Identification and characterisation of two haplosporidian parasites of oysters in north Western Australia.

Picture: An adult pearl oyster.

Douglas Bearham
Principal supervisors: Phillip K Nicholls and Shane Raidal.

A dissertation submitted to Murdoch University for the degree of Doctor of Philosophy.
Preface
The work described in this thesis is that of the author alone unless otherwise stated in the text. None of the work has been submitted for any other qualification at this or any other university.

Douglas Bearham

April 2008
Acknowledgments
While I’d like to claim all of this work as my own, it is not. I have benefitted from the ideas and advice of a large number of people and like all research it was built on the findings and discoveries of the researchers who came before. When it comes to naming names I would firstly, like to thank my supervisors Phil Nicholls and Shane Raidal for their hard work and invaluable advice and to Brian Jones for his knowledge and advice which was instrumental to the project. I’d also like to thank Zoe Spiers for her help throughout the course of the project. Zoe was involved in almost all aspects of the study in some way.

I also need to thank Eugene Burreson and Nancy Stokes at the Virginia Institute of Marine Science for their guidance and advice on all aspects of the haplosporidia especially the morphology of haplosporian parasites, the use of molecular diagnostics and scanning electron microscopy. Nancy Stokes also provided Haplosporidium nelsoni, H. costale and M. teredinis sections as well as H. nelsoni and H. costale DNA for specificity tests. This project would not have been possible or have achieved as much as it did without their help.

This project received valuable support from the pearling industry so I would like to thank the members of the haplosporidian steering committee including Andy Morgan and the staff of Morgan Pty Ltd for their help and hospitality at the Montebello Islands during sampling. My gratitude also goes to David Mills and the staff of Paspaley Pearls Pty Ltd for their help in obtaining pearl oyster samples from Willie Creek and to Sam Buchanan and the staff of Blue Seas Pty Ltd for deploying the longline to Cascade Bay and with help sampling. I would also like to thank the staff of the co-
operative hatchery in Broome for providing pearl spat for cross infection trials. Without the support of industry this project would not have been possible.

My favourite advisor and partner, Amber, deserves an enormous thanks for her patience and support. She helped edit my more awkward sentences and shared the highs and lows a project such as this brings.

I also owe a thanks to Michael Slaven and Gerard Spoelstra (Murdoch University) who undertook the histological preparations for the study and to Peter Fallon (Murdoch University) who helped with the electron microscopy. Challenger TAFE in Fremantle Western Australia also provided algal starter cultures so live oysters could be housed at Murdoch. Alan Lymbery at the Fish Health Unit Murdoch University also provided equipment and plenty of patience while the cross-infection studies were being setup and performed. I’d also like to acknowledge the contribution of the reviewers of manuscripts that were published as part of this study. They indirectly contributed a considerable amount to this thesis. This work was supported by the Australian Government’s Fisheries Research and Development Corporation Project No. 2006/064, Murdoch University and the Pearl Producers Association.
Accepted and Submitted Manuscripts Resulting from this Research

Accepted:

Submitted and currently under review:

List of Abbreviations, acronyms and definitions

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>bp</td>
<td>Base pair(s)</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>Double distilled water</td>
</tr>
<tr>
<td>dNTP</td>
<td>dATP, dCTP, dGTP or dTTP</td>
</tr>
<tr>
<td>DIG</td>
<td>Digoxigenin</td>
</tr>
<tr>
<td>ECE</td>
<td>Epispore Cytoplasmic Extensions</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene diamine tetraacetic acid</td>
</tr>
<tr>
<td>H&E</td>
<td>Hematoxylin and Eosin</td>
</tr>
<tr>
<td>Inflammation</td>
<td>Infiltration of haemocytes in oyster tissues</td>
</tr>
<tr>
<td>ISH</td>
<td>In situ hybridization</td>
</tr>
<tr>
<td>Longline</td>
<td>Rope with anchors and buoys attached. Common method used to maintain pearl oysters in the water column.</td>
</tr>
<tr>
<td>MDS</td>
<td>Multidimensional scaling</td>
</tr>
<tr>
<td>min</td>
<td>Minutes</td>
</tr>
<tr>
<td>MSN</td>
<td>Minimum Spanning Network</td>
</tr>
<tr>
<td>NPV</td>
<td>Negative predictive value (or number of negative test results for truly disease-free animals divided by the total number of negative test results.</td>
</tr>
<tr>
<td>OIE</td>
<td>Office Internationale d’Epizootie or World Organisation for Animal Health.</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>Pearl Oyster</td>
<td>Pinctada maxima</td>
</tr>
<tr>
<td>Rock Oyster</td>
<td>Saccostrea cucullata</td>
</tr>
<tr>
<td>s</td>
<td>Seconds</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>The number of disease-free animals that test negative divided by the number of truly disease-free animals.</td>
</tr>
<tr>
<td>SSC</td>
<td>Standard Saline Citrate</td>
</tr>
<tr>
<td>SSU</td>
<td>Small Subunit region of the rRNA gene</td>
</tr>
<tr>
<td>Spat</td>
<td>Juvenile pearl oysters</td>
</tr>
<tr>
<td>Sydney rock oyster</td>
<td>Saccostrea glomerata</td>
</tr>
<tr>
<td>TBSBT</td>
<td>Tris-buffered saline containing 3% bovine serum albumin and 0.1% Triton X-100</td>
</tr>
<tr>
<td>TE</td>
<td>Buffer containing 10 nM Tris – HCl (pH 8.0), 1 nM EDTA</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>Tris</td>
<td>Trishydroxymethylaminomethane</td>
</tr>
<tr>
<td>Tropical oyster</td>
<td>Saccostrea echinata</td>
</tr>
</tbody>
</table>
Summary
A cryptic haplosporidian parasite was detected infecting rock oysters from the Montebello Islands in north-western Australia using a PCR targeting the parasite’s small ribosomal subunit gene. The PCR products were cloned and sequenced along with the remaining sections of the parasite’s SSU rRNA gene. Phylogenetic analysis of the sequence generated indicated a *Minchinia* species (Haplosporidia). The SSU sequence generated was used to develop two *in situ* hybridisation assays to visualise the parasite in H/E sections as well as a PCR assay to detect the parasite. The molecular assays were assessed for specificity and sensitivity and were then used to compare the parasite to previous haplosporidian parasite infections of pearl oysters. Both assays produced positive results from the infected pearl oysters but not from other closely related haplosporidian species. An SEM and TEM electron microscopy analysis was performed on spores from both parasite species. The spores of the pearl oyster parasite had two spore wall filaments wound around the spore originating for a posterior thickening while the spores of the rock oyster parasite were covered in microtubule-like structures. These data suggests pearl oysters where co-infected with both the *Haplosporidium* sp. and the *Minchinia* sp. detected in rock oysters. No evidence of a posterior thickening could be found on the spores of the rock oyster parasite. Attempts to detect the parasite at the previous geographic sites of its detection in pearl oysters resulted in detection of the *Minchinia* species in tropical oysters in the Kimberley region of Western Australia by *in-situ* hybridisation.
Chapter 1: Introduction. Background and Objectives

Chapter 2: Sampling Methods and Sites

Chapter 3: Detection and molecular characterization of the rock oyster parasite.

Chapter 4: Validation of developed probes

Chapter 5: Detection of Minchinia sp. in haplosporidian infected pearl oysters

Chapter 6: Spore ornamentation of Haplosporidium hinei n. sp. in pearl oysters

Chapter 7: Spore ornamentation of Minchinia occulta n. sp. in rock oysters and comparison with Haplosporidium hinei.

Chapter 8: The search for intermediate and alternative hosts

Chapter 9: General Conclusions
Table of Contents

Preface ... 2
Acknowledgments .. 3
Accepted and Submitted Manuscripts Resulting from this Research 5
List of Abbreviations, acronyms and definitions ... 6
Summary .. 7
Thesis Flow Diagram ... 8
Table of Contents .. 9
Table of Figures .. 12
List of Tables .. 14

Chapter 1 Introduction

1.1 Introduction to bivalve aquaculture .. 16
1.2 The pearling industry ... 17
1.3 Current disease management in the pearling industry 18
1.4 Major pathogens affecting Australian pearl oysters 19
1.5 Phylum Haplosporidia (Caullery & Mesnil, 1899) ... 20
 1.5.1 The characteristics of the Haplosporidia .. 20
 1.5.2 Haplosporidians in Western Australia .. 23
1.6 The current management of the *Haplosporidium* sp. in Western Australia 27
1.7 The requirement for information regarding the infection of *Pinctada maxima* by a *Haplosporidium* sp. and the haplosporidian infecting rock oysters *Saccostrea cuccullata* ... 27

Chapter 2 General Site Observations and Sampling Methods

2.1 Introduction ... 31
2.2 Materials and Methods .. 35
 2.2.1 Sampling regime and details of collection sites for the pearl oyster *Haplosporidium* sp ... 35
 2.2.1.1 Pearl oyster sampling at Cascade Bay ... 37
 2.2.1.2 Pearl oyster sampling at Willie Creek ... 38
 2.2.2 Sampling regime and details of collection sites for rock oyster *Haplosporidium* sp ... 40
 2.2.2.1 Rock oyster sampling at the Montebello Islands 41
 2.2.2.2 Rock oyster sampling at Cascade bay, Willie creek and Carnarvon sites ... 43
2.3 Processing of pearl oyster and rock oyster samples .. 45
 2.3.1 Processing of pearl oyster samples ... 45
 2.3.1.1 Cascade bay pearl oyster spat ... 45
 2.3.1.2 Willie Creek and Carnarvon pearl oyster samples 46
 2.3.2 Processing of rock oyster samples ... 46
 2.3.2.1 Rock oyster samples from the Montebello islands 46
 2.3.2.2 Rock oyster samples from Cascade bay, Willie Creek Carnarvon and Koolan Island ... 48

Chapter 3: Molecular characterisation of a haplosporidian parasite infecting rock oysters *Saccostrea cuccullata* in north Western Australia

3.1 Introduction ... 50
3.2 Materials and methods .. 51
Chapter 4: Detection of Minchinia sp. in rock oysters Saccostrea cucullata (Born, 1778) using DNA probes

Chapter 5: Detection of Haplosporidium sp. infected pearl oysters Pinctada maxima (Jameson, 1901)

Chapter 6: Spore ornamentation of Haplosporidium hinei n.sp. in pearl oysters Pinctada maxima
Chapter 7: Spore ornamentation of Minchinia occulta n. sp. in rock oysters Saccostrea cuccullata (Born, 1778)

7.1 Introduction ... 148
7.2 Materials and Methods .. 150
 7.2.1 In-situ hybridisation ... 150
 7.2.2 Electron microscopy .. 150
7.3 Results .. 151
 7.3.1 Light microscopy ... 151
 7.3.2 In-situ Hybridisation ... 151
 7.3.3 Electron microscopy .. 157
7.4 Discussion ... 159

Chapter 8: The search for intermediate and alternative hosts 165

8.1 Introduction .. 166
8.2 Materials and Methods .. 168
 8.2.1 Infection trials .. 168
 8.2.2 The inoculation experiments: ... 168
 8.2.3 Infection by deployment of spat to a previous infection site and the
 sampling of rock oysters from the previous infection sites. 172
 8.2.4 Diagnosis of Minchinia occulta and Haplosporidium hinei. 173
8.3 Results .. 174
 8.3.1 Infection by cohabitation .. 175
 8.3.2 Pearl oyster samples from Cascade Bay and Willie Creek.................. 175
 8.3.3 Rock oyster samples ... 179
 8.3.4 Koolan Island Tropical Oyster sample ... 179
8.4 Discussion ... 182
 8.4.1 The inoculation experiments ... 182

Chapter 9 General Discussion ... 186

9.1 Detecting the haplosporidian parasite in rock oysters from north Western
 Australia ... 188
9.2 Suggesting a potential molecular assay for the rock oyster parasite and
 commencing an assessment of their sensitivity and specificity 190
9.3 Determining whether the detected parasite is present in past haplosporidian
 outbreaks in pearl oysters. .. 192
9.5 Describing the spore ornamentation of the haplosporidian in rock oysters
 using both scanning and transmission electron microscopy 194
9.6 Attempts to infect pearl oysters and rock oysters with the parasite by co-
 housing uninfected rock oysters and pearl oysters or with infected rock oysters
 and the search for the intermediate and reservoir host 195
9.7 Overall .. 197

Literature Cited .. 200

Chapter 10 Appendix .. 210

10.1 Appendix 1: Minchinia occulta SSU rRNA sequence and position of the primers
 and probes used in the study. ... 210
10.2 Appendix 2: Primers used to attempt to obtain a sequence from the
 Haplosporidium hinei infected pearl oyster samples. 211
List of Figures.

Figure 1.1 Total value of all Australian fisheries by export value ($A; ABARE, 2007)... 16
Figure 1.2 Map of north Western Australia indicating the locations of 3 past haplosporidian outbreaks in pearl oysters at Cascade Bay (1995), Carnarvon (1996), Willie Creek (2000) and the location of the haplosporidian outbreak in rock oysters from the Montebello Islands (1990s).. 23
Figure 1.3 Hematoxylin and Eosin (H&E) stained microscope slide of two oyster digestive glands. (A) is an uninfected gland showing intact digestive tubule epithelium. .. 26
Figure 2.1 Map of Cascade bay indicating the position of the deployed pearl oyster spat............................... 36
Figure 2.2 The deployment of pearl oyster spat on a longline in Cascade Bay, King Sound.............................. 38
Figure 2.3 Map indicating sampling sites for the Willie Creek rock oyster and pearl oyster samples.... 39
Figure 2.4 Map of Western Australia with the Montebello Islands shown in the insert (WALIS, 2006).
The four sampling locations are indicated as a yellow dot. .. 41
Figure 2.5 Picture of West bay rock oyster sample site at the Montebello Islands.. 42
Figure 2.6 Picture of rock oysters at the West bay sample site in the Montebello Islands............................. 43
Figure 2.7 Flow diagram indicating the treatment of samples obtained from the Cascade bay, Willie creek Carnarvon and Montebello Island sample sites. .. 45
Figure 3.1 A flow diagram indicating the strategy adopted to target the haplosporidian parasite in the rock oyster samples from the Montebello Islands. .. 51
Figure 3.2 Polymerase Chain Reaction (PCR) conditions used for DNA amplification of the SSU rRNA gene utilised in the study .. 55
Figure 3.3 Conditions for the cycle sequencing of the cloned PCR products.. 56
Figure 3.4 Rock oyster reproductive tissue containing haplosporidian parasites. ... 63
Figure 3.5 Haplosporidian parasites (arrows) identified in an in-situ hybridisation of rock oyster gonad follicles... 64
Figure 3.6 A maximum parsimony tree illustrating the relationships of the SSU rRNA gene sequences within phylum Haplosporidia including the rock oyster parasite.. 66
Figure 3.7 Agarose gel electrophoresis of the Minch PCR products from archived rock oyster tissues containing the haplosporidian parasite described by Hine and Thorne (2002)... 67
Figure 3.8 Serial sections of rock oyster gill tissue containing the parasite described by Hine and Thorne (2002) ... 68
Figure 4.1 Polymerase Chain Reaction (PCR) conditions used for the PCR assay with the SSF66 and SSR69. ... 80
Figure 4.2 Polymerase Chain Reaction (PCR) conditions used for DNA amplification of the SSU rRNA gene utilised in the study... 81
Figure 4.3 Agarose gel electrophoresis of the SSF66/SSR69 PCR products demonstrating specificity for Minchinia sp.. 85
Figure 4.4 Agarose gel electrophoresis of the SSF66/SSR69 PCR products with varying amounts of amplified Minchinia sp. ... 85
Figure 4.5 Agarose gel electrophoresis of the SSF66/SSR69 PCR products with of 1 pg of amplified Minchinia sp. DNA and varying amounts of host DNA.. 86
Figure 4.6 In-situ hybridisation both the SSR69 and polynucleotide ISH probes on a gill lesion from the rock oyster parasite described by Hine and Thorne (2002) ... 87
Figure 4.7 Sections of various haplosporidian parasites used to test the specificity of the ISH probes. ... 88
Figure 4.8 Sections of various haplosporidian parasites used to test the specificity of the ISH probes. ... 89
Figure 5.1 Agarose gel electrophoresis of formalin pearl oyster tissue from each of the infection sites. ... 113
Figure 5.2 Agarose gel electrophoresis of the FSSUF and SSR69 primers and formalin fixed pearl oyster tissue from the Willie Creek infection site... 114
Figure 5.3 Neighbour Joining tree illustrating the relationships among the 144 bp SSU rRNA gene sequences from phylum Haplosporidia .. 115
Figure 5.4 A two-dimensional ordination of the pairwise genetic distances obtained from the rock and pearl oyster samples .. 116
Figure 5.5 Pearl oyster tissue containing haplosporidian parasites in a hematoxylin-eosin stained section.. 118
Figure 5.6 Haplosporidian parasites (arrows) identified in a in situ hybridisation of pearl oyster digestive gland. (A): In situ hybridisation containing the SSR69 probe. darker colouration 119
Figure 5.7 Haplosporidian parasites (arrows) identified in an in situ hybridisation of pearl oyster digestive gland ... 120
Figure 5.8 Bi-valve sections used to assess the specificity of the SSRDb ISH assay ... 121
Figure 5.9 Minimum spanning network of the SSU rRNA gene sequences obtained from the rock and pearl oyster parasites .. 123
Figure 6.1 Pearl oyster digestive gland containing large numbers of the presporulation and sporulation stages of Haplosporidium hinei n. sp. .. 137
Figure 6.2 Transmission electron micrographs (TEM) of mature spores of Haplosporidium hinei n.sp. infecting the pearl oyster Pinctada maxima ... 138
Figure 6.3 Scanning electron micrographs indicating the spore ornamentation of Haplosporidium hinei n. sp. infecting Pinctada maxima in supposed order of development ... 139
Figure 7.1 Rock oyster connective tissue and reproductive tissue containing single, bi and tri nucleate haplosporidian parasites .. 152
Figure 7.2 Rock oyster digestive gland containing large numbers of the presporulation and sporulation stages of Minchinia occulta n. sp. in a hematoxylin-eosin stained section .. 153
Figure 7.3 Haplosporidian parasites used to assess the specificity of the SSRDb ISH assay ... 154
Figure 7.4 Scanning electron micrographs indicating the spore ornamentation of Minchinia occulta n. sp. infecting Saccostrea cucullata .. 155
Figure 7.5 Transmission electron micrographs (TEM) of spores from Minchinia occulta n. sp. infecting the rock oyster (Saccostrea cucullata) .. 156
Figure 8.1 The 40 L aquaria used during the cross infection trial ... 169
Figure 8.2 The algal cultures used in the project. Three different species (Chaetocero, Isochrysis and Pavlova) were used to maintain live pearl and rock oysters at Murdoch University ... 170
Figure 8.3 A section from a pearl oyster spat from Cascade Bay, King Sound assayed with a non-specific polynucleotide ISH .. 177
Figure 8.4 Transmission electron microscopy of the parasite detected in Pearl Oyster samples from Cascade Bay. CW denotes cell wall. N denotes a nucleus. Scale bar = 750 nm ... 178
Figure 8.5 Serial sections of tropical oyster mantle tissue containing a haplosporidian parasite .. 181
Figure 10.1 Sequence for Minchinia occulta submitted to GenBank (EF165631) with the target sequences for the probes and primers designed in the project .. 210
List of Tables

Table 2.1 Date, Location and number of pearl oysters collected and used in this study..35
Table 2.2 Location and number of rock oysters and tropical oysters collected and used for this study...............40
Table 2.3 The total number of rock oysters collected from each of the four Montebello Island sample sites...42
Table 2.4 Number of rock oysters taken from Cascade Bay, Willie Creek, Carnarvon and Koolan Island...44
Table 2.5 The number of rock oysters obtained from each of the different sampling sites in the Montebello islands and their treatment...47
Table 2.6 Numbers of rock oyster samples taken from Cascade bay, Willie creek and Carnarvon and the method used to store them...48
Table 3.1 Polymerase Chain Reaction primer sequences employed in the study...55
Table 3.2 The number of oysters sampled as well as the number of oysters diagnosed as positive from each of the sampling locations. Oysters were diagnosed by in situ hybridisation...65
Table 4.1 The sources of representative pathogens and host species used in the in situ hybridisation assays...77
Table 4.2 Polymerase Chain Reaction primer sequences employed in Chapter 4...79
Table 4.3 Comparison of histology, in-situ hybridisation (ISH) and PCR for detecting Minchinia sp. in 56 rock oysters...91
Table 4.4 Evaluation of each of the diagnostic assays; PCR and ISH relative to histology...93
Table 4.5 Evaluation of each of the diagnostic assays; Histology compared to ISH and PCR...93
Table 5.1 Primer sequences employed in Chapter 5...105
Table 5.2 Summary of number of samples tested and a comparison of results from PCR and ISH assays...111
Table 5.3 Summary of the major differences in the spores of the pearl oyster parasite and the rock oyster parasite ...130
Table 8.1 Experiments performed to transmit Minchinia occulta by cohabitation of infected rock oysters, uninfected rock oysters and uninfected pearl oysters...172
Table 8.2 Results of trials of experimental transmission of Minchinia occulta from infected rock oysters...174
Table 8.3 Results of assays for pearl oyster samples from Cascade Bay and Willie Creek...176
Table 8.4 Rock oyster (Saccostrea cuccullata) and tropical oysters (Saccostrea echinata) sampled from the previous infection sites of Haplosporidium hinei in pearl oysters and Koolan Island...179
Table 10.1 Primers used in the PCR reactions to attempt to obtain a sequence from the archived formalin fixed Haplosporidium hinei infected pearl oyster samples...211