Encroachment of sandplain heathland (kwongan) by *Allocasuarina huegeliana* in the Western Australian wheatbelt: the role of herbivores, fire and other factors

Kellie Anne Maher B.Sc./B.Sc.(Hons)

This thesis is presented for the degree of Doctor of Philosophy

School of Environmental Science

Murdoch University

August 2007
I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution.

Kellie Maher
Abstract

Kwongan, also known as sandplain heathland, occurs in remnant vegetation throughout the fragmented landscape of the Western Australian wheatbelt. This vegetation community has high levels of species richness and endemism, and is of high conservation value. In many vegetation remnants in the wheatbelt the native tree species Allocasuarina huegeliana (rock sheoak) is expanding out from its normal range and encroaching into kwongan. A. huegeliana may ultimately dominate the kwongan, causing a decline in floristic diversity. Altered disturbance regimes, particularly the absence of fire and reduced or absent browsing mammal herbivores, are likely to be responsible for causing A. huegeliana encroachment.

This study used experimental and observational data from patches of kwongan in three Nature Reserves in the central and southern wheatbelt to investigate the role of fire, native mammal activities and interactions between these two factors in shaping A. huegeliana woodland–kwongan community boundaries. Investigations were carried out into the characteristics of encroaching A. huegeliana populations; the environmental factors affecting the extent of encroachment, naturally recruited juveniles, and seedling emergence and establishment; historical and current abundances of native mammals; and the effects of mammal herbivores on seedling establishment during inter-fire and post-fire periods.

Results from this study confirm that A. huegeliana has encroached into kwongan throughout the wheatbelt region and recruitment appears likely to continue in most areas. Few of the environmental factors measured in this study affected the extent of
encroachment, the locations of naturally recruited *A. huegeliana* juveniles, and seedling germination and establishment. Western grey kangaroos (*Macropus fuliginosus*) browsed extensively on seedlings, which largely prevented them from establishing in open areas of kwongan. However, numerous *A. huegeliana* seedlings escaped browsing herbivores by establishing in perennial shrubs, where they appeared to be tolerant of increased levels of inter-specific competition.

There was no native mammal common to all three Reserves that declined around the time that *A. huegeliana* encroachment most likely began in the 1970s. In addition, tammar wallabies (*Macropus eugenii*) had little effect even where their densities were high. It is therefore unlikely that the decline of an individual mammal species initiated encroachment. *A. huegeliana* encroachment appears to be driven by increased propagule pressure, which is in turn caused by increased inter-fire intervals. Long periods of time without fire have enabled fire-sensitive *A. huegeliana* trees to produce increasing quantities of seed that are continuously released into kwongan. A range of other factors may interact synergistically with this process to affect encroachment and these are also discussed. This study considered the implications of these findings for management of remnant vegetation in fragmented landscapes, particularly kwongan in the Western Australian wheatbelt, and areas for further research are suggested.
Acknowledgements

Many thanks to my supervisors, Richard Hobbs and Colin Yates, for their encouragement, guidance, enthusiasm and support throughout this thesis.

This research was made possible by a Postgraduate Research Scholarship from Land and Water Australia (LWA) and additional funding from Murdoch University. I would like to thank LWA for the opportunity to undertake this research and for their inspiring postgraduate workshops and the other LWA postgrads for their support.

Thanks to my friends and colleagues in the Ecosystem Restoration Laboratory and School of Environmental Science for their encouragement and technical support. In particular I would like to thank Rachel Standish and Viki Cramer for reviewing several chapters of this thesis and for their support. I am also grateful to Matt Williams of the Department of Environment and Conservation for statistical advice.

This research would not have been possible without the efforts of the people who assisted me on countless field trips. I would like to thank J.P. Dijkstra, Lillian Maher, Kim Maher, Erin Maher, Josh Byrne, Greg Priest, Rebecca Ovens, Rebecca Dillon, Duncan Sutherland, Amy Jo Vickery, Wendy Thompson, Rowan Gallagher, and Lisa Maher for their company, sense of humour and dedication to repetitive tasks.

My heartfelt thanks to my partner, family and friends for supporting me throughout the PhD process, for going above and beyond the call of duty when I needed a field assistant, and for graciously putting up with my lack of time, attention and sociability.
Table of Contents

Abstract ... ii
Acknowledgements .. iv
Table of Contents ... v
List of Tables .. x
List of Figures ... xii

Chapter 1: General introduction .. 1

Chapter 2: Population and patch characteristics ... 13
 2.1 Introduction .. 14
 2.2 Methods and materials ... 16
 2.2.1 Study species ... 16
 2.2.2 Study sites .. 17
 2.2.2 Stem density, plant size and population structure 21
 2.2.3 Effects of patch characteristics on the extent of encroachment ... 23
 2.3 Results .. 24
 2.3.1 Stem density and plant size .. 24
 2.3.2 Population structure .. 25
 2.3.3 Effects of patch characteristics on the extent of encroachment... 27
 2.4 Discussion .. 30

Chapter 3: Historical abundances of native mammals and patterns of decline since European settlement ... 40
 3.1 Introduction .. 41
 3.2 Early observations of mammal abundance ... 43
 3.3 Patterns of mammal decline .. 46
Chapter 6: Effects of perennial shrubs and herbivore exclusion on seedling establishment during inter-fire intervals .. 86

6.1 Introduction ... 87

6.2 Methods and materials .. 88
 6.2.1 Study sites... 88
 6.2.2 Effects of herbivore exclusion and perennial shrubs on seedling emergence and survival (sown seed) .. 89
 6.2.3 Effects of herbivore exclusion and perennial shrubs on survival, growth and browsing of planted seedlings (green-stock) 91

6.3 Results .. 92
 6.3.1 Effects of herbivore exclusion and perennial shrubs on seedling emergence and survival (sown seed) .. 92
 6.3.2 Effects of herbivore exclusion and perennial shrubs on survival, growth and browsing of planted seedlings (green-stock) 96

6.4 Discussion... 103

Chapter 7: Environmental factors affecting seedling establishment 111

7.1 Introduction ... 112

7.2 Methods and materials .. 114
 7.2.1 Study sites... 114
 7.2.2 Environmental characteristics of locations where seeds and seedling were planted.. 114
 7.2.3 Factors affecting seedling emergence and survival (sown seeds)115
 7.2.4 Factors affecting the growth, survival and browsing of planted seedlings (green-stock).. 116

7.3 Results .. 118
 7.3.1 Factors affecting seedling emergence and survival (sown seed)118
 7.3.2 Factors affecting the growth, survival and browsing of planted seedlings (green-stock).. 122

7.4 Discussion... 130
Chapter 8: Effects of individual mammal herbivore species on seedling establishment during inter-fire intervals .. 136

8.1 Introduction ... 137

8.2 Methods and materials .. 139

8.2.1 Study site .. 139
8.2.2 Exclosure design ... 139
8.2.3 Herbivore presence .. 141
8.2.4 Effects of herbivore exclusion on seedling emergence and survival (sown seed) ... 141
8.2.5 Effects of herbivore exclusion on the survival, growth and browsing of planted seedlings (green-stock)............................ 143

8.3 Results .. 144

8.3.1 Herbivore presence .. 144
8.3.2 Seedling emergence and survival (sown seed) 144
8.3.3 Growth, survival and browsing of planted seedlings (green-stock)144

8.4 Discussion ... 151

Chapter 9: Effects of herbivore exclusion on seedling recruitment following fire ..
.. 155

9.1 Introduction ... 156

9.2 Methods and materials .. 158

9.2.1 Study site .. 158
9.2.2 Effects of herbivore exclusion on seedling density and height . 158

9.3 Results .. 160

9.3.1 Effects of herbivore exclusion on seedling density and height . 160

9.4 Discussion ... 161
Chapter 10: General discussion

10.1 Summary of chapters

10.2 Conceptual model of Allocasuarina huegeliana encroachment

10.3 Study limitations and further research directions

10.3.1 Impacts of encroachment on kwongan

10.3.2 Patch-scale characteristics

10.3.3 Soil analyses

10.3.4 Effects of fire and post-fire browsing in kwongan

10.4 Other potential causal factors of encroachment

10.4.1 Climate change

10.4.2 Altered hydrology

10.4.3 Increased atmospheric carbon dioxide (CO₂)

10.4.4 Reduced abundance of seed predators

10.5 Problems associated with conserving dynamic ecosystems

10.6 Need for management of remnant vegetation in the wheatbelt

References
List of Tables

Table 2.1: Characteristics of the 12 patches of kwongan invaded by *Allocasuarina huegeliana* in three Nature Reserves. .. 21

Table 2.2: Characteristics of the *Allocasuarina huegeliana* populations in 12 patches of kwongan in three Nature Reserves. ... 25

Table 2.3: Size distribution types of *Allocasuarina huegeliana* populations in 12 patches of kwongan at three Nature Reserves and the parameter estimates (standard error) for the intercepts and slopes (standard error) of the log-linear relationship between the number of individuals and size class. For significant relationships: \(P < 0.01^{**}, P < 0.05^{*} \).. 27

Table 2.4: Results from linear regression analyses between patch-scale characteristics and extent of *Allocasuarina huegeliana* encroachment (stem density and plant height) in twelve patches of kwongan. For significant relationships: \(P < 0.01^{**}, P < 0.05^{*} \). ... 28

Table 2.5: Results from ANOVA analyses between soil type (yellow sand, grey sand or duplex) and extent of *Allocasuarina huegeliana* encroachment (stem density and plant height) in twelve patches of kwongan. For significant relationships: \(P < 0.01^{**}, P < 0.05^{*} \). ... 28

Table 3.1: Local Government Shires and former Districts that Durokoppin, Dongolocking and Tutanning Nature Reserves are located in, and nearby Shires/Districts.. 44

Table 3.2: The common and indigenous names of some of the mammal species observed by settlers in the Western Australian wheatbelt (from Strahan 1995). 47

Table 4.1: Results from the ANOVA investigating the effects of the reserves and patches on the abundance of mammal herbivore scats among eight patches of kwongan at three Nature Reserves. For significant relationships: \(P < 0.01^{**}, P < 0.05^{*} \). ... 66

Table 5.1: Results from univariate logistic regression analyses between the presence/absence of *Allocasuarina huegeliana* juveniles and the biotic and abiotic factors measured at each location. For significant relationships: \(P < 0.01^{**}, P < 0.05^{*} \)... 80

Table 5.2: Results from the Pearson correlation indicating significant inter-correlation between the predictive environmental variables. Variables were considered to be highly inter-correlated where \(P < 0.05 \) and \(r \geq 0.70^{*} \). 81

Table 5.3: Results from the multiple logistic regression analysis between the presence/absence of *Allocasuarina huegeliana* juveniles and biotic and abiotic factors, including the factors significant to the model. For significant relationships: \(P < 0.01^{**}, P < 0.05^{*} \)... 81
Table 6.1: Results from the ANOVA investigating the effects of the reserves and treatments on *Allocasuarina huegeliana* seedling emergence and survival (sown seeds). For significant relationships: $P < 0.01^{**}$, $P < 0.05^*$. .. 93

Table 6.2: Results from the ANOVA investigating the effects of the reserves and treatments on browsing, height growth, and survival of planted *Allocasuarina huegeliana* seedlings (green-stock). For significant relationships: $P < 0.01^{**}$, $P < 0.05^*$. ... 98

Table 7.1: Results from ANCOVA models investigating the effects of the environmental variables, reserves and treatments on *Allocasuarina huegeliana* seedling emergence (sown seed). For significant relationships: $P < 0.01^{**}$, $P < 0.05^*$. .. 119

Table 7.2: Results from ANCOVA models investigating the effects of the environmental variables, reserves and treatments on *Allocasuarina huegeliana* seedling survival (sown seed). For significant relationships: $P < 0.01^{**}$, $P < 0.05^*$. .. 120

Table 7.3: Results from the Pearson correlation between *Allocasuarina huegeliana* seedling height growth, survival and the percentage of seedlings browsed (green-stock) and the predictive environmental variables. Variables were considered to be highly inter-correlated where $P < 0.05$ and $r \geq 0.70^*$. .. 125

Table 7.4: Results from the ANCOVA models investigating the effects of the environmental variables, reserves and treatments on the percentage of *Allocasuarina huegeliana* seedlings browsed (green-stock). For significant relationships: $P < 0.01^{**}$, $P < 0.05^*$. ... 126

Table 7.5: Results from the ANCOVA models investigating the effects of the environmental variables, reserves and treatments on *Allocasuarina huegeliana* seedling growth (green-stock). For significant relationships: $P < 0.01^{**}$, $P < 0.05^*$. .. 127

Table 7.6: Results from the ANCOVA models investigating the effects of the environmental variables, reserves and treatments on *Allocasuarina huegeliana* seedling survival (green-stock). For significant relationships: $P < 0.01^{**}$, $P < 0.05^*$. .. 128

Table 8.1: Results from the ANOVA investigating the effects of the locations, treatments, vegetation cover and their interactions on *Allocasuarina huegeliana* seedling emergence and survival (sown seeds) in a patch of kwongan at Tutanning Nature Reserve. For significant relationships: $P < 0.01^{**}$, $P < 0.05^*$. 147

Table 8.2: Results from the ANOVA investigating the effects of the locations, treatments, vegetation cover and their interactions on browsing, height growth and survival of planted *Allocasuarina huegeliana* seedlings (green-stock) in a patch of kwongan at Tutanning Nature Reserve. For significant relationships: $P < 0.01^{**}$, $P < 0.05^*$. ... 147
List of Figures

Figure 1.1: Diagram of thesis structure, order of the chapters and key questions. ... 12

Figure 2.1: Photograph of a patch of kwongan at Tutanning Nature Reserve showing the sharp boundary between the kwongan (foreground) and A. huegeliana woodland (background) communities. ... 18

Figure 2.2: Satellite image of southwest Western Australia showing the extent of the wheatbelt region (light grey), areas of native vegetation (dark grey), and the location of three Nature Reserves studied. .. 20

Figure 2.3: The percentage frequencies of Allocasuarina huegeliana individuals in each stem size class (pooled across all quadrats and transects) in 12 patches of kwongan at three Nature Reserves ... 29

Figure 2.4: Photographs of isolated A. huegeliana trees that have established in kwongan. .. 31

Figure 2.5: Photograph showing extensive A. huegeliana encroachment in kwongan at Tutanning 6 ... 33

Figure 3.1: Location of the Local Government Shires within the Western Australian wheatbelt (Wheatbelt Development Commission n.d.) .. 44

Figure 4.1: Mean number of scats deposited by each mammal herbivore species, per hectare, per day, in eight patches of kwongan at three Nature Reserves. 66

Figure 5.1: Scatter plots of the actual occurrence (y-axis: 0.00 = juvenile plant absent 1.00 = juvenile plant present) and predicted probability curves of Allocasuarina huegeliana juveniles in relation to: (a) perennial vegetation cover; (b) mean distance to three nearest perennial plants; and (c) distance to nearest fruit-bearing tree. 82

Figure 6.1: Photographs of the three treatments (left to right): no vegetation cover, fenced area with no vegetation cover and perennial shrub cover. A grid of 100 Allocasuarina huegeliana seeds and 10 A. huegeliana seedlings were planted in each treatment ... 90

Figure 6.2: Mean percentage of Allocasuarina huegeliana seedlings emerged from seed sown in areas with no vegetation cover, fenced areas with no vegetation cover, and areas with perennial shrub cover at three Nature Reserves. Bars indicate standard errors. ... 94

Figure 6.3: Mean survival of Allocasuarina huegeliana seedlings (sown seed) in areas with no vegetation cover, fenced areas with no vegetation cover, and areas with perennial shrub cover at three Nature Reserves. Bars indicate standard errors. 94
Figure 6.4: Mean *Allocasuarina huegeliana* seedling survival (sown seeds) from June–July 2005 and at the end of each season until March 2007, in areas with no vegetation cover, fenced areas with no vegetation cover, and areas with perennial shrub cover at (a) Durokoppin, (b) Dongolocking and (c) Tutanning Nature Reserves. ... 95

Figure 6.5: Mean percentage of *Allocasuarina huegeliana* seedlings browsed (green-stock) in areas with no vegetation cover, fenced areas with no vegetation cover, and areas with perennial shrub cover at three Nature Reserves. Bars indicate standard errors. ... 98

Figure 6.6: Mean *Allocasuarina huegeliana* seedling height growth (green-stock) in areas with no vegetation cover, fenced areas with no vegetation cover, and areas with perennial shrub cover at three Nature Reserves. Bars indicate standard errors. 99

Figure 6.7: Mean *Allocasuarina huegeliana* seedling survival (green-stock) in areas with no vegetation cover, fenced areas with no vegetation cover, and areas with perennial shrub cover at three Nature Reserves. Bars indicate standard errors. 99

Figure 6.8: Mean percentage of *Allocasuarina huegeliana* seedlings browsed from planting (green-stock) in June 2005 and at the end of each season until March 2007, in areas with no vegetation cover, fenced areas with no vegetation cover, and areas with perennial shrub cover at (a) Durokoppin, (b) Dongolocking and (c) Tutanning Nature Reserves... 100

Figure 6.9: Mean *Allocasuarina huegeliana* seedling height from planting (green-stock) in June 2005 and at the end of each season until March 2007, in areas with no vegetation cover, fenced areas with no vegetation cover, and areas with perennial shrub cover at (a) Durokoppin, (b) Dongolocking and (c) Tutanning Nature Reserves. ..101

Figure 6.10: Mean *Allocasuarina huegeliana* seedling survival from planting (green-stock) in June 2005 and at the end of each season until March 2007, in areas with no vegetation cover, fenced areas with no vegetation cover, and areas with perennial shrub cover at (a) Durokoppin, (b) Dongolocking and (c) Tutanning Nature Reserves. ..102

Figure 7.1: Environmental variables recorded within 0.5 × 0.5 m quadrats located around grids where *Allocasuarina huegeliana* seeds were sown in areas with no vegetation cover and perennial shrub cover at three Nature Reserves. The environmental variables included (a) perennial cover, (b) litter cover, (c) annual cover, (d) pH, (e) gravel and (f) clay. Bars indicate standard errors.121

Figure 7.2: Environmental variables recorded within 0.5 × 0.5 m quadrats located around *Allocasuarina huegeliana* seedlings (green-stock) planted in areas with no vegetation cover and perennial shrub cover at three Nature Reserves. The environmental variables included (a) perennial cover, (b) distance to neighbours, (c) litter cover, (d) annual cover, (e) pH, (f) gravel and (g) clay. Bars indicate standard errors. ..129
Figure 8.1: Diagram of a set of exclosures and adjacent unfenced area, indicating the mammal herbivores that were excluded from, or had access to, each treatment area including (a) \(-K +W +R \), (b) \(-K -W -R \), (c) \(-K +W +R \) and (d) \(+K +W +R \) (n = 3 sets). ..140

Figure 8.2: Total number of kangaroo and tammar wallaby scats found from June 2005 to February 2007, in four treatments at three locations in a patch of kwongan at Tutanning Nature Reserve. K = kangaroo, W = tammar wallaby and R = rabbit, and +/− indicates where herbivores are included or excluded from the treatment.148

Figure 8.3: Percentage of *Allocasuarina huegeliana* seedlings emerged from seed sown in areas with no vegetation cover and perennial shrub cover, within four treatments at three locations in a patch of kwongan at Tutanning Nature Reserve. K = kangaroo, W = tammar wallaby and R = rabbit, and +/− indicates where herbivores are included or excluded from the treatment. ... 148

Figure 8.4: Percentage survival of *Allocasuarina huegeliana* seedlings (sown seed) in areas with no vegetation cover and perennial shrub cover, within four treatments at three locations in a patch of kwongan at Tutanning Nature Reserve. K = kangaroo, W = tammar wallaby and R = rabbit, and +/− indicates where herbivores are included or excluded from the treatment. ... 149

Figure 8.5: Mean percentage of *Allocasuarina huegeliana* seedlings browsed (green-stock) in areas with no vegetation cover and perennial shrub cover, within four treatments at three locations in a patch of kwongan at Tutanning Nature Reserve. K = kangaroo, W = tammar wallaby and R = rabbit, and +/− indicates where herbivores are included or excluded from the treatment. Bars indicate standard errors.............149

Figure 8.6: Mean *Allocasuarina huegeliana* seedling height growth (green-stock) in areas with no vegetation cover and perennial shrub cover, within four treatments at three locations in a patch of kwongan at Tutanning Nature Reserve. K = kangaroo, W = tammar wallaby and R = rabbit, and +/− indicates where herbivores are included or excluded from the treatment. Bars indicate standard errors..................................... 150

Figure 8.7: Mean *Allocasuarina huegeliana* seedling survival (green-stock) in areas with no vegetation cover and perennial shrub cover, within four treatments at three locations in a patch of kwongan at Tutanning Nature Reserve. K = kangaroo, W = tammar wallaby and R = rabbit, and +/− indicates where herbivores are included or excluded from the treatment. Bars indicate standard errors..................................... 150

Figure 9.1: Mean seedling height (at two and a half years), inside and outside two exclosures located in an *Allocasuarina huegeliana* woodland burned in April 2004 at Boyagin Nature Reserve. ... 160

Figure 9.2: Mean seedling density (at two and a half years), inside and outside two exclosures located in an *Allocasuarina huegeliana* woodland burned in April 2004 at Boyagin Nature Reserve. ... 161

Figure 9.3: Photographs of Exclosure 1 (October 2005) in an area of *Allocasuarina huegeliana* woodland at Boyagin Nature Reserve burned in April 2004. Top: the exclosure fence line. Middle: *A. huegeliana* seedlings inside the exclosure. Bottom:
(directly adjacent to the exclosure) limited *A. huegeliana* recruitment outside the
exclosure..165

Figure 10.1: Conceptual diagram of *Allocasuarina huegeliana* encroachment into
kwongan and the changes in structure and composition that is likely to occur over
time as the community progresses from kwongan shrubland to *A. huegeliana*
woodland in the absence of fire. The first three boxes encompass the transitions
covered in this thesis. The solid arrows indicate possible changes to the community if
fire and selective browsing by herbivores (following fire) were to occur at the
different stages of development. The lower two boxes are largely speculative and the
dashed arrows indicate totally speculative transitions. ...172