Zinc Application and Its Availability to Plants

Ross F. Brennan

M.Sc. Agric. (Soil Science and Plant Nutrition) (UWA)

B.Sc. Agric. (Hon.) (Soil Science and Plant Nutrition) (UWA)

This thesis is presented for the Degree of Doctor of Philosophy of Murdoch University

School of Environmental Science, Division of Science and Engineering,

Murdoch University

2005
I declare that this thesis is my own work and contains as its main content, work which has not been submitted for a degree at any other tertiary institution.

R. F. Brennan
Summary of thesis

Globally, low zinc (Zn) soils are widespread, but one of the largest expanses of such soils is in south west Australia (WA). Early Zn research in the region determined how much fertiliser Zn was required for profitable production of spring wheat (*Triticum aestivum* L.) and subterranean clover (*Trifolium subterraneum* L), the major crop and pasture species at the time. The research showed that Zn sulfate and ZnO were equally effective Zn fertilisers, but ZnO was cheaper and so was widely used. The research indicated that in the year of application, depending on soil type, between 0.5-1.5 kg Zn/ha provided adequate Zn for the production of wheat and subterranean clover. The length of time that a single application of Zn fertiliser remains fully effective in maintaining the production of crops and pasture in future years (residual value; (RV)) had not been determined. This knowledge of the RV of Zn fertilisers is required for soils of WA. The experiments that measured the RV of fertiliser Zn for spring wheat and subterranean clover form the bulk of this thesis.

The soils in the region were also initially acutely phosphorus (P) deficient requiring the application of fertiliser P for profitable production. Single superphosphate was the P fertiliser initially used. It was manufactured locally using phosphate rock imported from Nauru and Christmas Islands. This phosphate rock also contained much Zn, and the single superphosphate manufactured from it contained 400-600 mg Zn/kg. At amounts of application needed to provide adequate P, the Zn-contaminated superphosphate also supplied about 90 g Zn/ha. Therefore, early field experiments measured the RV
of ZnO applied to soil when single superphosphate was applied annually at
>150 kg/ha. In these experiments, the RV of Zn was measured when different
amounts of fertiliser nitrogen (N) was applied. This was because it has recently
been very profitable to apply fertiliser N to wheat crops, which greatly
increased grain yields and so may have increased the demand for Zn, thereby
probably decreasing the RV of the original ZnO application. In these
experiments, there were many nil-Zn plots. In subsequent years, freshly-
applied ZnO amounts were applied to measure the RV of the original ZnO
treatments relative to the fresh Zn treatment. No Zn deficiency was detected for
up to 23 years after applying ZnO while applying superphosphate at >150 kg/ha
per year and for all amounts of N applied.
Subsequently cheap imported DAP fertiliser was used for wheat crops instead
of locally produced Zn-contaminated single superphosphate and urea. The
imported DAP contained about 50 mg Zn/kg (1/12 that of single
superphosphate). This new fertiliser strategy induced Zn deficiency in many
wheat crops. This led to further field studies to determine the RV of ZnO
fertiliser when DAP was applied. The experiments also included 2 Zn-
contaminated single superphosphate treatments. In one, no ZnO was applied,
and superphosphate was applied at >150 kg/ha per year to match the amount of
P applied as DAP to the other treatments. The other treatment was the same,
except 1.5 kg/ha Zn as ZnO was applied in the first year only. In subsequent
years, freshly-applied ZnO amounts were applied to measure the RV of the
original ZnO treatments relative to the fresh Zn treatment. Relative to freshly-
applied Zn in each year, the RV of the original ZnO treatments decreased as the length of time that the Zn was in contact with soil increased. However, the rate of decline in the RV was also found to differ with soil type, and was affected by soil pH, clay and organic carbon content of soil, and in alkaline soils with the calcium carbonate content of soil.

Parallel glasshouse studies measured the RV of Zn, as Zn sulfate, for wheat and subterranean clover, using many soils from WA and other Australian States. The glasshouse studies also showed that the rate of decline in the RV of the original Zn application varied markedly with soil type and was strongly influenced by soil pH, clay and organic carbon content of soil, and in the alkaline soils, the amount of calcium carbonate in soil.

In the above studies, the RV of fertiliser Zn was measured relative to freshly-applied Zn using yield of plants (shoots and grain for wheat, shoots for clover), Zn content in shoots and grain, and soil test Zn using the ammonium oxalate and DTPA procedures. In addition, Zn concentration in young tissue and rest of shoots (glasshouse studies) and young tissue and whole shoots (field studies) was measured, and Zn concentration related to 90 % of the maximum yield (critical Zn in plant parts) was determined. The studies showed that the DTPA soil test procedure, together with soil pH, and clay and organic matter content of soil, was an accurate prognostic test for indicating when Zn deficiency was likely in the next clover or wheat crop. The study confirmed that young tissue (youngest fully expanded leaves) provided critical plant test values for
diagnosing Zn deficiency in plants. The plant and soil tests for Zn are now used by commercial soil and tissue testing laboratories.

When Zn deficiency was diagnosed early in field grown wheat, Zn sprays can be applied to the crop foliage to prevent or minimise decreases in grain yields at the end of the growing season. Zn sulfate and Zn chelate are the most widely used compounds. This thesis reports the results of a field study to compare the effectiveness of the two compounds when the spray was applied at two growth stages of wheat (Gs14; seedling growth and Gs24; tillering). In addition, Zn applied with the seed while sowing the wheat crop was also included. Zinc applied to the soil while sowing was the most effective treatment. Zn chelate was more effective as a spray than Zn sulfate when applied at the earlier growth stage, but Zn sulfate was cheaper, and both sprays were equally effective when applied at the later growth stage.

Recently in the region, durum wheat (*T. durum* L.), narrow-leafed lupin (*Lupinus angustifolius* L.), yellow lupin (*L. luteus* L.), white lupin (*L. albus* L.), canola (*Brassica napus* L.), chickpea (*Cicer arietinum* L.), faba bean (*Vicia faba* L.) and lentil (*Lens culinaris* Medik) were all increasingly grown in rotation with spring wheat. Consequently, the Zn requirement of the new crops was compared with the Zn requirements of spring wheat. Species requiring less Zn than spring wheat to produce the same relative yield were faba bean, chickpea, albus lupin and canola; species requiring more Zn were lentil and durum wheat.
Spreadsheet models were developed to determine when re-application of fertiliser Zn was required for low and high production systems. Relative to freshly-applied Zn, the rate of decline in the RV of Zn applied in a previous year varied depending on the amount of Zn applied, time the Zn was in contact with soil since application, properties of the soil (soil pH, % clay, % organic carbon, % free calcium carbonate), plant species, and the amount of Zn removed in harvested grain or hay.

The thesis has culminated in a better understanding of Zn in the agricultural production systems of WA. The distribution and correction of Zn deficiency is now predictable for the many soil types and cropping systems of WA. Accurate identification of Zn deficiency for a range of crop and pasture species by plant analyses, typically the youngest mature leaf, is now possible for local conditions. With the calibration of the DTPA Zn soil test for soils of WA, particularly for wheat the major crop species grown in WA, prognosis of potential Zn deficiency can now be predicted before the appearance of Zn deficiency or loss in plant production.
Table of Contents

Summary of Thesis i
Table of Contents vi
List of Tables x
List of Figures xiii
Acknowledgments xvi
Publications xix

Chapter 1 Literature Review 1
 1.1 Essentiality of Zn 1
 1.2 Geographic Distribution of Zn deficient soils 3
 1.2.1 Distribution of Zn deficient soils in USA 4
 1.2.2 Distribution of Zn deficient soils in Asia 5
 1.2.3 Distribution of Zn deficient soils in Australia 5
 1.3 Zn in soils 6
 1.3.1 Introduction 6
 1.3.2 Total concentration 6
 1.3.3 Chemical behaviour of Zn in soils 7
 1.3.4 Soil solution Zn 10
 1.3.5 Sorption of Zn 13
 1.4 Zn in plants 20
 1.4.1 Introduction 20
 1.4.2 The absorption of Zn by roots 21
 1.4.3 Factors affecting plant Zn uptake 23
 1.4.4 Movement of Zn 28
 1.5 Diagnosis and prognosis of Zn deficiency 29
 1.5.1 Introduction 29
 1.5.2 Symptoms of Zn deficiency 30
 1.5.3 Diagnosis of Zn deficiency of plants by tissue analysis 32
 1.5.4 Biochemical assays 35
 1.5.5 Nutrient balances and ratios 36
 1.5.6 Measurements of plant available Zn by soil analysis 37
 1.6 Plant availability of Zn in soils 42
 1.6.1 Factors affecting the availability of Zn in soils to plants 42
 1.6.2 Zn concentration of soils 43
 1.6.3 Effects of restricted root zones and exposed subsurfaces on Zn uptake 43
 1.6.4 Root interception 44
 1.6.5 Effect of soil pH on the availability of Zn 45
 1.6.6 Effect of soil organic matter on Zn availability 47
 1.6.7 Effect of plant root exudates and soil micro-organisms on Zn availability 47
 1.6.8 Effect of plant species and varieties on Zn concentration 49
 1.6.9 Effect of soil temperature and light intensity on Zn availability 51
 1.6.10 Effect of soil moisture on Zn uptake 52
 1.7 Effect of farming practices on Zn status 54
1.7.1 Fertiliser practices 54
1.7.2 Edaphic constraints 55
1.7.3 Rotation effects 56
1.8. **Decline in availability of Zn with time** 56
1.8.1 Mechanisms of the decline in the availability of Zn with time 57
1.8.2 Observations of decline in availability of Zn in glasshouse and field studies 58
1.9 **Aims of this thesis** 59

Chapter 2 Reaction of Zinc with Soil and its Availability to Plants 62
2.1 **Subterranean clover** 62
2.1.1 Abstract 62
2.1.2 Introduction 63
2.1.3 Material and Methods 64
2.1.4 Results 68
2.1.5 Discussion 77
2.2 **Wheat** 81
2.2.1 Abstract 81
2.2.2 Introduction 82
2.2.3 Material and Methods 82
2.2.4 Results 86
2.2.5 Discussion 90

Chapter 3 The Effectiveness of Zinc Fertilisers 94
3.1 **Effectiveness of Zn for subterranean clover** 94
3.1.1 Abstract 94
3.1.2 Introduction 95
3.1.3 Material and Methods 96
3.1.4 Results 98
3.1.5 Discussion 103
3.1.6 Conclusion 104
3.2 **Effectiveness of Zn foliar sprays for wheat** 106
3.2.1 Abstract 106
3.2.2 Introduction 107
3.2.3 Material and Methods 107
3.2.4 Results 110
3.2.5 Discussion 115
3.2.6 Conclusion 119

Chapter 4 Residual Value of Zinc to Field Crops 120
4.1 **Residual value of Zn using single superphosphate** 120
4.1.1 Abstract 120
4.1.2 Introduction 121
4.1.3 Material and Methods 123
4.1.4 Results 126
4.1.5 Discussion 133
4.1.6 Conclusion 134
4.2 **Residual value of Zn for wheat using diammonium phosphate** 136
4.2.1 Abstract
4.2.2 Introduction
4.2.3 Material and Methods
4.2.4 Results
4.2.5 Discussion
4.2.6 Conclusion

Chapter 5 Residual Effectiveness of Zinc fertilizer in Soils
5.1 The vertical movement of Zn on sandy soils in southern WA
5.1.1 Abstract
5.1.2 Introduction
5.1.3 Material and Methods
5.1.4 Results
5.1.5 Discussion
5.2 Effect of soil properties on the relative effectiveness of applied Zn
5.2.1 Abstract
5.2.2 Introduction
5.2.3 Material and Methods
5.2.4 Results
5.2.5 Discussion

Chapter 6 Species Responses to Zinc Fertilisers
6.1 Comparing Zn requirements of *Lupinus angustifolius* and *L. luteus* for seed production
6.1.1 Abstract
6.1.2 Introduction
6.1.3 Material and Methods
6.1.4 Results
6.1.5 Discussion
6.2 Comparing grain legumes and wheat response to Zn
6.2.1 Abstract
6.2.2 Introduction
6.2.3 Material and Methods
6.2.4 Results
6.2.5 Discussion
6.3 Relative effectiveness of Zn for four crop species
6.3.1 Abstract
6.3.2 Introduction
6.3.3 Material and Methods
6.3.4 Results
6.3.5 Discussion
6.3.6 Conclusion

Chapter 7 General Discussion and Conclusions
7.1 Factors affecting the residual value of Zn in soils
7.2 Simple models for estimating the residual value of Zn
7.2.1 Case 1-No further additions of Zn and irreversible reactions
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.2 Case 2—Further additions of Zn and irreversible reactions</td>
<td>239</td>
</tr>
<tr>
<td>7.2.3 Case 3—Additions of Zn, irreversible reactions and removal in rotations</td>
<td>242</td>
</tr>
<tr>
<td>7.3 Further factors affecting the residual value of Zn</td>
<td>244</td>
</tr>
<tr>
<td>7.4 Some limitations of this research and suggestions for future work</td>
<td>247</td>
</tr>
</tbody>
</table>

Appendix 1
Appendix 2
References
List of Tables

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Table 1.1. The percentage distribution (%) of Zn in fractions of soils from a number of countries with varying cropping histories.</th>
<th>Page 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.2. Solubility of a range of Zn minerals, equilibrium reactions and log Ke values.</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Table 1.3. Some soil extractants and soil properties to improve soil tests for Zn for a range of crops.</td>
<td>41</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Table 2.1. Properties of soils used in glasshouse experiments. Also listed are the confidence intervals (CI) about the predicted DTPA Zn value (Ŷ).</th>
<th>Page 69</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.2. The effect of incubation and zinc application on the dry weight (g/plant) of clover shoots for selected soils from Appendix 1.</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Table 2.3. Statistical values of the coefficient of determination for the relationship between critical concentration of DTPA Zn and several soil properties of soils deficient in Zn for maximal growth of clover.</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Table 2.4. Multiple linear regression model for critical Zn levels and properties of soils. Only those deficient in Zn for maximal clover growth (Equation [1]) were included.</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Table 2.5. The confidence limits about each calculated DTPA Zn level for recommending Zn fertiliser.</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Table 2.6. Soil properties, DTPA extractable Zn levels (mg/kg) of the soil with no Zn applied and the observed and predicted critical DTPA extractable levels of soils calculated from Equation 3.</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Table 2.7. Multiple linear regression model for critical concentration of DTPA extractable soil Zn and several soil properties of soil deficient in Zn for maximal (grain and straw) growth of wheat (Equation [3]).</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Table 2.8. Evaluation of the DTPA soil test Zn in experimental field sites where soil properties were measured and critical DTPA Zn soil test values were determined for grain yield increases of wheat.</td>
<td>93</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>Table 3.1. Initial effectiveness (IE) of Zn applied to soils used in glasshouse experiments.</th>
<th>Page 97</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.2. Regression relationships between the initial effectiveness (IE) of Zn fertiliser measured by the dry weight of shoots (IE_DWS) and Zn content (IE_uptake) of clover and soil properties of Australian soils deficient in Zn.</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Table 3.3. The regression relationships between the initial effectiveness (IE) of applied Zn fertiliser measured by the level of DTPA extractable Zn (DTPA_{Zn}) and soil properties of Australia soils where (a) all factors were included and where (b) calcium carbonate was excluded.</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Table 3.4. Multiple linear models for IE of fertiliser Zn, where IE was determined by dry weight of shoots (DWS) of clover (IE_DWS), Zn content of clover shoots (IE_uptake) and the DTPA extraction of soil applied Zn (IE_DTPA).</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Table 3.5. The soil properties of the experimental sites (0-10 cm) and the wheat cultivars sown.</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Table 3.6. The effect of sources of Zn foliar spray on grain yield and relative effectiveness (RE) of Zn spray sources for grain yield of wheat grown on soils deficient in Zn (Experiments 1-3).</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>Table 3.7. The amount of Zn (g/ha) applied as a foliar spray to achieve 90% of the maximum yield for chelate and sulfate Zn applied at Gs14 and Gs24.</td>
<td>114</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 4</th>
<th>Table 4.1. The properties at the experimental sites in WA where Zn was applied at various amounts to measure wheat grain yield responses at sites where Zn fertiliser had been previously applied.</th>
<th>Page 126</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.2. Lake Grace-Newdegate district. Effect of nitrogen on wheat grain yield (t/ha),</td>
<td>128</td>
<td></td>
</tr>
</tbody>
</table>
and on Zn concentration in either the youngest emerged blade (YEB) or grain for Zn currently applied or applied 16-22 years previously.

Table 4.3. *Jerramungup district.* Effects on N on wheat grain yield (t/ha), and on Zn concentration in either the youngest emerged blade (YEB) or grain for Zn currently applied or applied 8-24 years previously.

Table 4.4. *Esperance district.* Effect on N on wheat grain yield (t/ha), and on Zn concentration in either the youngest emerged blade (YEB) or grain for Zn currently applied or applied 8-24 years previously.

Table 4.5. Values of the coefficients of the Mitscherlich equation fitted to the relationship between dry shoot dry matter (t/ha), Zn content (g/ha) of the dry matter and grain yield (t/ha) and the amount of Zn fertiliser applied with DAP.

Chapter 5

Table 5.1. Properties of the acid grey sand at site 1 and site 2 located east of Busselton (mean annual average rainfall 1100 mm).

Table 5.2. Effect of surface applied Zn as the soluble Zn sulfate on the extractable Zn and total Zn levels within a sand profile after 1225 mm of rain in 12 months.

Table 5.3. Effect of surface applied Zn sulfate on the ammonium oxalate and DTPA extractable Zn and total Zn levels (mg/kg) within a sand profile after 575 mm of rain in 4 months.

Table 5.4. Distribution of 65Zn applied either as a sulfate or oxide source, within a soil profile at different times since application; Experiment 2.

Table 5.5. The relative effectiveness (RE) measured by Zn uptake (RE$_{uptake}$), dry weight of shoots (RE$_{DWS}$) and DTPA extractable Zn (RE$_{DTPA}$) for soils used in glasshouse experiments.

Table 5.6. The range and mean of the relative effectiveness (RE) of incubated fertiliser Zn for clover grown on a range of Australian soils classified on the basis of soil pH$_{ca}$ and clay content (%).

Table 5.7. The statistical relationship among the soil properties and the RE of incubated Zn fertiliser determined from dry weight of clover shoots, Zn uptake or DTPA-Zn for a range of Australian soils.

Table 5.8. Multiple linear regression models for relative effectiveness (RE) of fertiliser Zn, where RE are based on dry weight of shoots (DWS) of clover shoots, Zn uptake of clover and soil DTPA extractable Zn.

Chapter 6

Table 6.1. Values of the coefficients of the Mitscherlich equation fitted to the relationship between grain yield (kg/ha) and the amount of Zn fertiliser applied and relative effectiveness (RE$_{Zn}$) and relative response (RR$_{species}$) values.

Table 6.2. Grain P concentration, expressed on dry basis, and Cd and Zn measured in grain for *L. angustifolius* cv. Gungurru, *L. luteus* cvv. Motiv and Teo.

Table 6.3. Soil classification, weight of soil used for each pot, and some properties of the top 10 cm of the < 4 mm fraction.

Table 6.4. Values of the coefficients of the Mitscherlich equation fitted to the relationship between yield of dried whole shoots (g/pot) and the amount of Zn applied (µg Zn/pot), and, for each soil, relative response (RR$_{species}$).

Table 6.5. Values of the coefficients of the linear equation fitted to the relationship between Zn content in dried whole shoots (µg Zn/pot) and the amount of Zn applied (µg Zn/pot). Numbers in brackets are standard errors (n = 3).

Table 6.6. Soil classification and some properties of the top 10 cm of the <4 mm fraction.

Table 6.7. Values of the coefficients of the Mitscherlich equation fitted to the relationship between yield of dried shoots (DWS) (g/pot) and the amount of Zn applied (µg Zn/pot), and for either current or incubated Zn response of each species relative to spring wheat (RR$_{species}$), and for each species, effectiveness (RE$_{Zn}$) of incubated Zn relative to current Zn.
Chapter 7

Table 7.1. **Case 1:** The hypothetical number of crops with a range of possible grain yields that can be grown on a neutral yellow brown sandy loam from Newdegate where the recommended Zn application for the soil type has been applied.

Table 7.2. **Case 2:** The hypothetical number of crops with a range of possible grain yields that can be grown on a neutral yellow brown sandy loam from Newdegate where the recommended Zn application for the soil type has been applied.

Table 7.3. **Case 3:** The hypothetical number of crops that can be grown in a pasture, wheat, lupin and canola rotation at two yield levels on a neutral yellow brown sandy loam from Newdegate where the recommended Zn application for the soil type has been applied. *Assume Zn additions in superphosphate.*
List of Figures

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td></td>
</tr>
<tr>
<td>Relationship between yield and nutrient concentration in plant tissue frequently found in plants as nutrient supply increases from deficient to toxic.</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td></td>
</tr>
<tr>
<td>The relationship between the relative yield of clover shoots grown on the responsive soils and the Zn concentration in youngest emerged blades (mg/kg) sampled at 30 days after seedling emergence.</td>
<td>71</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td></td>
</tr>
<tr>
<td>The relationship between the relative yield of clover shoots grown on the responsive soils and the Zn concentration in youngest emerged blades (mg/kg) sampled at mid-flowering.</td>
<td>71</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td></td>
</tr>
<tr>
<td>The relationship between the relative yield of clover shoots grown on the responsive soils and the Zn concentration in youngest emerged blades (mg/kg) sampled at 30 days after seedling emergence.</td>
<td>72</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td></td>
</tr>
<tr>
<td>The relationship between the relative dried yield of shoots and ammonium oxalate soil extractable Zn (mg/kg) for both the freshly applied and incubated Zn for a sand and a sandy clay loam</td>
<td>73</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td></td>
</tr>
<tr>
<td>The relationship between DTPA soil extractable Zn (mg/kg) for both the freshly applied and incubated Zn and the relative for dried yield of shoots (%) for a sand and a sandy clay loam.</td>
<td>73</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td></td>
</tr>
<tr>
<td>The simple linear relationship between DTPA soil critical level (mg/kg) and the clay content of the soil.</td>
<td>74</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td></td>
</tr>
<tr>
<td>The simple linear relationship between DTPA soil critical level and the soil pH value measured in calcium chloride.</td>
<td>75</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td></td>
</tr>
<tr>
<td>The relationship between the percentage maximum dry weight of wheat shoots and the Zn concentration in the youngest fully emerged blade (YEB) sampled at Gs16.</td>
<td>86</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td></td>
</tr>
<tr>
<td>The linear regression relationships between the critical DTPA Zn and (a) the soil pH<sub>Ca</sub>, (b) the clay content (%) and (c) the organic carbon content (%) of the responsive soils.</td>
<td>88</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td></td>
</tr>
<tr>
<td>The relationship between the critical DTPA Zn soil test for wheat and the critical DTPA soil test value for clover where both plant species were grown on the same soil.</td>
<td>92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 3.1</td>
<td></td>
</tr>
<tr>
<td>The relationship between the initial effectiveness of Zn measured by dry weight of shoots (IE<sub>DWS</sub>) and DTPA extractable Zn (mg/kg) for the nil Zn soil.</td>
<td>101</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td></td>
</tr>
<tr>
<td>The simple linear relationship between soil pH<sub>Ca</sub> and the initial effectiveness of Zn measured by dry weight of shoots (♦) and Zn content of shoots (■).</td>
<td>101</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td></td>
</tr>
<tr>
<td>The simple linear relationship between clay content and the initial effectiveness of Zn measured by dry weight of shoots (♦), Zn content of shoots (■) and DTPA extractable Zn.</td>
<td>102</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td></td>
</tr>
<tr>
<td>The relationship between soil pH<sub>Ca</sub> and the initial effectiveness of Zn measured by DTPA extractable Zn</td>
<td>102</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td></td>
</tr>
<tr>
<td>The effect of sources of Zn foliar spray on the grain yields of wheat grown on Zn-deficient soils at site 1 (a and b), site 2 (c and d) and site 3 (e and f). The earlier Zn spray was applied at Gs14 (a, c, e); the later treatment at Gs22-24 (b, d, f).</td>
<td>111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 4</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 4.1</td>
<td></td>
</tr>
<tr>
<td>The relationship between (a) shoot dry matter, (b) Zn uptake of shoots and (c) grain yield and the amount of Zn applied with DAP for wheat grown in</td>
<td>145</td>
</tr>
</tbody>
</table>
1996 when Zn as ZnO was applied in 1983 (■), 1990 (▲), and 1996 (♦).

Figure 4.2 The relationship between the effectiveness of Zn applied as ZnO with DAP in each year for shoots (♦) and grain yield (■) relative to the effectiveness of Zn applied in the current year (residual value or RV$_{Zn}$) and length of time since the Zn fertilizer had been applied to the soil.

Figure 4.3 The relationship between (a) dried shoots and Zn concentration in the YEB, (b) grain yield and Zn concentration in the YEB, and (c) grain yield and Zn concentration in the grain for wheat grown in 1996 when Zn was applied in 1983 (■), 1990 (▲), and 1996 (♦).

Chapter 5

Figure 5.1 The relationship between the percentage maximum dry matter production of clover (yield of dried young tissue + yield of the rest of shoots) and (a) the Zn concentration in the youngest open blade and (b) the Zn concentration in the rest of shoots of clover plants at 28 days after seeding.

Figure 5.2 The simple linear regression between RE of incubated Zn fertiliser for dry weight of clover shoots and the soil pH$_{c_5}$.

Figure 5.3 The simple linear regression between RE of incubated Zn fertiliser for dry weight of clover shoots and the clay content of soil.

Figure 5.4 The relationship between the soil pH$_{c_5}$ for a range of soils and the relative effectiveness of Zn as measured by Zn content in clover shoots.

Figure 5.5 The relationship between the clay content of soils and the relative effectiveness of Zn as measured by Zn in clover shoots (RE$_{uptake}$).

Figure 5.6 The relationship between the relative effectiveness of incubated Zn as measured by DTPA extractable Zn and the soil pH$_{c_5}$.

Figure 5.7 The relationship between the relative effectiveness (RE) determined by Zn uptake and the RE determined by dry weight of shoots and the RE determined by DTPA Zn.

Chapter 6

Figure 6.1 The relationship between grain yield and the amount of Zn applied for three lupin varieties: (a) _L. angustifolius_ cv. Gungurru, (b) _L. luteus_ cv. Teo; and (c) _L. luteus_ cv. Motiv. grown in 1997 when Zn was applied in 1983 (♦), 1986 (▲), and 1997 (■).

Figure 6.2 Decline in effectiveness of Zn applied in each of the previous years relative to the effectiveness of Zn applied in the current year (residual value or RV$_{Zn}$) for wheat and three lupin varieties (a) _L. angustifolius_ cv. Gungurru, (b) _L. luteus_ cv. Motiv, and (c) _L. luteus_ cv. Teo.

Figure 6.3 The relationship between the percentage maximum grain yield and Zn concentration in the grain of _L. angustifolius_ cv. Gungurru, _L. luteus_ cv. Motiv, and _L. luteus_ cv. Teo.

Figure 6.4 Relationship between yield of dried whole shoots and the amount of Zn applied (µg Zn/pot), when yield is expressed as absolute yield (g/pot) (a & c) or as a percentage of the maximum (relative) yield (c & d), for the Kumarl soil (a & b) and the Ney soil (c & d).

Figure 6.5 Relationship between the Zn content in dried whole shoots (µg Zn/pot) and the amount of Zn applied (µg Zn/pot) for (a) lentil, (b) faba bean, (c) wheat and (d) chickpea grown on the Kumarl (♦) and Ney (■) soils.

Figure 6.6 Relationship between percentage of the maximum (relative) yield of dried whole shoots and the concentration of Zn in dried young tissue for faba bean, lentil, chickpea and wheat grown on Kumarl and Ney soils.

Figure 6.7 Relationship between yield of dried shoots for (a) spring wheat, (b) durum wheat, (c) canola and (d) albus lupin and the amount of Zn applied either before or after incubation, for the Kumarl soil and the Ney soil.
Figure 6.8 Relationship between percentage of the maximum (relative) yield of dried shoots of (a) spring wheat, (b) durum wheat, (c) canola and (d) albus lupin grown on 2 soils and the concentration of Zn in dried young tissue (new growth, YMG) and the Zn concentration in whole shoots

Chapter 7

Figure 7.1 The soil-Zn system with possible additions and losses to this system for soils of WA.
Acknowledgments

I am grateful to those people that have been involved in this research and the individual agency projects of which it was part. My greatest debts are to my teachers, John Gartrell and Alan Robson who made it possible to undertake research full time, for their help, assistance and advice in glasshouse and field work. I am grateful to Richard Bell (principal supervisor) for his assistance, invaluable advice and his encouragement. I am also grateful to Mike Bolland for his keen interest, his enthusiasm for research, publications and keeping me motivated during the time of this research.

My sincere thanks to the Department of Agriculture of WA, to the cereal nutrition project for support and the Grain Research and Development Corporation that funded many aspects of this work.

I would like to gratefully thank the farmers who allowed me the use of often large areas of their land, for various field trials that continued for many years. The contribution that these experimental sites have made to the knowledge of Zn nutrition of crop species (wheat, lupin) will possibly never be repeated for other plant species.

Chapters 2 to 6 are based on a series of papers that have been accepted by a range of scientific journals during the course of this work. The principal author of each of these papers is myself and I am joined by a number of co-authors. These people provided advice on the writing, editing and review of these papers. The individual experimental procedures, data processing and
interpretation have been my own scientific work.

The role played by various co-authors of the following in individual chapters is acknowledged:

John Gartrell was my initial work supervisor and the initial funds for the work were obtained through his efforts and submission to the State Wheat funding body, so for those efforts is a joint author to the paper on which Chapter 3 is based.

John McGrath for the opportunity to research Zn mobility in high rainfall forest soils of WA. The selection of the site was made by John McGrath, formally of the Department of Conservation and Land Management, and one of his experiments on Zn was soil sampled, so for those opportunities is a joint author to the paper forming part of Chapter 5.

Michael Bolland for the selection of the site and discussion on design and on management of long-term experiments, so for this help is a joint author to the work reported in Chapter 6.1. Greg Shea was the initial provider of funds for the work which were obtained through his management and submission to the Lupin Productivity project (within Department of Agriculture of WA), so for those efforts is a joint author to the work comprising Chapter 6.1. Michael Bolland for the selection of the soils and discussion on experimental design is a joint author to the papers comprising Chapter 6.2 and 6.3. Mohammed Siddique was the provider of funds, which were obtained, through his management and submission to the Pulse Productivity project (within
Department of Agriculture of WA) so for those efforts is a joint author to the paper that comprises Chapter 6.2.

The comments of anonymous reviewers and referees of papers comprising Chapter 2 to 6 are gratefully acknowledged, as are comments by the examiners of this thesis.

Finally, I thank my family and friends for their support and patience.
Publications

The publications listed below form the basis for the major part of this thesis.

