Convergent Close-Coupling Calculations of Positron-Helium Collisions

This thesis is presented for the degree of Doctor of Philosophy

by

Huayou Wu (B.Sc., M.Sc. P.R.China)

Division of Science and Engineering
Murdoch University

January 2004
Declaration

I declare that this thesis is my own account of my research and contains as its main content, work which has not previously been submitted for a degree at any tertiary education institution.

..

Huayou Wu
The Convergent Close Coupling (CCC) method is applied, for the first time, to the scattering of positrons on helium. The helium target wave functions are obtained within various configuration interaction (CI) expansions. In the full CI expansion the two electrons are treated equally and thus all electron-electron correlations are taken into account. In the frozen-core (FC) approximation the CI expansion fixes one of the electrons to be described by a pure 1s orbital of He$^+$, while maintaining the required singlet and triplet symmetries. Lastly, the multi-configuration (MC) approximation relaxes the FC approximation to allow the description of the inner electron to include several low-lying orbitals and is therefore more accurate than the FC approximation. The accuracy of the target wave functions is tested by comparing the calculated energy levels with the experimental data.

Based on positron-hydrogen scattering, comprehensive close-coupling formulas for positron-helium scattering are developed. The reduced two-centre V-matrix elements are derived in momentum space for various channels. These include direct, excitation and rearrangement channels, i.e. positronium formation.

We first consider low energy positron-helium elastic scattering for energies below the positronium formation threshold of 17.8 eV. Utilizing a single-centre expansion the elastic cross section and phase shifts have been calculated as a function of the positron incident energy. The calculations agree very well with the experimental data and the variational calculations, but not previous single-
or double-centre close-coupling calculations.

We then consider energies above the first ionization threshold (24.6 eV) and calculate helium elastic, excitation, fragmentation and total cross sections within the single-centre expansion approach. Good agreement with the available experimental and other theoretical results has been obtained.

The studies have proved that a single-centre expansion, with accurate target state description, can deliver accurate data of practical value over a broad range of energies. However in the low-energy region, between the positronium formation threshold of 17.8 eV and the ionization threshold of 24.6 eV, implementation of the two-centre expansion is required. We expect this work to be undertaken in the near future, based on the derivations presented in this thesis.
ACKNOWLEDGEMENTS

Many people have offered great help for my PhD project. First of all my sincere thanks go to my principal supervisor Professor Andris Stelbovics who introduced me to the field of positron-atom scattering. The rather extensive derivations for the positron-helium scattering formalism would have been impossible without his detailed guidance coupled with great patience and encouragement. I wish I could have stayed for longer time so that I could learn even more from him.

I was so lucky to be co-supervised by Professor Igor Bray who pushed me through the last computational stages to the final goal. Without his help, the final numerical calculations would have not been possible. I was particularly impressed by his great enthusiasm in doing physics research.

Many thanks to the assistance given by Dr. Dmitry Fursa, Dr. Alisher Kedyrov and Dr. Andrey Lugovskoy. The constant encouragement by Professor Jim Williams in University of Western Australia is very much appreciated. Dr. Peter Hayes’ friendly help at the early stage of the programming is acknowledged.

I give special thanks to my husband Dehong who has been the first reader of my thesis. His many valuable suggestions helped a lot in writing up my thesis. His encouragement, understanding and support have been essential. I am indebted to my two lovely sons, Howard and Aolei. I also give special thanks to Howard for his understanding, independence and looking after his little brother while I was working on my thesis.
My grateful thanks go to all the physics staff and my friends in Murdoch University, for their various help at different stages.

The award of a Murdoch University Research Studentship is much appreciated. Support of the Merit Allocation Scheme on the National Facility of the Australian Partnership for Advanced Computing is gratefully acknowledged.

Finally, I would like to dedicate my thesis to my father who passed away six months before the submission of the thesis. His everlasting spirit has guided me through my difficult times.
CONTENTS

1. **Introduction** ... 1
 1.1 Close-Coupling Approximation 5
 1.2 Kohn Variational Method ... 9
 1.3 The Born and Distorted-Wave Born approximations 12
 1.4 Convergent Close-Coupling (CCC) method 14

2. **Helium atomic structure** ... 16
 2.1 CI approximation to helium structure 18
 2.1.1 Helium configurations 18
 2.1.2 Helium target states 21
 2.2 Helium atomic structure ... 24

3. **Close Coupling Formalism for Positron-helium Scattering** 26
 3.1 Scattering Formalism .. 27
 3.2 Direct momentum space potential $V_{\alpha'\alpha}$ 32
 3.3 Direct transition $V_{\beta'\beta}$ 36
 3.4 Rearrangement $V_{\alpha\beta}$ 38

4. **Low energy positron-helium elastic scattering** 46
Contents

4.1 Introduction ... 46

4.2 Helium target states .. 47

4.3 V-matrix .. 49

4.4 Results and discussions .. 50
 4.4.1 Frozen core approach 50
 4.4.2 Multi-configuration core approach 54

5. $e^+\text{-He}$ at intermediate to high energies 61
 5.1 Introduction ... 61
 5.2 Calculations ... 63
 5.3 Total scattering cross section 64
 5.4 Fragmentation cross section 66
 5.5 Elastic and excitation cross sections 67

6. Conclusion ... 71

Appendix .. 74

A. Properties of some special functions 75
 A.1 Properties of Spherical Harmonics 75
 A.2 Some properties of Legendre Polynomials 80
 A.3 A property of Laguerre Polynomial 81
 A.4 Identities involving plane waves 81
 A.5 Contraction of 3-j symbols 82
B. Derivation of Expression (2.10) ... 83

B.1 Expressions (2.10) ... 83

B.1.1 Triplet Spin $s = 1, \mu = -1,0,1$ 83

B.1.2 Singlet spin $s = 0, \mu = 0$... 87

B.1.3 Expressions (2.10) .. 88

C. Formulas and matrix elements involving $\frac{1}{r_{12}}$ 91

C.1 Expansion of $\frac{1}{r_{12}}$... 91

C.2 The matrix element $\langle l'_{1}l'_{2}m'_{1}m'_{2} \mid \frac{1}{r_{12}} \mid l_{1}l_{2}m_{1}m_{2} \rangle$ 92

C.3 The matrix element $\langle (l'_{1}l'_{2})l'm' \mid \frac{1}{r_{12}} \mid (l_{1}l_{2})lm \rangle$ 93

C.4 The reduced matrix element $\langle (l'_{1}l'_{2})l' \mid \frac{1}{r_{12}} \mid (l_{1}l_{2})l \rangle$ 96

D. Appendix to Chapter 3 ... 97

D.1 Derivation of (3.25) .. 97

D.2 Expansion of $V_{\beta\beta}$... 102

D.3 Expansion of $V_{\alpha\beta}$... 106

D.3.1 Potential matrix in momentum space 109

D.3.2 Partial wave reductions for $V_{\alpha\beta}$ 112