The relation between distress-risk, B/M and return.
Is it consistent with rational pricing?

By Kaylene Zaretzky
(B.Comm. Hons.)

This thesis is presented for the degree of Doctor of Philosophy of
Murdoch University
2004
Declaration and list of papers published

I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution.

Kaylene Zaretzky

The following conference papers have been published from the thesis:

Abstract

Fama and French (1995, 1996) argue that the high-minus-low (HML) book-to-market (B/M) factor in their 1993 three-factor model is a proxy for a distress-risk return premium and that the model is consistent with rational pricing. Alternative views are that the HML premium is caused by irrational behaviour or market inefficiencies. Dichev (1998) finds that high distress-risk firms have low, not high, B/M and earn low returns. He also finds a systematic relation between the distress-risk characteristic and return, independent of the B/M characteristic. The effect of differences in the methodology used by Fama and French (1995) and Dichev (1998) has not been examined. In addition, there is no evidence of whether a distress-risk return premium is important in describing returns.

Examination of the characteristics and returns of sorted distress-risk portfolios shows that most high distress-risk, positive book-equity NYSE-AMEX firms do have high B/M. However, for both the NYSE-AMEX and NASDAQ, small firms with high distress-risk have low B/M ratios. A positive relation between distress-risk and return is not found for either NYSE-AMEX or NASDAQ firms. A distress-minus-solvent (DMS) return premium constructed using Fama and French (1993) methodology is negative and significant. Regression results show that both the HML and the DMS factors are important in describing the time-series of returns. However, the HML factor is of only marginal importance when examining sorted distress-risk portfolio returns. In addition, the HML coefficients are related to the B/M characteristic, rather than distress-risk, when both sorted distress-risk and characteristic-balanced portfolio returns are examined.

The combined evidence suggests that HML cannot be interpreted as a return premium related to financial distress. However, a systematic relation does exist between distress-risk and return. The evidence supports a market inefficiency or irrational
behaviour, rather than a risk based explanation of asset returns. Investors pay too much for financially distressed firms and subsequently earn low returns.
CONTENTS

DECLARATION AND LIST OF PAPERS PUBLISHED ... I
ABSTRACT .. II
LIST OF TABLES .. VII
ACKNOWLEDGEMENTS ... X

CHAPTER 1 INTRODUCTION ... 1

1.1 **BACKGROUND** ... 1
1.2 **RESEARCH PROBLEM** .. 2
1.3 **RESEARCH QUESTIONS** ... 4
1.4 **IMPORTANCE OF THE RESEARCH** ... 5
1.5 **OUTLINE OF METHODOLOGY** ... 7
1.6 **SUMMARY OF RESULTS** .. 10
1.7 **LIMITATIONS** ... 12
1.8 **OUTLINE OF THESIS** ... 13

CHAPTER 2 LITERATURE REVIEW AND DEVELOPMENT OF RESEARCH QUESTIONS .. 15

2.1 **INTRODUCTION** ... 15
2.2 **ASSET PRICING MODELS** .. 17
2.3 **EMPIRICAL TESTING OF THE CAPM AND THE ZERO-BETA CAPM** 24
2.4 **EMPIRICAL TESTS OF THE APT AND THE ICAPM** 30
2.5 **POTENTIAL ANOMALIES TO THE CAPM & THE EFFICIENT MARKET HYPOTHESIS** 34
2.6 **THE ROLE OF B/M AND SIZE CHARACTERISTICS IN DESCRIBING RETURNS** 49
2.7 **THE FAMA AND FRENCH THREE-FACTOR MODEL** 52
2.8 **EXPLANATION FOR THE SIZE AND B/M FACTORS** 55
2.9 **FINANCIAL DISTRESS PREDICTION MODELS** .. 60
2.10 **DEVELOPMENT OF RESEARCH QUESTIONS – THE DISTRESS-RISK EXPLANATION** 69
2.11 **ALTERNATIVE EXPLANATIONS FOR THE SIZE AND B/M FACTORS** 87
2.12 **OUT-OF SAMPLE EVIDENCE REGARDING THE SIZE AND B/M FACTORS** 102
2.13 **HAVE THE SIZE AND B/M EFFECTS DISAPPEARED?** 103
2.14 **CONDITIONAL MODELS OF ASSET RETURNS** .. 105
2.15 **SUMMARY** ... 106
APPENDIX .. 338

APPENDIX 1. FINANCIAL DISTRESS PREDICTION MODELS ... 339
APPENDIX 2. INDUSTRY RELATIVE MODELS ... 341
APPENDIX 3. 1ST AND 99TH PERCENTILE VALUES ... 343
APPENDIX 4. PORTFOLIO-YEARS IN INTERSECTING QUINTILE PORTFOLIOS 344
APPENDIX 5. CORRELATION RESULTS ... 345
APPENDIX 6. SURVIVOR BIAS IN FIVE-YEAR SUB-SAMPLE .. 346
APPENDIX 7. CHANGE IN B/M AS DISTRESS-RISK INCREASES 350
APPENDIX 8. PORTFOLIO RETURNS – WITH AND WITHOUT INCLUSION OF DELISTING
RETURNS ... 372
APPENDIX 9. RETURN PREMIA – WITH AND WITHOUT DELISTING RETURNS 381
APPENDIX 10. SINGLE FACTOR MODEL, DISTRESS-RISK DECILES 387
APPENDIX 11. ‘ALL FIRMS’ DISTRESS-RISK DECILE REGRESSIONS 388
APPENDIX 13. INTERSECTING QUINTILE PORTFOLIO CHARACTERISTICS 395
APPENDIX 14. INTERSECTING QUINTILE PORTFOLIO RETURNS 402

BIBLIOGRAPHY ... 403
List of Tables

Table 3.1. Ohlson model variables... 115
Table 3.2. Altman model variables... 116
Table 3.3. Tracking-portfolios formed... 121
Table 3.4. Allocation of firms – quintile portfolios... 122
Table 3.5. Intersecting size, B/M and distress-risk portfolios......................... 129
Table 3.6. Expected sign for factor loadings... 148
Table 4.1. Ability of Ohlson’s (1980) o-score and Altman’s (1968) z-score to classify firms by relative distress-risk .. 154
Table 4.2. Ability of B/M to classify firms on the basis of relative distress-risk ... 157
Table 4.3. Distribution of firm-years where book-equity is negative, across distress-risk deciles... 159
Table 4.4. Percentage of negative book-equity firms years in each distress-risk decile.. 160
Table 4.5. Size and distress-risk characteristics – negative book-equity firms/high distress-risk, positive book equity firms............................... 162
Table 4.6. Percent of NYSE-AMEX firm-years and NASDAQ firm-years in each ‘All Firms’ sorted distress-risk portfolio................................ 169
Table 4.7. Portfolio attributes of distress-risk deciles...................................... 171
Table 4.8. Spearman Rank correlation: size and BM within distress-risk decile 1... 177
Table 4.9. Portfolio attributes of distress-risk (pos) portfolios....................... 180
Table 4.10. Five years standardised B/M - tracking-portfolios...................... 191
Table 4.11. Equal- and value-weighted return – negative book-equity firms/high distress-risk positive book-equity firms............................. 200
Table 4.12. Portfolio returns of distress-risk deciles...................................... 203
Table 4.13. Portfolio returns of distress-risk (pos) deciles............................. 209
Table 4.14. Return premia earned by zero investment strategies 1 through 4 - distress-risk deciles... 216
Table 4.15. Return premia earned by zero investment strategies 1 through 4 -
distress-risk (pos) deciles

Table 4.16. Return premia earned by size and B/M balanced investment
strategy 5

Table 4.17. Correlation between SMB, HML and DMS factor premia

Table 4.18. Regression results – Distress-risk deciles

Table 4.19. Regression results – Intersecting quintile portfolios

Tables in Appendices

Table A1.1. Financial distress prediction models

Table A3.1. 1st and 99th percentile values for o-score, z-score and B/M

Table A4.1. Three-way intersecting portfolios: portfolio-years with ten or fewer
years-firms

Table A4.2. Pair-wise intersecting portfolios: minimum and maximum
number of firms

Table A5.1. Spearman rank correlation

Table A6.1. Test of survivor bias: Mean B/M - High distress-risk firms
without five years of data

Table A7.1.1. Average number of firms in each O-score tracking-portfolio

Table A7.1.2. Average O-score distress-risk (pos) decile that firms
appeared in, (t-4) to (t)

Table A7.1.3. Five years standardised market-equity - O-score tracking-
portfolios

Table A7.1.4. Five years standardised book-equity - O-score tracking-
portfolios

Table A7.1.5. Five years standardised trimmed B/M - O-score tracking-
portfolios

Table A7.1.6. Five years standardised Bv/Mv - O-score tracking-portfolios

Table A7.2.1. Average number of firms in each Z-score tracking-portfolio

Table A7.2.2. Average Z-score distress-risk (pos) decile that firms
appeared in, (t-4) to (t)
Table A7.2.3. Five years standardised market-equity - Z-score tracking-	368
portfolios..	
Table A7.2.4. Five years standardised book-equity - Z-score tracking-	369
portfolios..	
Table A7.2.5. Five years standardised trimmed B/M - Z-score tracking-	370
portfolios..	
Table A7.2.6. Five years standardised Bv/Mv - Z-score tracking-portfolios	371
Table A8.1. Number of firms with delisting returns by exchange...............	372
Table A8.2. Distress-risk decile returns – with and without delisting returns	374
Table A8.3. Distress-risk (pos) decile returns - with and without delisting	378
returns..	
Table A9.1. Return premia: zero investment strategies 1 through 4 - distress-	381
risk deciles, with and without delisting returns..	
Table A9.2. Return premia: zero investment strategies 1 through 4 - distress-	384
risk (pos) deciles, with and without delisting returns...............................	
Table A9.3. Return premia earned by size and B/M balanced strategy 5,	386
with and without delisting returns...	
Table A10.1. Regression results – Single factor model distress-risk deciles	387
Table A11.1. Regression results – ‘All Firms’ distress-risk deciles.............	388
Table A12.1. Average returns – Fama and French size-B/M portfolios............	392
Table A12.2. Regression results – Fama and French size-B/M portfolios and	394
factor premia...	
Table A13.1. Intersecting quintile portfolio characteristics........................	400
Table A14.1. Intersecting quintile portfolio returns......................................	402
Acknowledgements

I would like to thank all of the people who have assisted me to complete this thesis. Of particular note are my supervisors, Professor J. Kenton Zumwalt and Dr. Mark Krueger. Mark set me on the path to reaching this goal and has continued to be involved with the thesis, although no longer at Murdoch University. Kent has provided me with the guidance and assistance required to complete the project and I am very grateful that he has been able see it through to the end. I would like to thank Grant Cullen, Ray Petridis, Sanjay Ramchander, Rob Schwebach and Kannan Srinivasan for their constructive comments and Steve Zaretzky for proof reading. I also wish to thank all conference participants and the participants at the AAANZ Doctoral Colloquium for their helpful feedback. The Murdoch Business School has provided me with the required financial support and facilities to complete the project. I thank all members of the staff at Murdoch Business School for their constant encouragement and support through this process. In particular I would like to thank Grant Cullen, Dominic Gasbarro, Marion Griffiths, Phil Hancock, Izan and Kim Song-Le for their flexibility with teaching arrangements, allowing me to devote time to the thesis, Phil Hancock and Paul Flatau for their role in organising funding and Stacey Porter and Greg Tower for their constant encouragement. Finally and most importantly, I thank my family and friends, in particular Steve, Rebecca and Jackie, for their support and patience over the last six years. Without their understanding the final goal would never have been reached.