Physiological aspects of *Corylus avellana* associated with the French black truffle fungus *Tuber melanosporum* and the consequence for commercial production of black truffles in Western Australia.

B. P. Bradshaw B.Sc. (Hons)

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Biological Sciences and Biotechnology
Murdoch University
Perth, Western Australia

January 2005

Supervisors: Assoc. Prof. B. Dell
Dr. N. Malajczuk
I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution.

B. P. Bradshaw

The material contained in this thesis is subject to copyright and may only be reproduced with permission of the author.
Abstract

The black truffle (*Tuber melanosporum* Vitt.) industry in Australia is relatively new and has enormous potential but some truffières (truffle farms) fail to meet anticipated harvest projections. Inappropriate soil conditions and climate, and the management of such factors are suggested as the primary reasons for inadequate yield. In addition, requirements for ascocarp initiation and development and the role of the host plant in such processes are unknown. This study examines interactions between European hazel (*Corylus avellana* L.) and the ectomycorrhizal (ECM) black truffle symbiont in a commercial truffière (Hazel Hill) in south-western Australia. Specific studies were initiated to examine the interactions of host physiology, mycorrhizal infection and the interaction with abiotic factors. The study related specific physiological processes of the host plant to the known life cycle of the black truffle to determine the role of the host plant in ascocarp production, if any. The work also examined the effect of silvicultural treatments intended to increase truffle production.

A review of existing literature was undertaken to determine the key soil and climatic factors required for successful truffle production. Climatic conditions appeared more important than soil chemistry and structure in Western Australia, with significant seasonal variation in air and soil temperatures required plus irrigation to supplement summer rainfall. This information was used to define areas with potential for truffle production in the south-west of Western Australia: the cooler, high rainfall regions (>1000 mm annual rainfall) where there is sufficient seasonal variation in soil temperature and availability of adequate quantities of quality water for irrigation. Subsurface soil acidification and salinity, as well as groundwater salinity, are constraining factors. Lime amendment is necessary to create sufficiently high pH and CaCO$_3$ levels required by the truffle fungus.

A field trial was established to monitor the seasonal C dynamics of European hazel in the context of the life cycle of the black truffle. Maximum translocation of sucrose in the phloem sap coincided with the period of anticipated rapid growth of the truffle ascocarp implicating the use of current photosynthate in C nutrition of the ascocarp. Sampling of non-structural carbohydrates (NC) of above and belowground plant material indicated maximum storage of C in the host coincides with maturation of the
ascocarp. These observations provide evidence of a synchronous growth habit of the plant host and the ascocarp.

The C allocation patterns of European hazel in response to liming a loamy soil, taken from near the Hazel Hill truffière, and inoculation with ECM fungi (T. melanosporum, Hebeloma sp. and Scleroderma sp.) were examined in a glasshouse pot trial. Liming increased biomass allocation to the shoot and induced deficiencies of phosphorus and manganese. Colonisation by ECM fungi significantly increased net photosynthesis, indicating the sink strength of these fungi, but there was no relationship between the level of mycorrhizal infection and fine root NC. The maximum rate (40 g lime kg⁻¹ soil) reduced infection by Hebeloma and Scleroderma and had no impact on T. melanosporum. Further, infection rates of T. melanosporum did not increase in response to lime suggesting lime is not necessary for ECM development in this soil type.

Fertiliser is widely used in commercial truffières in Australia but the consequences for truffle production are unknown. In a field trial, the growth and physiological response of European hazel to forms of phosphorus (34 and 68 kg ha⁻¹ apatite-P and 68 kg ha⁻¹ triple super phosphate-P) and nitrogen (50 kg ha⁻¹ of NO₃⁻ and NH₄-N) were examined as well as the mycorrhizal response to fertiliser. Apatite-P increased phloem sap sucrose concentrations which was attributed to increased root biomass and associated sink capacity. Fertiliser application did not change fine root NC concentrations suggesting no increase in allocation of C to ECM structures. The highest rate of apatite-P decreased mycorrhizal infection rates of T. melanosporum and, most likely, was the result of increased infection rates of Hebeloma. In contrast to the literature relating to indigenous Australian ECM fungi, the highest rate of soluble-P did not decrease ECM infection rates in T. melanosporum. Nitrogen treatments increased foliar N content and improved gas exchange efficiency of plants, and had no adverse impact on the level of ECM infection. Fertilisation with N significantly increased soil respiration rates suggesting N limits mineralisation at this site.

Some truffières manage the canopies of the host tree to ensure maximum exposure of the soil surface in order to increase soil temperatures. As there are no published data on the effect of pruning on black truffle production, a field trial was established to document the impact of canopy pruning on host physiology and soil temperature. The
removal of 65% of canopy leaf area reduced phloem sap sucrose concentrations, soil respiration rate and the soluble: insoluble NC ratio of fine roots in the short term (1-3 weeks). There was no compensatory response of leaf gas exchange parameters as a result of pruning. Generally, there was no long term impact on plant physiological parameters as a result of pruning. Long term effects on soil temperature were observed as a result of pruning. Mean annual temperature and amplitude increased significantly beneath pruned trees and spring, summer and autumn soil temperatures increased as did diurnal variation as a result of pruning. Pruning did not increase winter soil temperatures and therefore would probably not impact on ascocarp maturation during this period.

This research has provided insight into the C physiology of hazel associated with the black truffle and the consequences for truffle production. The results provide anecdotal evidence of direct C transfer between the host and the developing truffle, contrary to the existing paradigm that the ascocarp is saprotrophic for the majority of its growth and development. There is a need to validate this finding as there are consequences for management of commercial truffières. Liming of loam duplex soils can reduce the abundance of the most common competitor ECM fungi and should be encouraged in commercial truffières. Applying phosphorus and nitrogen to commercial truffières will improve growth rates of planted trees without adversely impacting on ECM infection by black truffle fungi, although the impact on truffle production remains unknown. It is anticipated truffle production will improve in the longer term as a result of pruning and prudent canopy management. Management options should include tree removal to reduce planting density and increase soil exposure in truffières. There is a need for longer term trials to be established to determine the C nutrition of the truffle ascocarp and to clearly define the key stages of the black truffle life cycle in Western Australia.
Publications arising from this research

Statement relating to the reporting of the seasonal calendar of the northern and southern hemispheres in this thesis.

Interpretation and quotation of material relating to the northern hemisphere has been adapted for the southern hemisphere throughout this thesis. For literature reporting events occurring during certain months of a season in the northern hemisphere, the corresponding month of the southern hemisphere is reported, unless otherwise stated. Where clarification is required it is indicated in parentheses as to which hemisphere the statement refers e.g. (SH), southern hemisphere or (NH), northern hemisphere.
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Net photosynthetic rate</td>
</tr>
<tr>
<td>AA</td>
<td>Amino acids</td>
</tr>
<tr>
<td>AgWA</td>
<td>Department of Agriculture Western Australia</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>Ap</td>
<td>Atmospheric pressure</td>
</tr>
<tr>
<td>a.s.l.</td>
<td>Above sea level</td>
</tr>
<tr>
<td>BSTFA</td>
<td>bi(trimethylsilyl)trifluoroacetamide</td>
</tr>
<tr>
<td>C</td>
<td>Carbon</td>
</tr>
<tr>
<td>C_i</td>
<td>Sub-stomatal CO$_2$ concentration</td>
</tr>
<tr>
<td>DDI</td>
<td>Distilled deionised water</td>
</tr>
<tr>
<td>DMS</td>
<td>Dimethylsulphoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dS</td>
<td>Decisiemens</td>
</tr>
<tr>
<td>DTPA</td>
<td>Diethylene triamine pentaacetic acid</td>
</tr>
<tr>
<td>DW</td>
<td>Dry weight</td>
</tr>
<tr>
<td>e</td>
<td>Vapour pressure</td>
</tr>
<tr>
<td>E</td>
<td>Evapotranspiration</td>
</tr>
<tr>
<td>ECM</td>
<td>Ectomycorrhiza</td>
</tr>
<tr>
<td>ELSD</td>
<td>Evaporative light scattering detector</td>
</tr>
<tr>
<td>e_s</td>
<td>Saturation vapour pressure</td>
</tr>
<tr>
<td>exp</td>
<td>Exponential</td>
</tr>
<tr>
<td>FID</td>
<td>Flame ionisation detection</td>
</tr>
<tr>
<td>GC</td>
<td>Gas chromatography</td>
</tr>
<tr>
<td>GLM</td>
<td>General linear model</td>
</tr>
<tr>
<td>g_s</td>
<td>Stomatal conductance</td>
</tr>
<tr>
<td>HPLC</td>
<td>High pressure liquid chromatography</td>
</tr>
<tr>
<td>ICP</td>
<td>Inductively coupled plasmospectrometry</td>
</tr>
<tr>
<td>IGEE</td>
<td>Intrinsic gas exchange efficiency</td>
</tr>
<tr>
<td>INRA</td>
<td>Institut National de la Recherche Agronomique</td>
</tr>
<tr>
<td>IRGA</td>
<td>Infra-red gas analyser</td>
</tr>
<tr>
<td>IRMS</td>
<td>Isotope ratio mass spectrometry</td>
</tr>
<tr>
<td>ITS</td>
<td>Internal transcribed spacer</td>
</tr>
<tr>
<td>IWUE</td>
<td>Instantaneous water use efficiency</td>
</tr>
</tbody>
</table>
K
Potassium

LA
Leaf area

LAI
Leaf area index

LSD
Least significant difference

MAFRL
Marine and fresh water research laboratory

meq
Milliequivalents

MS
Mass spectrometry

N
Nitrogen

NC
Non-structural carbohydrate

NH
Northern hemisphere

NMR
Nuclear magnetic resonance

P
Phosphorus

PAI
Periodic annual increment

PAR
Photosynthetically active radiation

PCR
Polymerase chain reaction

PVC
Polyvinyl chloride

rH
Relative humidity

R_s
Soil respiration rate

SE
Standard error of mean

SH
Southern hemisphere

SLA
Specific leaf area

sp., spp.
Species, (singular, plural)

SW
South-west

T
Temperature

TCMS
Trimethylchlorosilane

TNC
Total non-structural carbohydrate

TSP
Triple super-phosphate

T_w
Wet bulb temperature

VOC
Volatile organic compound

VPD
Vapour pressure deficit

WA
Western Australia

YFEL
Youngest fully expanded leaf

δ^{13}C
^{13}C/^{12}C notation relative to the Peedee belemnite standard (%)
Acknowledgements

This work was supported by the Australian Research Council (ARC) through provision of an APA (Industry) scholarship in conjunction with the industry partner, Horticultural Management Ltd. I am indebted to both these organisations for their support and the opportunity to indulge a passion.

I would like to thank my supervisors, Associate Professor Bernie Dell and Dr. Nick Malajczuk for their support, encouragement and, above all, their patience throughout the course of this work. I am particularly grateful for Professor Dell’s good humour and wisdom. Dr Malajczuk’s passion for mycology and truffles has been an inspiration. Their knowledge and guidance has been an invaluable and enjoyable experience.

I am especially grateful to Dr. Mary Boyce, Edith Cowan University, for making available her expertise and equipment for phloem sap analysis and for teaching me the finer points of separation chemistry. Thanks also to Associate Professor Mike Calver for assistance with statistical analysis.

Special thanks to Mr Bevan Blakers and Mr Alan Masters for assistance in the field and valuable discussions on truffière management. Thanks to WA Plantation Resources for glasshouse space and seedling maintenance at the Manjimup nursery. Thanks also to Mr Tim Terry of Tasmanian Truffle Enterprises for providing climate data for his Deloraine truffière.

Special thanks to Jean-Marc Olivier and Gérard Chevalier for their insight into French trufficulture and thanks also to Pierre Sourzat for providing climate data and enlightenment on the cultivation of black truffles. I also wish to thank Alessandra Zambonelli for similar enlightenment of the Italian white truffle. I am immensely grateful to these individuals for their time and hospitality and I am humbled by their generosity of wisdom of all things truffle. I thank the Research and Development Board of Murdoch University for financial assistance to visit trufficultural regions of France and Italy.
I am grateful to all those of the plant nutrition, pathology and mycorrhizal labs for providing a welcoming work environment, particularly, Kasia Rybak, Cat Chamberlain, Bill Dunstan, Sandra Thomas, Dr. Longbin Huang and numerous overseas visitors and students – it has been a pleasure! Thanks to Max, Kim and Ian of glasshouse services for their generous assistance throughout the life of this project. I extend my thanks to all those from whom I have sought help and advice in various capacities, though too numerous to mention, rest assured I am immensely grateful to you all.

I am greatly appreciative of the hospitality shown by the Halden family of Manjimup during numerous field trips and ensuring I was well nourished to tackle another day. Thanks also to my parents for their hospitality during field trips, but more importantly, I wish to thank them for their support, encouragement and inspiration over the years. Special thanks to all those friends with whom I have shared comic relief from the rigors of completing this project.

To my young truffle dog, Oakey, who has been a willing companion and who provided the exhilaration of a first truffle find - may there be many more!

Finally, I would like to thank my partner, Natalie, who has sacrificed much to provide unconditional love, support and encouragement from the very beginning. I am eternally grateful.
Table of Contents

Declaration .. II
Abstract .. III
Publications arising from this thesis .. VI
Statement relating to the reporting of the seasonal calendar of the hemispheres in this thesis ... VII
List of abbreviations ... VIII
Acknowledgements .. X

Chapter 1: General Introduction

1.1 Introduction to the research .. 1
1.2 Review of literature .. 2
 1.2.1 Historical aspects of truffles .. 2
 1.2.2 Truffle species .. 3
 1.2.3 Black truffle as a commercial commodity .. 5
 1.2.4 Potential for trufficulture in Western Australia .. 6
 1.2.5 Ecology of Tuber species .. 9
 I. Life cycle ... 9
 II. Host specificity ... 13
 1.2.6 Cultivation of truffles .. 14
1.3 Carbon physiology of Corylus avellana ... 18
1.4 Aspects of carbohydrate metabolism in mycorrhizas .. 20
 1.4.1 Enzyme mediated carbon transfer from host to symbiont 21
1.5 Aims and objectives of thesis ... 23

Chapter 2: Comparisons of climate and soil of French black truffle growing regions

2.1 Introduction .. 26
 2.1.1 Climate ... 26
 2.1.2 Soils ... 29
2.2 Materials and methods ... 29
 2.2.1 Climate ... 29
 2.2.2 Soils ... 32
2.3 Results and discussion ... 32
 2.3.1 Climate ... 32
 2.3.2 Soils .. 42
 2.4 Concluding remarks ... 54

Chapter 3: Seasonal patterns of growth, storage and translocation in *Corylus avellana*

3.1 Introduction .. 58
3.2 Materials and methods ... 60
 3.2.1 Site description ... 60
 3.2.2 Collection of climate data ... 60
 3.2.3 Tree selection and vegetative sampling 61
 3.2.4 Collection of phloem and xylem sap 62
 3.2.5 Analysis of phloem and xylem sap 64
 3.2.6 Root sampling and assessment ... 65
 3.2.7 Carbohydrate analysis ... 66
 3.2.8 Measurements of gas exchange parameters 66
 3.2.9 Foliar sampling and analysis .. 67
 3.2.10 Data analysis ... 67
3.3 Results ... 67
 3.3.1 Seasonal growth patterns ... 67
 3.3.2 Seasonal patterns in NC ... 73
 3.3.3 Seasonal patterns of translocation streams 77
 3.3.4 Patterns of gas exchange .. 82
 3.3.5 Observations of mycorrhizal status 87
3.4 Discussion .. 89

Chapter 4: The effect of CaCO₃ on carbon allocation patterns, nutrient status and mycorrhizal development of hazel seedlings grown in a loam kandosol

4.1 Introduction ... 95
4.2 Materials and methods .. 97
 4.2.1 Experimental design and analysis 97
 4.2.2 Soil preparation and lime addition 98
 4.2.3 Plant material ... 99
Chapter 5: The effect of P and N fertiliser application on plant growth, translocation streams, mycorrhizal infection and fine root NC levels

5.1 Introduction .. 121
5.2 Materials and methods .. 123
 5.2.1 Plant growth ... 125
 5.2.2 Ingrowth cores ... 125
 5.2.3 Gas exchange ... 125
 5.2.4 Sporocarp collection .. 126
 5.2.5 Phloem sap analysis .. 126
 5.2.6 Foliar analysis .. 127
 5.2.7 Statistical analysis .. 127
5.3 Results .. 127
 5.3.1 Plant growth ... 127
 5.3.2 Translocated solutes ... 128
 5.3.3 Root ingrowth cores ... 131
5.3.4 Gas exchange ... 136
5.3.5 Sporocarp collection ... 139
5.3.6 Foliar nutrient concentration 140

5.4 Discussion ... 141

Chapter 6: Effect of pruning on phloem sap, fine root NC concentrations and soil temperature

6.1 Introduction .. 146
6.2 Materials and methods .. 147
 6.2.1 Phloem sap collection .. 148
 6.2.2 Gas exchange measurements ... 148
 6.2.3 Fine root NC ... 149
 6.2.4 Soil data collection .. 149
 6.2.5 Data analysis ... 149
6.3 Results ... 149
 6.3.1 Changes in leaf area and canopy projection 149
 6.3.2 Phloem sap ... 150
 6.3.3 Gas exchange parameters ... 152
 6.3.4 Fine root NC ... 153
 6.3.5 Soil temperature response ... 155
6.4 Discussion .. 159

Chapter 7: General discussion

7.1 Summary of research findings .. 165
7.2 Future research directions ... 172

Appendix I ... 178
Appendix II .. 181
Appendix III .. 183
Appendix IV .. 184

References ... 185
“…..a shortage of grain is preferable to a shortage of truffles....”

- Plutarch, AD 46-120