Modeling Intra-Daily Implied Volatility in Forecasting Options Price

Ariful Hoque*

In this paper, we introduce intra-daily implied volatility (IDIV) model based on volatility is implied from options price at intra-daily level. We investigate whether the IDIV forecasts currency options price more accurately than standard estimates of volatility. The implied volatility (IV) and realized volatility (RV) are widely accepted as good estimates of daily and intra-daily price volatility, respectively. Therefore, using the options pricing framework, we assess the capability of IDIV against IV and RV in forecasting currency options price. The comparison of out-of-sample forecasts under both the F-test and Diebold-Mariano test reveals that the IDIV outperforms both the IV and the RV to forecast one-day-ahead options price.

Keywords: intra-daily implied volatility, implied volatility, realized volatility, options price forecasting

JEL Classification: G13, G14

1. Introduction

To properly forecast currency options price, an accurate measure of foreign exchange (FX) volatility is crucial. The implied volatility (IV) is widely used as a good estimate of FX volatility for pricing options. However we believe that the daily level IV weakens the ability to capture the complete intraday information, which is essential for accurately forecasting options price. This study therefore introduce intra-daily implied volatility (IDIV) to obtain whole trading day market aggregate information to price one-day-ahead options price with higher accuracy.

In the early research, using data from currency options, Scott and Tucker (1989) find that IV derived from currency options captures nearly 50 percent of the actual currency volatility. When historical volatility is included in the investor’s information set, the authors find no evidence of improved predictive accuracy. Jorion (1995) examines the predictive power of IV for the German mark, the Japanese yen and the Swiss franc against the U.S. dollar, traded in the Chicago Mercantile Exchange. Jorion’s results suggest that IV outperforms statistical time-series models in terms of information content and predictive power, but it appears to be upwardly biased estimator of future volatility. Xu and Taylor (1995) examine the informational efficiency of the currency options market in the Philadelphia Stock Exchange. They studied four currencies (the British pound, the German mark, the Japanese yen and the Swiss franc against the U.S. dollar) over the period ranging from January 1985 to January 1991.

*Murdoch Business School, Murdoch University, South Street, Perth, Australia. E-mail: a.hoque@murdoch.edu.au.
They find that option prices contain incremental information about future volatilities. Christoffersen and Mazzotta (2005) use over-the-counter (OTC) currency options prices and find that the IV provides largely unbiased and fairly accurate forecasts of one-month-ahead and three-month-ahead actual volatility. Chang and Tabak (2007) present evidence that the IV in option prices contains information that is not present in past returns for the Brazilian exchange rate against the U.S. dollar.

The above-mentioned studies involving IV often find that all the relevant information for FX volatility prediction can be found in the options price. However, we argue that IV holds the discrete information of the FX movement for the specific time of the trading day and is therefore insufficient for estimating accurate options price. For example, the IV based on the closing options price information of trading day \(t \) might not be an appropriate performance measurement to forecast the opening or midday options price of trading day \(t+1 \). Therefore, we developed the IDIV model to capture the intra-daily level aggregate information related to FX behavior, which changes every five minutes, to correctly estimate the one-day-ahead currency options price.

This study provides two major contributions to the literature. First, while IV is widely used to measure FX volatility, to the best of our knowledge, IDIV has not yet been explored to obtain FX volatility to forecast options price. Second, Pong et al. (2004) show that a forecast based on RV provides superior accuracy relative to a forecast based on IV. Martin and Zein (2004) present similar results for equity and commodities in addition to currency. It is inappropriate to compare, however, the forecasting capability of RV and IV since both of these are constructed with different levels of data. This study evaluates the performance differences between RV and IDIV, based on the same level of intra-daily FX return.

We find that IDIV outperforms IV for pricing next trading day options. Further the outstanding performance of IDIV against RV substantiates its ability for pricing option. This also indicates that the RV contains intra-daily historical information that is not as appropriate for accurately forecasting price options as the information obtained from the IDIV. The paper is organised as follows: Section 2 presents the research methodology, Section 3 describes the data used in this study, Section 4 provides the empirical analysis and Section 5 concludes the paper.

1.0. Methodology

This study's methodology is divided into two stages: (i) estimate the IDIV, IV and RV; (ii) forecast options price using volatilities in stage (i) as input for the pricing model and measure forecast pricing error.

2.1. Estimate Volatilities

The following sub-sections discuss the IDIV, IV and RV estimation methods used in this study.

Intra-daily implied volatility

To calculate IDIV, first we obtain implied volatility at intra-daily level using equations (A5) and (A6) from appendix for call (C) and put (P) option, respectively. The annualized IDIV is computed as in equation (1):

\[
\sigma_t^{IDIV} = \sum_{i=1}^{n} w_{C,i} \sigma_{C,i} + w_{P,i} \sigma_{P,i},
\]
(1)
where \(n \) is the total number of intervals between 9:30 AM to 4:00 PM of trading day \(t \). In equation (1), \(w_{c,i} \) and \(w_{p,i} \) denote the call and put intra-daily level implied volatility weight, respectively, for the 5-min interval. For each interval, \(w_{c,i} \) is calculated as the total number of call transactions divided by the sum of the total number of call and put transactions (i.e. the total number of call \(\div \) (total number of call + total number of put)). Similarly, for each interval \(w_{p,i} \) is calculated as the total number of put transactions divided by the sum of the total number of call and put transactions (i.e. total number of put \(\div \) (total number of call + total number of put)). The sum of \(w_{c,i} \) and \(w_{p,i} \) is equal to 1.

Implied volatility

Gospodinov et al. (2006) suggest that an unbiased IV can be extracted from near-the-money options. DATASTREAM provides the call implied daily volatility \(\sigma_{c,t} \) and put implied volatility \(\sigma_{p,t} \), which are interpolated using the nearest at-the-money (ATM) two options series, one above and one below the underlying FX in the financial system software developed by MB Risk Management (MBRM). MBRM developed the world-famous UNIVERSAL Add-ins®. With 30,000+ users worldwide, UNIVERSAL Add-ins is the most widely-used derivative software for the pricing, risk management, trading, arbitrage, fund management and auditing of securities, options, futures and swaps in the convertible, fixed income, commodities, energy, equities, foreign exchange and money markets (see more at website http://www.mbrm.com). Jorion (1995) computes IV as the arithmetic average that is obtained from the two closest ATM call and put options. Thus, this study estimates the annualized IV on any given day \(t \) as the arithmetic average of \(\sigma_{c,t} \) and \(\sigma_{p,t} \),

\[
\sigma_t^{IV} = \frac{\sigma_{c,t} + \sigma_{p,t}}{2}. \tag{2}
\]

Realized volatility

The RV is constructed by summing the squared intra-day returns sampled at a particular frequency. The optimal frequency for constructing RV is unknown. Following the standard practice, the RV series is constructed using a 5-min sampling frequency. If \(S_i \) is the exchange rate for the 5-min sampling frequency, the underlying exchange rate return in the 5-min interval is estimated as:

\[
r_t = \ln \left(\frac{S_t}{S_{t-1}} \right).
\]

The realized variance of day \(t \) is computed as:

\[
v_t = \sum_{i=1}^{n} r_t^2,
\]

Where \(n \) is the total number of intervals from 9:30 AM to 4:00 PM for the trading day. Since RV is the standard deviation of the realized variance, the annualized RV for the trading day \(t \) is:

\[
\sigma_t^{RV} = \sqrt{Dv_t}, \tag{3}
\]

where \(D \) is 252 trading days per year consistent with the normal assumption of the options market.
2.2. Measure Forecast Pricing Error

To forecast one-day-ahead opening, midday and closing C and P option price, equation (4) is developed using the MATLAB built-in function “blsprice” which embeds equations (A1) and (A2) from appendix,

\[[C, P]^m_t = \text{blsprice}(S_t, X_t, R^d_t, T, \sigma^m_{t-1}, R^f_t), \]

(4)

where, \(m = \text{IDIV, IV, RV} \).

Further, if \(\pi_t \) denotes the difference between the forecasted options price and market options price, the mean square pricing error for \(n \) number of observations is

\[\text{MSPE}_j = \frac{1}{n} \sum_{t=1}^{n} \pi^2_{t,j}, \]

where \(j = C, P \).

Next, the F-test is modeled as:

\[F^{\text{JDIV}}_j = \frac{\text{MSPE}^j_{\text{DIV}}}{\text{MSPE}^j_{\text{DIV}}}, \]

(5)

where, \(j = \text{IV, RV} \). The null hypothesis \(H_0: \text{MSPE}^j_{\text{DIV}} = \text{MSPE}^j_{\text{DIV}} \) is tested against the alternative hypothesis \(H_A: \text{MSPE}^j_{\text{DIV}} > \text{MSPE}^j_{\text{DIV}} \).

The MSPE criterion under F-test compares options price forecasting performance of IDIV against IV and RV. Therefore, it is important to test whether the pricing errors of IDIV is statistically different from that of IV and RV. Diebold and Mariano (1995) proposed a test statistic that there is no difference in the accuracy of two competing forecasts. In the Diebold and Mariano (DM) test, the mean differential loss from \((\pi^l_{t,j})^2 \) and \((\pi^{\text{DIV}}_{t,j})^2 \) is estimated as:

\[\bar{d} = \frac{1}{n} \sum_{t=1}^{n} \left| (\pi^l_{t,j})^2 - (\pi^{\text{DIV}}_{t,j})^2 \right|. \]

Under the null hypothesis of the accuracy of the equal one-day-ahead pricing error, the value of \(\bar{d} \) is zero. The DM statistic is given by:

\[\text{DM}^{\text{JDIV}}_j = \frac{\bar{d}}{\sqrt{\text{var}(\bar{d})}}, \]

(6)

where, \(\text{var}(\bar{d}) = \frac{1}{n-1} \text{var}(d_t) \). Equation (6) follows a t-distribution with \((n-1) \) degrees of freedom.

2.0. Data Descriptions

This study includes the six major currency options for the Australian dollar (AUD), the Canadian dollar (CAD), the Swiss franc (CHF), the Euro (EUR), the British pound (GBP) and the Japanese yen (JPY) are obtained from options price reporting authority (OPRA). The sample period starts from 21/12/2009 for all currency except AUD, which is started from 21/06/2010. The difference in start dates is due to the unavailable of the AUD put-call pair from 21/12/2009 (Monday) to 18/06/2010 (Friday). However, the sample periods for all the currency in this study end on 27/05/2011. Consequently, the AUD sample period includes 238 trading days,
whereas the remaining currency options are sampled for 362 trading days. In this study, the intra-daily and daily data are obtained from SIRCA and DATASTREAM, respectively. The intra-daily data from the SIRCA database consists of call, put, strike and spot price transactions at 5-min intervals from 9:30 AM to 4:00 PM of the trading day. The daily data obtained from DATASTREAM consist of the daily nearest ATM call and put implied volatility and the risk-free closing domestic and foreign interest rates. The daily nearest ATM strike and spot price is also obtained in order to assess the quality of the daily DATASTREAM interpolated implied volatility for call (call-IV) and implied volatility for put (put-IV).

3.0. Empirical Analysis

Empirical analysis is carried out into three steps: (i) forecast one-day-ahead opening, midday and closing options price as in equation (4); (ii) conduct an F-test by equation (5) to examine the MSPE equality for IDIV against IV and RV; (iii) DM-test is performed using equation (6) to determine whether MSPE for IDIV is statistically different from that of IV and RV.

Table 1 provides an analysis of the IV and IDIV opening, midday and closing options price forecasting errors as noted in Panels A, B and C, respectively. The results are presented as the ‘call MSPE equality test’ (Columns 2 to 4), the ‘put MSPE equality test’ (Columns 5 to 7) and the DM-test (Columns 8 and 9). For all the currency listed in Panel A, the F-values in Columns 4 and 7 indicate that $\text{MSPE}_{\text{C}}^{\text{IV}}$ (Column 2) and $\text{MSPE}_{\text{P}}^{\text{IV}}$ (Column 5) are larger than $\text{MSPE}_{\text{C}}^{\text{DIV}}$ (Column 3) and $\text{MSPE}_{\text{P}}^{\text{DIV}}$ (Column 6), respectively. Under the DM-test, the T-stat values (i.e. T-statistic) for the call and the put in Columns 8 and 9 reveal that $\text{MSPE}_{\text{C}}^{\text{IV}}$ and $\text{MSPE}_{\text{P}}^{\text{IV}}$ are statistically different from $\text{MSPE}_{\text{C}}^{\text{DIV}}$ and $\text{MSPE}_{\text{P}}^{\text{DIV}}$, respectively. Furthermore, the positive T-stat values suggest that $\text{MSPE}_{\text{C}}^{\text{IV}}$ and $\text{MSPE}_{\text{P}}^{\text{IV}}$ have a greater value than $\text{MSPE}_{\text{C}}^{\text{DIV}}$ and $\text{MSPE}_{\text{P}}^{\text{DIV}}$, respectively. Panel B and Panel C provide similar results for all the sample currency. The consistent findings in the series of F-tests and DM-tests for the opening, midday and closing prices across the six major currency options confirm that the FX forecasting capability of IDIV is better than the FX forecasting capability of IV for pricing one-day-ahead options.
Table 1: IV and IDIV price forecasting error analysis

<table>
<thead>
<tr>
<th>Currency</th>
<th>call MSPE equality test</th>
<th>put MSPE equality test</th>
<th>DM-test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MSPE<sub>c</sub></td>
<td>MSPE<sub>IDIV</sub></td>
<td>F-value</td>
</tr>
<tr>
<td>Panel A: opening price</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHF</td>
<td>7.6913</td>
<td>7.6468</td>
<td>1.0058</td>
</tr>
<tr>
<td>Panel B: midday price</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUD</td>
<td>7.1359</td>
<td>7.0492</td>
<td>1.0122</td>
</tr>
<tr>
<td>EUR</td>
<td>17.8007</td>
<td>17.7213</td>
<td>1.0045</td>
</tr>
<tr>
<td>Panel C: closing price</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAD</td>
<td>5.6911</td>
<td>5.6625</td>
<td>1.0051</td>
</tr>
<tr>
<td>CHF</td>
<td>6.6487</td>
<td>6.6249</td>
<td>1.0036</td>
</tr>
<tr>
<td>GBP</td>
<td>18.3212</td>
<td>18.1856</td>
<td>1.0075</td>
</tr>
</tbody>
</table>

Notes: MSPE denotes the mean square pricing error. T-stat representing the T-statistic of DM-test. F-test critical value is 1 for the F-distribution with more than 120 degrees of freedom for both numerator and denominator.

Next, the RV and IDIV opening, midday and closing options price forecasting error analysis results are given in Panels A, B and C, respectively (Table 2). The data population structure of Table 2 is the same as Table 1. For all the currency in Panels A, B and C, the F-test results show that MSPE_C^{RV} and MSPE_P^{RV} have a larger value than MSPE_C^{IDIV} and MSPE_P^{IDIV}, respectively. We found similar results using the DM-test. The F-test and DM-test results are consistent across the six major currency options, which implies that IDIV outperforms RV for forecasting FX volatility for the next-day options price.
Table 2: RV and IDIV price forecasting error analysis

<table>
<thead>
<tr>
<th>Currency</th>
<th>call MSPE</th>
<th>put MSPE</th>
<th>call T-stat</th>
<th>put T-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IDIV</td>
<td>DIV</td>
<td>equality test</td>
<td>equality test</td>
</tr>
<tr>
<td></td>
<td>MSPE call</td>
<td>MSPE put</td>
<td>F-value</td>
<td>MSPE call</td>
</tr>
</tbody>
</table>

Panel A: opening price

Panel B: midday price

Panel C: closing price

Notes: See the notes of Table 1.

5.0. Conclusion

Estimating FX volatility for pricing next trading day options is critical. In the literature, the IV is considered to be a good estimator of exchange rate volatility. Since the IV contains information for the specific time of the trading day, the IDIV is modeled to accurately capture intra-daily trading day information to forecast options price. The IDIV and IV are used as inputs for the Merton version of the Black-Scholes model, which is used to estimate the one-day-ahead options price. The MSPE for IDIV and IV is calculated as the difference between the options market price and the options forecasted price using IDIV and IV, respectively. Under the F-test and the DM-test, the smaller MSPE for IDIV indicates that IDIV outperforms IV for pricing options.

The options price forecasting performance differences between IDIV and IV might be arguable since the IDIV and the IV contain different levels of market information, that is, intra-daily and daily level information, respectively. To address this argument, the RV is used as benchmark to compare the forecasting power of IDIV for pricing options. The RV is constructed based on FX returns for 5-min intervals, intra-daily level data. For both the F-test and the DM-test confirm that IDIV is also superior to RV for pricing options since the MSPE for RV has a larger value relative to the value of the MSPE for IDIV.

We believe that the IDIV model adds a new dimension for options market volatility to the literature. Traders can take advantage of this by using IDIV to accurately forecast pricing options. Researchers can use these IDIV insights to further study options market volatility. Since currency options mature on the third Friday of each month, IDIV options pricing performance needs to be examined for a one-month horizon to
substantiate the performance of IDIV against IV and RV for forecasting options price. We have left that analysis for future research.

Appendix

The intra-daily level implied volatility (IDIV) is the volatility that is implied by the intra-daily options market price using the options pricing model. Black and Scholes (1973, BS) first derived a closed form solution for pricing European options. The BS model assumes that no dividends are paid on the stock during the life of the option. Merton (1973) extended this model to cover continuous dividends. Since the interest gained on holding a foreign security is equivalent to a continuously paid dividend on a stock, the Merton version of the BS model can be applied to foreign security. To value the currency option, stock prices are substituted for exchange rates. Following Biger and Hull (1983), the price of a European type call and put option on currency is given in equation (A1) and (A2), respectively,

\[
C_t = S_t e^{-R_t^d T} N(d_{1,t}) - X_t e^{-R_t^f T} N(d_{2,t}), \\
P_t = X_t e^{-R_t^d T} N(-d_{2,t}) - S_t e^{-R_t^f T} N(-d_{1,t}),
\]

where,

\[
d_{1,t} = \frac{\ln(S_t/X_t) + (R_t^d - R_t^f + \sigma_t^2/2)T}{\sigma_t \sqrt{T}} \quad \text{and} \quad d_{2,t} = \frac{\ln(S_t/X_t) + (R_t^d - R_t^f - \sigma_t^2/2)T}{\sigma_t \sqrt{T}} = d_{1,t} - \sigma_t \sqrt{T}.
\]

The notations of equation (A1) and (A2) and their descriptions are as follows:

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>call option price in domestic currency</td>
</tr>
<tr>
<td>P</td>
<td>put option price in domestic currency</td>
</tr>
<tr>
<td>S</td>
<td>spot price in terms of domestic currency</td>
</tr>
<tr>
<td>X</td>
<td>option exercise price in domestic currency</td>
</tr>
<tr>
<td>R^d</td>
<td>domestic currency interest rate</td>
</tr>
<tr>
<td>R^f</td>
<td>foreign currency interest rate</td>
</tr>
<tr>
<td>T</td>
<td>option maturity period</td>
</tr>
<tr>
<td>\sigma</td>
<td>volatility of underlying currency</td>
</tr>
<tr>
<td>N(\cdot)</td>
<td>cumulative normal distribution function</td>
</tr>
</tbody>
</table>

For notation convenience, let \(\xi_t = e^{-R_t^d T} \) and \(\eta_t = e^{-R_t^f T} \), so that equations (A1) and (A2) can be written as follows:

\[
C_t = S_t \xi_t N[d_{1,t}(\sigma_t)] - X_t \eta_t N[d_{2,t}(\sigma_t)], \\
P_t = X_t \eta_t N[-d_{2,t}(\sigma_t)] - S_t \xi_t N[-d_{1,t}(\sigma_t)]
\]

The intra-daily level implied volatility is \(\sigma_t \), and when substituted into equations (A3) and (A4) it gives the market call and put price, respectively. It is not possible to invert equations (A3) and (A4) with respect to \(\sigma_t \). Alternatively, an iterative search procedure can be used to find the implied volatility for given options market prices. The Newton-Raphson and Dekker-Brent methods (see Press et al. 1992), the two most popular iterative solver methods, are used frequently. The Newton-Raphson method uses derivative information and has quadratic convergence speed. The Dekker-Brent method uses a combination of the bisection, scant and inverse quadratic interpolation methods and is guaranteed to converge. The Newton-Raphson method is faster in processing but less robust than the Dekker-Brent
method. In practice, due to its robustness, the Dekker-Brent method is often chosen over the Newton-Raphson method.

The Dekker-Brent method is used as an iterative solver for the MATLAB built-in function “blsimpv”, which embeds equations (A3) and (A4), as shown in equations (A5) and (A6), respectively, with a default volatility upper bound limit 1000% per annum and a termination tolerance 0.0001. For every 5 minute (5-min) interval, equations (A5) and (A6) calculate the intra-daily level implied volatility for the call and put price, respectively, as follows:

\[
\sigma_{C,i} = blsimpv(S_i, X_i, R_i^T, T, C_i, Limit, R_i^T, Tolerance, \{'call'\}), \quad (A5) \\
\sigma_{P,i} = blsimpv(S_i, X_i, R_i^T, T, P_i, Limit, R_i^T, Tolerance, \{'put'\}). \quad (A6)
\]

References

