THERMODYNAMIC AND RELATED STUDIES OF AQUEOUS COPPER(II) SULFATE SOLUTIONS

Chandrika Akilan
B.Sc.Hons (Murdoch University)

This thesis is presented for the degree of Doctor of Philosophy of Murdoch University
Western Australia

2008
I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution.

Chandrika Akilan
Abstract

This thesis describes a systematic investigation of the thermodynamic quantities associated with the interaction between Cu$^{2+}$ and SO$_4^{2-}$ in aqueous solution. A variety of techniques including UV-Visible spectrophotometry, Cu(II) ion-selective electrode potentiometry, dielectric relaxation spectroscopy and titration calorimetry have been used.

The values for the CuSO$_4^0$(aq) association constants determined by UV-Vis spectrophotometry in NaClO$_4$ media as a function of ionic strength were in good agreement with published data but were lower than the values obtained from Cu(II) ion-selective electrode potentiometry. The source of this difference was traced to the presence of solvent-separated ion pairs which are only partially detected by UV-Vis spectrophotometry. This was shown by a detailed investigation of CuSO$_4$(aq) over a wide range of concentrations using modern broad-band dielectric relaxation spectroscopy (DRS). This technique revealed the presence of three ion-pair types: double solvent-separated, solvent-shared and contact ion pairs.

Calorimetric titrations using the log K_A values determined by potentiometry, have provided for the first time reliable values for the enthalpy and entropy changes associated with complex formation between Cu$^{2+}$(aq) and SO$_4^{2-}$(aq) system over range of ionic strengths (in NaClO$_4$ media). These data were fitted to a specific ion interaction model to obtain the standard state value which was in excellent agreement with the values obtained in other studies and from the DRS work in this study.

In addition, investigations have been carried out into the physicochemical properties, (osmotic coefficients, densities, heat capacities, solubilities and viscosities) of ternary mixtures of CuSO$_4$(aq) with Na$_2$SO$_4$(aq) or MgSO$_4$(aq). The isopiestic measurements (water activities) of the mixtures were in general well described by Zdanovskii’s rule,
especially for the mixtures of CuSO$_4$ with MgSO$_4$. The densities of the ternary mixtures of CuSO$_4$ with MgSO$_4$ were found to follow Young’s rule of mixing but those of CuSO$_4$ with Na$_2$SO$_4$ deviated from linearity. The solubilities of the salts in their ternary mixtures agree well with literature data and show that the solubility of MgSO$_4$ or CuSO$_4$ decreases with increasing Na$_2$SO$_4$ concentration. The viscosities of all the ternary mixtures show clear negative departures from 'Young’s rule' type behaviour.
Publications

The following publications have arisen from work completed by the candidate for the present thesis.

Acknowledgements

I would like to thank sincerely my supervisors, Associate Professor Glenn Hefter and Professor Peter M. May for their continuous guidance, advice, encouragement and help throughout this entire project.

I would like to express my gratitude to Apl. Professor Richard Buchner, Institut fuer Physikalische und Theoretische Chemie, Universitaet Regensburg, Germany for his role in modeling and interpreting my dielectric relaxation spectra and Dr Nashiour Rohman for his support.

I would also like to express my gratitude to Dr Simon Schrödle for his help and support during the titration calorimetry studies and data analysis.

I would extend my sincere thanks to Dr. W.W. Ruldolph for making available some of his unpublished Raman data.

My thanks also go to Dr Paul Brown, Rio Tinto, for fitting my enthalpy of formation data to SIT model.

I would like sincerely to thank Dr Eric Königsberger and Dr. Lan-Chi Königsberger for their help and advice throughout this project.

Thanks are also extended to Dr Nimal Perera for his tremendous support during the time of my UV-Vis spectrophotometric titrations and data analysis.

I am further indebted to the following individuals for their help in various aspects:

Mr. Ernie Etherinton, Mr. Kleber Claux and Mr. John Snowball of the Murdoch University Mechanical and Electronic workshops.

Mr. Doug Clarke, Mr. Tom Osborne and Mr. Andrew Forman of the Chemistry Department technical staff.

The support and friendship of my fellow research students, friends and family have been deeply appreciated and are gratefully acknowledged.

Finally, I would like to thank the Australian Government, Alcan Engineering Pty. Ltd., Alcoa World Alumina Australia, Comalco Aluminium Limited and Worsley Alumina Pty. Ltd for their financial assistance in the form of an Australian Postgraduate Award (Industry) scholarship and also to Parker Cooperative Research Centre for integrated Hydrometallurgy Solutions for their financial assistance.
Chapter One: Introduction

1.1. THE IMPORTANCE OF CuSO₄ SOLUTIONS

1.2 COPPER MINERALS
 1.2.1 Occurrence
 1.2.2 Pyrometallurgical extraction
 1.2.3 Hydrometallurgical extraction

1.3 COPPER(II) SULFATE SOLUTIONS

1.4 THEORIES OF IONIC SOLUTIONS

1.5 ION PAIRING
1.5.1 Formation of ion pairs
1.5.2 The Eigen-Tamm Mechanism

1.6 ION ASSOCIATION STUDIES ON AQUEOUS Cu$^{2+}$/SO$_4^{2-}$
1.6.1 Association constants
1.6.2 Enthalpy and entropy values

1.7 PROPERTIES OF CuSO$_4$ IN MIXED-ELECTROLYTE SYSTEMS

1.8 OVERVIEW OF THIS RESEARCH

Chapter Two: UV-Visible spectrophotometry

2.1 THEORY

2.2 SOLUTION PREPARATION
 2.2.1 Reagents
 2.2.2 Difficulties and precautions during solution preparation

2.3 INSTRUMENTATION AND PROCEDURE
 2.3.1 Titration cell
 2.3.2 Titration procedures
 2.3.3 Titration method

2.4 DATA ANALYSIS
2.5 THE SPECFIT PROGRAM

2.6 RESULTS AND DISCUSSION

2.6.1 Association constants by UV-Vis Spectrophotometry

2.6.2 Comparison with literature data

2.6.3 Standard state association constant

2.6.4 Possible occurrence of a second complex

Chapter Three: Potentiometry

3.1 INTRODUCTION

3.2 EXPERIMENTAL STRATEGY

3.3 EXPERIMENTAL

3.3.1 Reagents and glassware

3.3.2 Electrodes

3.3.3 Titration apparatus

3.3.4 Titration procedure

3.4 DATA ANALYSIS

3.5 CHARACTERISATION OF THE BEHAVIOUR OF THE Cu$^{2+}$-ISE
3.6 FORMATION CONSTANT OF CuSO_4^+ BY Cu^{2+}-ISE POTENTIOOMETRY

3.7 COMPARISON OF PRESENT RESULTS WITH UV-Vis RESULTS

3.8 LITERATURE COMPARISON

3.9 STANDARD STATE ASSOCIATION CONSTANT

3.10 HIGHER-ORDER COMPLEXES

Chapter Four: Dielectric Relaxation Spectroscopy

4.1 DIELECTRIC THEORY

4.2 DRS OF $\text{CuSO}_4(\text{aq})$ SOLUTIONS

4.3 EXPERIMENTAL

4.3.1 Instrumentation
4.3.2 Solution preparation
4.3.3 Calibration of the VNA

4.4 MEASUREMENT PROCEDURE AND DATA ANALYSIS
4.5 RESULTS AND DISCUSSION

4.5.1 General features of ion association
4.5.2 Analysis of the ion association
4.5.3 Ion-pair relaxation times
4.5.4 Solvent relaxation and ion hydration

4.6 IMPLICATIONS OF THE PRESENT WORK

Chapter Five: Calorimetry of the Cu$^{2+}$/SO$_4^{2-}$ interaction

5.1 APPLICATION OF TITRATION CALORIMETRY TO M$^{2+}$/SO$_4^{2-}$ ASSOCIATION

5.2 EXPERIMENTAL

5.2.1 Apparatus
5.2.2 Electrical calibration
5.2.3 Chemical testing
5.2.4 Materials
5.2.5 Titration protocol
5.2.6 Titration procedure
5.2.7 Heats of dilution (Q_d)
5.2.8 Heats of reaction (Q_r)

5.3 RESULTS AND DISCUSSION

5.3.1 Heats of dilution results
5.3.2 Heats of reaction results
5.3.3 Enthalpy and entropy changes
5.3.4 Standard enthalpy change (Δf°) for CuSO₄ (aq) formation

5.3.5 Comparison with literature data

5.3.6 Comparison with other M²⁺/SO₄²⁻ systems

5.4 CONCLUDING REMARKS

Chapter Six: Physicochemical properties of binary and ternary solutions of copper and related sulfates

6.1 BACKGROUND
 6.1.1 Importance of physicochemical properties
 6.1.2 Selection of systems

6.2 TECHNIQUES
 6.2.1 Isopiestic method
 6.2.2 Density
 Apparent molar volumes
 6.2.3 Heat capacity
 6.2.4 Solubility
 6.2.5 Viscosity measurements

6.3 EXPERIMENTAL
 6.3.1 Isopiestic measurements
 6.3.2 Density measurements
 6.3.3 Heat capacity measurements
6.3.4 Solubility measurements
6.3.5 Viscosity measurements

6.4 ISOPIESTIC MOLALITIES AND OSMOTIC COEFFICIENTS RESULTS

6.5 DENSITY RESULTS

6.6 HEAT CAPACITY RESULTS
Calorimeter asymmetry

6.7 SOLUBILITY RESULTS

6.8 VISCOSITY RESULTS

6.9 CONCLUDING REMARKS

Chapter Seven: Conclusion and future work

Future work

Appendix

References
List of tables

Table 1.1 Literature values of log K_A at 25 °C.

Table 1.2 Literature data for the enthalpy change for the reaction

$\text{Cu}^{2+}(\text{aq}) + \text{SO}_4^{2-}(\text{aq}) \rightarrow \text{CuSO}_4^0(\text{aq})$ at 25 °C.

Table 2.1 Formation constants, log $K_A(\text{CuSO}_4^0)$ at 25 °C in NaClO$_4$ media as a function of I.

Table 3.1 Titrant volume range.

Table 3.2 Copper(II) sulphate formation constant, log $K_A(\text{CuSO}_4^0)$, at 25 °C in NaClO$_4$ medium determined using Cu$^{2+}$-ISE potentiometry.

Table 3.3 Computed percentage of complex species from Models 1 & 2 as a function of I.

Table 4.1 Conductivities, κ; limiting permittivities, ε_0 & ε_∞; relaxation times, τ_j, and reduced error function, χ^2, of CuSO$_4$ (aq) as a function of solute molality m at 5 °C.

Table 4.2 Conductivities, κ; limiting permittivities, ε_0 & ε_∞; relaxation times, τ_j, and reduced error function, χ^2, of CuSO$_4$ (aq) as a function of solute molality m at 25 °C.

Table 4.3 Conductivities, κ; limiting permittivities, ε_0 & ε_∞; relaxation times, τ_j, and reduced error function, χ^2, of CuSO$_4$ (aq) as a function of solute molality m at 45 °C.

Table 4.4 Conductivities, κ; limiting permittivities, ε_0 & ε_∞; relaxation times, τ_j, and reduced error function, χ^2, of CuSO$_4$ (aq) as a function of solute molality m at 65 °C.

Table 4.5 Parameters a_1 – a_4 of Equations (S1 – S3) and standard deviation of the fit, σ_{fit}, for the ion-pair concentrations c2SIP, cSIP, and cCIP as a function of the total CuSO$_4$ concentration, c.

14 17 34 45 51 57 73 74 75 76 84
Table 4.6 Standard overall association constant K_A^{α}, and parameters B, C, D of Equation 4.17 for CuSO$_4^0$(aq)$^\alpha$.

Table 4.7 Standard thermodynamic parameters (mol kg$^{-1}$ concentration scale) for the association of Cu$^{2+}$(aq) and SO$_4^{2-}$(aq) at 25 °C$^\alpha$.

Table 5.1 Literature data for the enthalpy change for the reaction

$$\text{Cu}^{2+}(\text{aq}) + \text{SO}_4^{2-}(\text{aq}) \rightarrow \text{CuSO}_4^0(\text{aq}) \text{ at 25 °C}$$

Table 5.2 Experimental protocol for titration calorimetry for the Cu$^{2+}$/SO$_4^{2-}$ association.

Table 5.3 Vessel and burette contents for Cu$^{2+}$(aq)/SO$_4^{2-}$(aq) complexation studies by titration calorimetry at constant ionic strength in NaClO$_4$ media.

Table 5.4 Approximate burette and vessel concentrations of Cu(ClO$_4$)$_2$, Na$_2$SO$_4$ and NaClO$_4$ employed in the calorimetric titration for both Methods A & B at various I.

Table 5.5 Heats of dilutiona and heats of reactionb at 25 °C obtained by titrating Cu$^{2+}$ into SO$_4^{2-}$ (Method A).

Table 5.6 Heats of dilutiona and heats of reactionb at 25 °C obtained by titrating SO$_4^{2-}$ into Cu$^{2+}$ (Method B).

Table 5.7 Thermodynamic parameters for the association of Cu$^{2+}$ with SO$_4^{2-}$ by titration calorimetry at 25 °C.

Table 5.8 Standard (I = 0) enthalpy change for M$^{2+}$/SO$_4^{2-}$ interaction in water at 25 °C.

Table 6.1 Isopiestic molalities, m' and osmotic coefficients, ϕ for the systems Na$_2$SO$_4$-CuSO$_4$-H$_2$O, Na$_2$SO$_4$-MgSO$_4$-H$_2$O and CuSO$_4$-MgSO$_4$-H$_2$O at 25 °C.

Table 6.2 Apparent molal volumes and heat capacities of aqueous solutions of MgSO$_4$, CuSO$_4$ and Na$_2$SO$_4$ at 25 °C$^\alpha$.

Table 6.3 Apparent molal volumes and heat capacities of ternary solutions of CuSO$_4$-Na$_2$SO$_4$-H$_2$O at 25 °C ($I = 1.00$ mol kg$^{-1}$).

Table 6.4 Solubilities of CuSO$_4$ and MgSO$_4$ in aqueous solutions of
Table 6.5
Densities (ρ) and dynamic viscosities of aqueous mixtures of sulfate salts at constant I_T at 25 °C.
List of Figures

Figure 2.1 UV-Vis Spectra (base-line corrected) obtained in $I = 3$ M (NaClO$_4$): $[\text{Cu}^{2+}]_T = 6.36 \times 10^{-4}$ M, added $[\text{SO}_4^{2-}] / \text{M}$. 23

Figure 2.2 Spectrophotometric – potentiometric titration cell (10 cm pathlength). 26

Figure 2.3 The spectrum of 0.05 M NaClO$_4$ against air showing background absorbance and spikes of the 10 cm path-length spectrophotometric cell relative to air. 27

Figure 2.4 Speciation of Cu$^{2+}$/OH$^-$ and SO$_4^{2-}$/HSO$_4^-$ systems at $I = 3$ M (NaClO$_4$) and 25 °C with $[\text{Cu}]_T = 5.00 \times 10^{-4}$ M. 29

Figure 2.5 Typical baseline-corrected UV spectra, $[\text{Cu}^{2+}]_T = 0.00456$ M, and $[\text{SO}_4^{2-}]_T / \text{M}$. 32

Figure 2.6 A speciation for the Cu$^{2+}$(aq)/SO$_4^{2-}$(aq) system at $I = 3$ M in NaClO$_4$, when $[\text{Cu}^{2+}]_T = 9.0 \times 10^{-4}$ as a function of $[\text{SO}_4^{2-}]$. 33

Figure 2.7 Present and literature UV-Vis spectrophotometric values of log $K_a(\text{CuSO}_4^5)$, (in NaClO$_4$ media at 25 °C. 36

Figure 3.1 The potentiometric titration cell. 44

Figure 3.2 Performance of the Cu$^{2+}$-ISE up to relatively high copper concentrations at $I = 1.0$ M NaClO$_4$ at 25 °C. 48

Figure 3.3 Performance of the Cu$^{2+}$-ISE in 1.0 M and 3.0 M NaClO$_4$ media. 49

Figure 3.4 Performance of the Cu$^{2+}$-ISE at lower copper concentrations in 1.0 M NaClO$_4$ at 25 °C. 50

Figure 3.5 Comparison of present potentiometric and UV-Vis log K_a values. 53

Figure 4.1 Frequency response of dielectric mechanisms. 61
Figure 4.2 Conductivity, κ, of CuSO$_4$ (aq) at t°C = 5 (1), 25 (2), 45 (3) and 65 (4) as determined from present $\eta''(\nu)$ data.

Figure 4.3 Dielectric permittivity (a) and dielectric loss (b) spectra for CuSO$_4$ (aq) at 5 °C.

Figure 4.4 Dielectric permittivity (a) and loss (b) spectra for CuSO$_4$ (aq) at 45 °C.

Figure 4.5 Dielectric permittivity (a) and loss (b) spectra for CuSO$_4$ (aq) at concentration $m = 0.05$ mol kg$^{-1}$.

Figure 4.6 Dielectric permittivity (a) and loss (b) spectra for CuSO$_4$ (aq) at concentration $m = 0.40$ mol kg$^{-1}$.

Figure 4.7 Dielectric loss spectra, $\epsilon''(\nu)$, of 0.20 mol kg$^{-1}$ CuSO$_4$ (aq) at: (a) 5 °C and (b) 25 °C.

Figure 4.8 Dielectric loss spectra, $\epsilon''(\nu)$, of 0.20 mol kg$^{-1}$ CuSO$_4$(aq) at: (a) 45 °C and (b) 65 °C.

Figure 4.9 Solute contribution to the dielectric loss spectra, $\epsilon''_{IP}(\nu)$, of CuSO$_4$ (aq) at 25 °C.

Figure 4.10 Concentrations of double-solvent separated ion pairs, $c_{2 SIP}$, for CuSO$_4$(aq) as a function of the total solute concentration, c.

Figure 4.11 Concentrations of solvent-shared ion pairs, c_{SIP}, for CuSO$_4$ (aq) as a function of the total solute concentration, c.

Figure 4.12 Concentrations of contact ion pairs, c_{CIP}, for CuSO$_4$ (aq) as a function of the total solute concentration, c.

Figure 4.13 Concentrations of ion pairs, (c_i), relative to the total solute concentration, c, at 5 °C.

Figure 4.14 Concentrations of ion pairs, (c_i), relative to the total solute concentration, c, at 65 °C.

Figure 4.15 Overall association constants, K_A (mol kg$^{-1}$ scale), for the Cu$^{2+}$(aq)/SO$_4^{2-}$(aq) system as a function of ionic strength, I at 5 °C.
Figure 4.16 Gibbs energy change ΔG°, for the ion association reaction (Equation 1.24) for CuSO$_4$(aq) as a function of temperature, T.

Figure 4.17 Stepwise stability constants K_i for the formation of the ion-pair types for Cu$^{2+}$(aq)/SO$_4^{2-}$(aq) system at 25 °C.

Figure 4.18 Stepwise stability constants K_i for the formation of the ion-pair types for Cu$^{2+}$(aq)/SO$_4^{2-}$(aq) system at 5 °C.

Figure 4.19 Stepwise stability constants K_i for the formation of the ion-pair types for Cu$^{2+}$(aq)/SO$_4^{2-}$(aq) system at 45 °C.

Figure 4.20 Stepwise stability constants K_i for the formation of the ion-pair types for Cu$^{2+}$(aq)/SO$_4^{2-}$(aq) system at 65 °C.

Figure 4.21 Solute relaxation times τ_1, τ_2 and τ_3 for CuSO$_4$(aq) at temperatures $t/°C = 5, 25, 45, \text{and} 65$.

Figure 4.22 Effective hydration numbers, $Z_{ib}(\text{CuSO}_4(aq))$ at temperatures $t/°C = 5(1), 25(2), 45(3) \text{ and } 65(4)$.

Figure 4.23 Effective hydration numbers at 25 °C.

Figure 5.1 Functional diagram of the TAM.

Figure 5.2 Detection and measurement system of the TAM.

Figure 5.3 Thermogram for 0.2 M Cu$^{2+}$ in NaClO$_4$ titrated into 0.2 M Na$_2$SO$_4$ in NaClO$_4$ (measuring the heat of reaction) or into NaClO$_4$ only (measuring the heat of dilution) at $I = 3$ M (Method A).

Figure 5.4 Thermogram for 0.2 M SO$_4^{2-}$ in NaClO$_4$ titrated into 0.2 M Cu(ClO$_4$)$_2$ in NaClO$_4$ (measuring the heat of reaction) or into NaClO$_4$ only (measuring the heat of dilution) at $I = 3$ M (Method B).

Figure 5.5 Observed heats of dilution as a function of constant ionic background for Methods A (■) and B (□).

Figure 5.6 Observed heats of reaction as a function of ionic strength using Method A (▲) and Method B (△).
Figure 5.7 Enthalpy change for the formation of CuSO\textsubscript{4}0 as a function of ionic strength at 25 °C.

Figure 5.8 Enthalpy change for the formation of CuSO\textsubscript{4}0 as a function of ionic strength at 25 °C (SIT model).

Figure 5.9 The hydration enthalpy of M2+ ions of the first row of the d block.

Figure 5.10 Standard enthalpy change for the formation of MSO\textsubscript{4}0 (aq) complexes of the first row of the d block elements.

Figure 6.1 Osmotic coefficient data for binary solutions of Na\textsubscript{2}SO\textsubscript{4}, MgSO\textsubscript{4} and CuSO\textsubscript{4} at 25 °C.

Figure 6.2 Comparison of the isopiestic molalities of the Na\textsubscript{2}SO\textsubscript{4}-CuSO\textsubscript{4}-H\textsubscript{2}O and Na\textsubscript{2}SO\textsubscript{4}-MgSO\textsubscript{4}-H\textsubscript{2}O systems at 25 °C with Zdanovskii’s rule.

Figure 6.3 Comparison of the isopiestic molalities of the CuSO\textsubscript{4}-MgSO\textsubscript{4}-H\textsubscript{2}O system at 25 °C with Zdanovskii’s rule.

Figure 6.4 Experimental densities of aqueous solutions of CuSO\textsubscript{4}, MgSO\textsubscript{4} and Na\textsubscript{2}SO\textsubscript{4} at 25 °C.

Figure 6.5 Apparent molal volumes at 25 °C of Na\textsubscript{2}SO\textsubscript{4}(aq) plotted against \(\sqrt{m}\).

Figure 6.6 Apparent molal volumes at 25 °C of CuSO\textsubscript{4}(aq) plotted against \(\sqrt{m}\).

Figure 6.7 Apparent molal volumes at 25 °C of MgSO\textsubscript{4}(aq) plotted against \(\sqrt{m}\).

Figure 6.8 Densities for the mixtures of Na\textsubscript{2}SO\textsubscript{4}-CuSO\textsubscript{4}, Na\textsubscript{2}SO\textsubscript{4}-MgSO\textsubscript{4} and CuSO\textsubscript{4}-MgSO\textsubscript{4} at 25 °C.

Figure 6.9 Apparent molal volumes for CuSO\textsubscript{4}-Na\textsubscript{2}SO\textsubscript{4} as a function of \(\sqrt{m}\) at 25 °C.

Figure 6.10 Heat capacities for Na\textsubscript{2}SO\textsubscript{4}, CuSO\textsubscript{4} and MgSO\textsubscript{4} obtained from ‘first leg’ and ‘second leg’ measurements in a Picker
Figure 6.11 Heat capacities at 25 °C (first leg measurements) for Na₂SO₄, CuSO₄ and MgSO₄ as a function of molality.

Figure 6.12 Apparent molal heat capacities at 25 °C of Na₂SO₄(aq), CuSO₄(aq) and MgSO₄(aq) solutions.

Figure 6.13 Heat capacities at 25 °C for CuSO₄-Na₂SO₄ mixtures as a function of ionic strength fraction.

Figure 6.14 Present solubility data for CuSO₄ and MgSO₄ in Na₂SO₄ media at 60 °C and 90 °C.

Figure 6.15 Dynamic viscosities, η, at 25 °C of aqueous mixtures of: (CuSO₄+Na₂SO₄), (MgSO₄+Na₂SO₄) and (CuSO₄+MgSO₄) as a function of ionic strength fraction, y_i.
Abbreviations and symbols

\(a \) activity of the solute
\(\dot{a} \) mean distance of the closest approach of the ions
\(A \) Debye-Hückel constant
\(A \) absorbance
\(A_L \) Debye-Hückel parameter for enthalpies
\(\text{Å} \) angstrom \((10^{-10} \text{ m})\)
\(\text{AMD} \) acid mine drainage
\(\text{aq} \) aqueous
\(\text{AR} \) analytical reagent
\(\alpha \) polarisability
\(B \) second Debye-Hückel constant
\(\alpha, \beta \) empirical exponents for Equation 4.8
\(b \) cell path-length
\(\text{BL} \) Beer-Lambert law
\(B, C, D \) adjustable parameters
\(c \) concentration
\(c_i \) concentration of the species i
\(ca. \) circa
\(\text{cal} \) calorimetry
\(\text{CIP} \) contact ion-pair
\({^\circ}\text{C} \) degrees Celsius
\(c_{\text{app}} \) apparent water concentration
\(c_i^\circ \) analytical (total) concentration of water
\(c_p \) heat capacity
\(C_{\text{pp}} \) apparent molar heat capacities
\(\text{CN}_{\text{+}}, \text{CN}_{\text{-}} \) sum of the first-shell coordination numbers
\(\text{Cu}^{2+}\text{-ISE} \) copper ion selective electrode
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D</td>
<td>three Debye</td>
</tr>
<tr>
<td>D-H</td>
<td>Debye-Hückel</td>
</tr>
<tr>
<td>DRS</td>
<td>dielectric relaxation spectroscopy</td>
</tr>
<tr>
<td>ΔH^o</td>
<td>standard enthalpy change</td>
</tr>
<tr>
<td>ΔS</td>
<td>entropy change</td>
</tr>
<tr>
<td>e</td>
<td>electronic charge</td>
</tr>
<tr>
<td>E_{obs}</td>
<td>observable cell potential</td>
</tr>
<tr>
<td>E_{ind}, E_{ref}</td>
<td>potentials of the indicator and reference electrodes</td>
</tr>
<tr>
<td>E_j</td>
<td>potentials of any liquid junctions</td>
</tr>
<tr>
<td>$\varepsilon(i,k)$</td>
<td>empirical ion interaction coefficient</td>
</tr>
<tr>
<td>ESTA</td>
<td>Equilibrium Simulation for Titration Analysis</td>
</tr>
<tr>
<td>ε</td>
<td>dielectric constant</td>
</tr>
<tr>
<td>$\varepsilon(v)$</td>
<td>complex dielectric permittivity</td>
</tr>
<tr>
<td>$\varepsilon'(v)$</td>
<td>dielectric dispersion</td>
</tr>
<tr>
<td>$\varepsilon''(v)$</td>
<td>dielectric loss</td>
</tr>
<tr>
<td>ε_{∞}</td>
<td>infinite frequency permittivity</td>
</tr>
<tr>
<td>ε_λ</td>
<td>absorptivity at wavelength λ</td>
</tr>
<tr>
<td>ε_s</td>
<td>low frequency permittivity</td>
</tr>
<tr>
<td>F</td>
<td>Faraday’s constant (9.6487×10^4 coulombs per mole)</td>
</tr>
<tr>
<td>f_{IP}</td>
<td>field factor</td>
</tr>
<tr>
<td>G</td>
<td>Gibbs energy</td>
</tr>
<tr>
<td>GHz</td>
<td>giga hertz</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>gl</td>
<td>glass electrode</td>
</tr>
<tr>
<td>γ</td>
<td>activity coefficient</td>
</tr>
<tr>
<td>γ_+</td>
<td>activity coefficient</td>
</tr>
<tr>
<td>γ_-</td>
<td>activity coefficient</td>
</tr>
<tr>
<td>γ_{\pm}</td>
<td>mean ionic activity coefficient</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
</tbody>
</table>
I ionic strength
IP ion-pair
ISE ion-selective electrode
I_T, I_I monochromatic radiant power transmitted by, and incident upon, the medium.
k kilo-, 10^3 (as in kg)
k Boltzmann constant
κ conductivity
κ_e effective conductivity
K_A overall ion association constant
K_A^o standard ion association constant
K_1, K_2, K_3 stepwise association constants
K_{out} outer sphere complex
K_{in} inner sphere complex
λ wavelength
L_1 relative partial molar enthalpy of water
l length of the constant-bore capillary
L litre (cubic decimeter, dm3)
L^{a-} anion
ln natural logarithm
LJP liquid junction potential
M molar (mol/L solution)
M^{m+} cation
m milli-, 10^{-3} (as in mL)
m metre
m molal (mol/kg solvent)
MHg mercury amalgam electrode
m^*, m'_i equilibrium molalities of the reference and sample
mol mole
n general number
n Number of electrons involved in the electrochemical reaction

N total number of titration points

N_A Avogadro’s number

n_e number of parameters to be optimised

N_{lc} number of ligands specified in the SPECFIT model

n_p total number of electrodes

η viscosity

OBJE objective function

p indicates negative log (as in pH, pK)

p number of metal ions present in a particular species

p Pico-, 10^{-12} (as in ps)

Pa pascal

pH $\log[-H^+]$

ppm parts per million

PTFE polycrystalline ethylene

π pi constant: 3.14159

ϕ^*, ϕ osmotic coefficients of the reference and the mixed-electrolyte solution

$\bar{P}(t)$ time-dependent electric polarization

$\bar{P}_{i*,}$ orientational polarization

\bar{P}_a induced polarization

q arbitrary distance

Q_c heat of complexation

Q_r heats of reaction

Q_d heats of dilution

r ionic radius

r number of moles of water

r^2 correlation coefficient

R universal gas constant ($8.314 \, \text{J} \, \text{K}^{-1} \, \text{mol}^{-1}$)
r radius of the constant-bore capillary

σ experimental standard deviation

ρ, ρ_0 density of an electrolyte solution, and the pure solvent

SIP solvent-shared ion-pair

σ_p standard deviation

2SIP double solvent-separated ion-pair

SIT specific ion interaction theory

S_j Dispersion amplitude

s second

(s) solid

Sol solubility

s^2 variance

SD standard deviation

T thermodynamic temperature (in Kelvin, K)

t Temperature (in Celsius, °C)

τ dielectric relaxation time

μ Micro-, 10^{-6} (as in µm)

τ^2 vibration period of the tube

μ dipole moment

μ chemical potential of a solute

μ^0 standard potential of a solute

μ_{IP} dipole moments

U objective function

V volt

\bar{V} Partial molal volume

V total volume

VNA vector network analyser

v frequency

V_ϕ apparent molal volumes

v^*, v_i stoichiometric ionization numbers
\(\omega \) field frequency
\(W \) watts
\(w \) mass
\(W_o \) baseline power applied to the cells
\([X]\) concentration of species X
\(y_i \) ionic strength fraction
\(z_i \) charge on species i
\(z_+ \) charge number of the cation
\(z_- \) charge number of the anion
\(Z_{IB} \) effective solvation number