(II) Oxidation .. 168

7.3.1 Thermodynamic Considerations ... 168

7.3.2 Effect of MnO$_2$... 169

7.3.3 Proposed Mechanism for Mn(II) Oxidation ... 171

7.4 Oxidative Precipitation of MnO$_2$ and Co-Precipitation of Ni and Co...... 173

7.4.1 Precipitation of Mn from Synthetic Laterite Leach Liquor 174

7.4.1.1 Comparison of Oxidation and Precipitation 175
7.4.1.2 Effect of pH on the Precipitation of Ni, Co, Mn.............. 175
7.4.1.3 Precipitation of Mn, Ni, Co at pH 4 176
7.4.2 Removal of Manganese and iron form cobalt Leach Liquor 177
7.4.2.1 Effect of pH on Mn(II) Oxidation
and MnO₂/Mn₃O₄ Precipitation .. 178
7.4.2.2 Effect of pH on Cobalt Precipitation 179
7.4.2.3 Effect of pH on Ni, Cu and Zn Precipitation 180
7.4.2.4 Oxidative Precipitation of Mn and Fe from the Synthetic
Co Leach Liquor .. 182
7.4.2.5 Use of Na₂SO₃ ... 184
7.5 Discussion on Precipitation .. 185
7.6 Conclusions .. 190
References .. 192

Chapter 8 Kinetics of Oxidation of As(III) with SO₂/O₂
and UV Light ... 195
8.1 Introduction .. 195
8.2 As(III) Oxidation with the Fe-SO₂/O₂ system 196
 8.2.1 Typical Plots and Stoichiometry 196
 8.2.2 Effect of Initial As(III) Concentration 199
 8.2.3 Effect of Fe(III) Concentration 199
 8.2.4 Effect of pH ... 200
 8.2.5 Effect of Temperature .. 201
 8.2.6 Effect of Cu²⁺ Ions .. 202
 8.2.7 Empirical Rate Law for Fe-SO₂/O₂ System 203
8.3 As(III) Oxidation with UV/Fe/O₂ System 205
 8.3.1 Typical Plots with UV Catalysis 205
 8.3.2 Effect of Initial [As(III)] and P₀₂ 207
 8.3.3 Effect of [Fe(III)] .. 209
 8.3.4 Effect of pH .. 211
 8.3.5 Rate Derivation for UV/Fe/O₂ System 211
8.4 Discussion .. 212
 8.4.1 Comparison of Kinetic Features 212
 8.4.2 Mechanistic Consideration 213
8.5 Conclusions ... 216
References .. 217

Chapter 9 Leaching and Removal of Arsenic from Smelter Fume 219
9.1 Introduction .. 219
9.2 Experimental ... 220
 9.2.1 Material ... 220
 9.2.2 Flowsheet ... 223
9.3 Results and Discussion ... 224
 9.3.1 Fume Leaching .. 224
 9.3.2 Oxidative Precipitation of Arsenic as Ferric Arsenate 229
 9.3.3 Co-precipitation of Nickel .. 230
9.4 Conclusions ... 233
References ... 234

Chapter 10 Executive Summary and Recommendations
for Future Work .. 235
10.1 Executive Summary ... 235
10.2 Recommendations for Future Work ... 240

Appendix - Title Pages of the Papers from this Work 242
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>A diagram of S(IV) species distribution as a function of pH</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>A diagram of the redox potential for sulphur species</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>A diagram of Eh-pH for the metastable S-H₂O system</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>A schematic presentation of SO₂/O₂ reactor system</td>
<td>63</td>
</tr>
<tr>
<td>3.2</td>
<td>A schematic presentation of UV light apparatus</td>
<td>64</td>
</tr>
<tr>
<td>3.3</td>
<td>Assembly of reactor and stirring unit</td>
<td>65</td>
</tr>
<tr>
<td>3.4</td>
<td>Calibration curve for SO₂ flow meters</td>
<td>66</td>
</tr>
<tr>
<td>3.5</td>
<td>Comparison of types of impellers for Fe(II) oxidation and O₂ mass transfer.</td>
<td>67</td>
</tr>
<tr>
<td>3.6</td>
<td>Effect of total flow rate on Fe(II) oxidation</td>
<td>69</td>
</tr>
<tr>
<td>3.7</td>
<td>Effect of stirring rate on Fe(II) oxidation</td>
<td>70</td>
</tr>
<tr>
<td>3.8</td>
<td>Calibration curves for O₂ solubility in FeSO₄ electrolyte at 25°C</td>
<td>73</td>
</tr>
<tr>
<td>3.9</td>
<td>A typical plot of the Eh variation and the oxidised Fe(II) with time</td>
<td>75</td>
</tr>
<tr>
<td>3.10</td>
<td>Plot of the second derivative, (\Delta^2 E/\Delta r^2) versus time</td>
<td>75</td>
</tr>
<tr>
<td>3.11</td>
<td>Raman spectra for the prepared sodium dithionate and comparison with BDH</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>laboratory grade sodium dithionate</td>
<td></td>
</tr>
<tr>
<td>3.12</td>
<td>Raman spectra of a final solution</td>
<td>84</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of SO₂ composition on Fe(II) oxidation</td>
<td>90</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of pH on Fe(II) oxidation</td>
<td>91</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of 2% SO₂ saturation on Fe(II) oxidation</td>
<td>91</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of Fe(III) on Fe(II) oxidation</td>
<td>92</td>
</tr>
<tr>
<td>4.5</td>
<td>Initial rate of Fe(II) oxidation as a function of time</td>
<td>93</td>
</tr>
<tr>
<td>4.6</td>
<td>Rate of the Fe(II) oxidation as a function of SO₂/O₂</td>
<td>94</td>
</tr>
<tr>
<td>4.7</td>
<td>Effect of pH on the rate of Fe(II) oxidation</td>
<td>96</td>
</tr>
<tr>
<td>4.8</td>
<td>Arrhenius plot for rate of Fe(II) oxidation</td>
<td>97</td>
</tr>
<tr>
<td>4.9</td>
<td>Effect of hydroquinone on Fe²⁺ oxidation by the SO₂/O₂ system</td>
<td>100</td>
</tr>
<tr>
<td>4.10</td>
<td>Effect of hydroquinone on rate</td>
<td>100</td>
</tr>
<tr>
<td>4.11</td>
<td>Optimum Eh-pH measurement of iron catalysed SO₂/O₂ system</td>
<td>102</td>
</tr>
<tr>
<td>4.12</td>
<td>Effect of Fe(III) concentration on the solution Eh without initial addition</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>of Fe(II)</td>
<td></td>
</tr>
<tr>
<td>4.13</td>
<td>Proportion of sulphate and dithionate in oxidised solutions</td>
<td>105</td>
</tr>
<tr>
<td>4.14</td>
<td>Effect of pH on dithionate and sulphate formation</td>
<td>105</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4.15</td>
<td>Effect of SO$_2$/O$_2$ on the ratio Fe(III)/SO$_4^{2-}$</td>
<td>106</td>
</tr>
<tr>
<td>4.16</td>
<td>A schematic presentation of the general; reaction mechanism</td>
<td>108</td>
</tr>
<tr>
<td>4.17</td>
<td>Fe(III) species distribution in the presence of SO$_4^{2-}$ and SO$_3^{2-}$</td>
<td>113</td>
</tr>
<tr>
<td>5.1</td>
<td>Effect of Cu$^{2+}$ on Fe$^{2+}$ oxidation with O$_2$</td>
<td>122</td>
</tr>
<tr>
<td>5.2</td>
<td>Effect of Cu$^{2+}$ on Fe$^{2+}$ oxidation with SO$_2$/O$_2$</td>
<td>124</td>
</tr>
<tr>
<td>5.3</td>
<td>Comparison of systems for Fe$^{2+}$ oxidation with initial 0.5M Fe$^{2+}$</td>
<td>124</td>
</tr>
<tr>
<td>5.4</td>
<td>Comparison of systems for Fe$^{2+}$ oxidation with initial 0.1M Fe$^{2+}$</td>
<td>126</td>
</tr>
<tr>
<td>5.5</td>
<td>Effect of Cu$^{2+}$ and Fe$^{2+}$ on SO$_2$(g) oxidation</td>
<td>127</td>
</tr>
<tr>
<td>5.6</td>
<td>Effect of Cu$^{2+}$ concentration on optimum Eh-after Fe(II) oxidation</td>
<td>128</td>
</tr>
<tr>
<td>5.7</td>
<td>Effect of hydroquinone on Fe$^{2+}$ oxidation in the Cu-O$_2$ system</td>
<td>129</td>
</tr>
<tr>
<td>5.8</td>
<td>Effect of hydroquinone on Fe$^{2+}$ oxidation by SO$_2$/O$_2$ in 0.5M Cu$^{2+}$</td>
<td>130</td>
</tr>
<tr>
<td>6.1</td>
<td>Comparison of the effect of Fe(II) concentration on Cu extraction with SO$_2$/O$_2$ and with O$_2$ alone</td>
<td>137</td>
</tr>
<tr>
<td>6.2</td>
<td>Comparison of variatin of Fe(III) concentrations during the leach under the corresponding conditions shown in Figure 6.1</td>
<td>139</td>
</tr>
<tr>
<td>6.3</td>
<td>Comparison of Cu extraction with SO$_2$/O$_2$ and with O$_2$ alone in the presence and absence of 0.5M Cl$^{-}$ (NaCl)</td>
<td>140</td>
</tr>
<tr>
<td>6.4</td>
<td>Comparison of Fe(III) concentration during the leach</td>
<td>141</td>
</tr>
<tr>
<td>6.5</td>
<td>Comparison of H$_2$SO$_4$ and NaOH consumption with SO$_2$/O$_2$ and O$_2$..</td>
<td>142</td>
</tr>
<tr>
<td>6.6</td>
<td>Effect of SO$_2$/O$_2$ ratio on Cu extraction and comparison with O$_2$ alone</td>
<td>145</td>
</tr>
<tr>
<td>6.7</td>
<td>Variation of Fe(III) concentration during the leach</td>
<td>146</td>
</tr>
<tr>
<td>6.8</td>
<td>Effect of pre-reduction step with SO$_2$ on Cu extraction</td>
<td>148</td>
</tr>
<tr>
<td>6.9</td>
<td>Effect of temperature on Cu extraction and Fe(III) regeneration</td>
<td>149</td>
</tr>
<tr>
<td>7.1</td>
<td>Oxidised Mn(II) as a function of time at different ratio of SO$_2$/O$_2$</td>
<td>157</td>
</tr>
<tr>
<td>7.2</td>
<td>Effect of %SO$_2$/O$_2$ on the rate of Mn(II) oxidation and comparison with Fe(II) oxidation in Fe-SO$_2$/O$_2$ system</td>
<td>158</td>
</tr>
<tr>
<td>7.3</td>
<td>Effect of pH on oxidation of Mn(II)</td>
<td>159</td>
</tr>
<tr>
<td>7.4</td>
<td>Comparison of SO$_2$/O$_2$ and O$_2$ as oxidant as a function of pH</td>
<td>160</td>
</tr>
<tr>
<td>7.5</td>
<td>Effect of Mn(II) on Fe(II) oxidation</td>
<td>161</td>
</tr>
<tr>
<td>7.6</td>
<td>Effect of Fe(II) on Mn(II) oxidation</td>
<td>162</td>
</tr>
<tr>
<td>7.7</td>
<td>Variation of Eh at pH 1.8 and 80$^\circ$C during Mn(II) oxidation with 2% SO$_2$/O$_2$</td>
<td>162</td>
</tr>
</tbody>
</table>
Figure 7.8 Mn(II) oxidation using 2% SO\textsubscript{2}/O\textsubscript{2} with 0.0125 M Fe\textsubscript{2}(SO\textsubscript{4})\textsubscript{3} 164
Figure 7.9 Arrhenius plot for Mn(II) oxidation with SO\textsubscript{2}/O\textsubscript{2} .. 165
Figure 7.10 Effect of hydroquinone on Mn(II) oxidation .. 166
Figure 7.11 Effect of hydroquinone on H\textsubscript{2}SO\textsubscript{4} formation 166
Figure 7.12 Effect of hydroquinone on rate of Mn(II) oxidation 167
Figure 7.13 Eh-pH diagram for Mn-H\textsubscript{2}O system with measured solution
Potential at different pH included under the conditions of
0.1 M Mn(II), 2%SO\textsubscript{2}, and 25°C .. 168
Figure 7.14 Effect of the oxidised manganese species in the solution
and the precipitate on Mn(II) oxidation ... 170
Figure 7.15 Variation of Eh during Mn(II) oxidation ... 171
Figure 7.16 Comparison of oxidised and precipitated manganese 175
Figure 7.17 Effect of pH on precipitation of Mn, Ni, and Co after 30 minutes
oxidation with 2% SO\textsubscript{2}/O\textsubscript{2} .. 176
Figure 7.18 Precipitation of Mn, Ni, and Co at pH 4 and 25°C ... 177
Figure 7.19 Comparison of the rate of oxidation and precipitation of Mn(II)
at different pH, and SO\textsubscript{2}/O\textsubscript{2} and SO\textsubscript{2}/Air mixture at 50°C 178
Figure 7.20 Comparison of rate of cobalt precipitation at different pH at 50°C..... 179
Figure 7.21 Effect of pH on precipitation of Ni from the synthetic Co solution
at 50°C .. 180
Figure 7.22 Effect of pH on precipitation of Cu from the synthetic solution
at 50°C ... 181
Figure 7.23 Effect of pH on precipitation of Zn from the synthetic Co solution
at 50°C ... 181
Figure 7.24 Oxidative precipitation of Fe and Mn from the Co leach liquor 182
Figure 7.25 Oxidative precipitation of Fe and Mn as a function of SO\textsubscript{2}
input – calculated by Van Der Waals Equation ... 183
Figure 7.26 Oxidative precipitation of metals with Na\textsubscript{2}SO\textsubscript{3}/Air ... 184
Figure 7.27 Effect of pH on oxidative precipitation of Co(II) as Co(OH)\textsubscript{3}
and Ni(II) as Ni(OH)\textsubscript{3} ... 186
Figure 7.28 Eh-pH diagram of Co-H\textsubscript{2}O and Mn-H\textsubscript{2}O systems over-laid according
to the data by Pourbaix for 0.01 M Mn(II) and 0.1 M Co(II) 189
Figure 7.29 Eh-pH diagram of Ni-H$_2$O and Mn-H$_2$O systems over-laid according to the data by Pourbaix for 0.1 M Mn(II) and 0.1 M Co(II).............. 189
Figure 8.1 Effect of iron on As(III) oxidation with 2% SO$_2$/O$_2$ mixture 197
Figure 8.2 Effect of SO$_2$ on As(III) oxidation ... 197
Figure 8.3 Effect of As(III) concentration on rate of As(III) oxidation 199
Figure 8.4 Effect of [Fe(III)] on rate of As(III) oxidation 200
Figure 8.5 Effect of pH on As(III) oxidation .. 201
Figure 8.6 Arrhenius plot for As(III) oxidation with the Fe/So$_2$/O$_2$ system 202
Figure 8.7 Effect of 0.1 M Cu$^{2+}$ on As(III) oxidation 203
Figure 8.8 Predicted and measured As(III) oxidation with Fe/So$_2$/O$_2$
 at 25°C, 40°C and 50°C .. 204
Figure 8.9 Comparison of As(III) oxidation with UV/Fe/O$_2$ system
 between this study and ANSTO patent under similar conditions........... 206
Figure 8.10 UV/Fe/O$_2$ system for As(III) oxidation .. 206
Figure 8.11 Comparison of UV-O$_2$ and UV-So$_2$/O$_2$ systems for As(III)
 oxidation – in the absence of iron... 207
Figure 8.12 Comparison of UV/Fe/O$_2$ and Fe/So$_2$/O$_2$ systems for oxidation
 of low and high As(III) concentration... 208
Figure 8.13 Effect of As(III) and P$_{O2}$ on rate of As(III) oxidation with UV/O$_2$ 209
Figure 8.14 Comparison of systems for the effect of [Fe(III)] on As(III) oxidation 210
Figure 9.1 Photomicrograph of a polished thin section of Waste Heat
 Boiler dust particles fume mounted in epoxy resin.. 222
Figure 9.2 A schematic presentation of experimental flow sheet 223
Figure 9.3 Comparison of arsenic extraction from sample 1 224
Figure 9.4 Iron extraction from sample 1 in acid media.................................. 225
Figure 9.5 Nickel extraction from sample 1 in acid media 225
Figure 9.6 Metal extraction from sample 2 .. 227
Figure 9.7 Comparison of oxidation of As(III) and Fe(II) with SO$_2$/O$_2$
 mixture and O$_2$ only ... 230
Figure 9.8 Effect of pH and temperature on the precipitation of ferric arsenic 231
Figure 9.9 Effect of pH and temperature on the loss of extracted nickel
 during precipitation process ... 231
List of Tables

Table 1.1 Best working pH range of various SO₂/O₂ system in hydrometallurgy 5
Table 2.1 Metal sulphite complex formation and their stability constants 21
Table 2.2 Summary of typical mechanisms proposed
 for catalysed S(IV) oxidation .. 24
Table 2.3 Summary of the combined mechanism proposed by Huss 28
Table 2.4 Summary of the mechanism proposed by Martin et al 28
Table 2.5 Research on the Fe(II) oxidation with SO₂/O₂ 30
Table 2.6 A summary of Fe(II) oxidation by O₂ alone 37
Table 2.7 A summary of SO₂ and SO₂/O₂ leaching of metal sulphides 41
Table 3.1 Chemical and mineral material used in the experiments 61
Table 3.2 Reference potential data for testing platinum-Ag/AgCl electrodes 72
Table 3.3 Raman spectrometric data used for determining oxysulphur species 82
Table 4.1 Proposed mechanism for oxidation of Fe(II) with SO₂/O₂ 108
Table 4.2 Ferric complexes .. 114
Table 6.1 Comparison of the consumed and produced H₂SO₄
 using O₂ or SO₂/O₂ .. 143
Table 6.2 Chemical composition of WMC copper sulphide concentrates 144
Table 6.3 Semi quantitative mineralogy analysis of copper sulphide concentrate 144
Table 7.1 Synthetic Co leach liquor compositions .. 178
Table 8.1 Comparison of kinetic features using Fe-SO₂/O₂ with UV/O₂ system . 213
Table 9.1 Chemical analysis for two samples of the fume 220
Table 9.2 Mineral composition of smelter fume samples 221
Table 9.3 Effect of pH on metal precipitation and caustic consumption 232