Powers in a class of A-strict standard episturmian words

Amy Glen

amy.glen@adelaide.edu.au

http://www.maths.adelaide.edu.au/~aglen

The University of Adelaide
Introduction

Sturmian words
Introduction

Sturmian words

Infinite words with \(n + 1 \) distinct factors of length \(n \) for each \(n \in \mathbb{N} \).
Introduction

Sturmian words

- Infinite words with \(n + 1 \) distinct factors of length \(n \) for each \(n \in \mathbb{N} \).
- Sturmian words are over a 2-letter alphabet.
Introduction

Sturmian words

- Infinite words with $n + 1$ distinct factors of length n for each $n \in \mathbb{N}$.
- Sturmian words are over a 2-letter alphabet.
- They are exactly the aperiodic infinite words of minimal complexity.
Introduction

- **Sturmian words**
 - Infinite words with $n + 1$ distinct factors of length n for each $n \in \mathbb{N}$.
 - Sturmian words are over a 2-letter alphabet.
 - They are exactly the aperiodic infinite words of minimal complexity.

- **Episturmian words**
Introduction

- **Sturmian words**
 - Infinite words with \(n + 1 \) distinct factors of length \(n \) for each \(n \in \mathbb{N} \).
 - Sturmian words are over a 2-letter alphabet.
 - They are exactly the aperiodic infinite words of minimal complexity.

- **Episturmian words**
 - A natural generalization of Sturmian words to an arbitrary finite alphabet.
Introduction

Sturmian words

- Infinite words with $n + 1$ distinct factors of length n for each $n \in \mathbb{N}$.
- Sturmian words are over a 2-letter alphabet.
- They are exactly the aperiodic infinite words of minimal complexity.

Episturmian words

- A natural generalization of Sturmian words to an arbitrary finite alphabet.
Introduction

Sturmian words
- Infinite words with \(n + 1 \) distinct factors of length \(n \) for each \(n \in \mathbb{N} \).
- Sturmian words are over a 2-letter alphabet.
- They are exactly the aperiodic infinite words of minimal complexity.

Episturmian words
- A natural generalization of Sturmian words to an arbitrary finite alphabet.
- Sturmian words are exactly the aperiodic episturmian words over a 2-letter alphabet.
Aim

- Explicitly determine all integer powers occurring in episturmian words.
- This has been done for Sturmian words by Damanik & Lenz (2003).
- We do this for a restricted class of episturmian words.
Terminology and notation

Let A denote a finite alphabet and let $u = x_1 x_2 \cdots x_m$ where each $x_i \in A$.
Let \mathcal{A} denote a finite alphabet and let $u = x_1 x_2 \cdots x_m$ where each $x_i \in \mathcal{A}$.

The length of u is $|u| = m$.

Powers in a class of \mathcal{A}-strict standard episturmian words – p.4/17
Terminology and notation

Let \mathcal{A} denote a finite alphabet and let $u = x_1 x_2 \cdots x_m$ where each $x_i \in \mathcal{A}$.

- The \textit{length} of u is $|u| = m$.
- The \textit{reversal} of u is $\tilde{u} = x_m x_{m-1} \cdots x_1$.
Let \mathcal{A} denote a finite alphabet and let $u = x_1 x_2 \cdots x_m$ where each $x_i \in \mathcal{A}$.

- The **length** of u is $|u| = m$.
- The **reversal** of u is $\tilde{u} = x_m x_{m-1} \cdots x_1$.
- u is a **palindrome** if $u = \tilde{u}$.

Powers in a class of \mathcal{A}-strict standard episturmian words – p.4/17
Terminology and notation

Let \(\mathcal{A} \) denote a finite alphabet and let \(u = x_1 x_2 \cdots x_m \) where each \(x_i \in \mathcal{A} \).

- The **length** of \(u \) is \(|u| = m \).
- The **reversal** of \(u \) is \(\tilde{u} = x_m x_{m-1} \cdots x_1 \).
- \(u \) is a **palindrome** if \(u = \tilde{u} \).
- \(u^\omega \) denotes the **purely periodic** infinite word \(uuu \cdots \).
Terminology and notation

Let \mathcal{A} denote a finite alphabet and let $u = x_1x_2 \cdots x_m$ where each $x_i \in \mathcal{A}$.

- The **length** of u is $|u| = m$.
- The **reversal** of u is $\tilde{u} = x_mx_{m-1} \cdots x_1$.
- u is a **palindrome** if $u = \tilde{u}$.
- u^ω denotes the purely periodic infinite word $uuu \cdots$.

For $0 \leq j \leq m - 1$, the j-th conjugate of u is the word

$$C_j(u) := x_{j+1}x_{j+2} \cdots x_mx_1x_2 \cdots x_j$$

and we define

$$C(u) := \{C_j(u) : 0 \leq j \leq |u| - 1\},$$

the **conjugacy class** of u.
Let x be an infinite word over \mathcal{A}.

A *factor* of x is a finite string of consecutive letters in x.
Let x be an infinite word over A.

- A factor of x is a finite string of consecutive letters in x.
- $\Omega(x)$ denotes the set of all factors of x.
- $\Omega_n(x)$ denotes the set of all factors of x of length n.
Let x be an infinite word over A.

- A **factor** of x is a finite string of consecutive letters in x.
- $\Omega(x)$ denotes the set of all factors of x.
- $\Omega_n(x)$ denotes the set of all factors of x of length n.
- If $w \in \Omega(x)$, we write $w \prec x$.

Let x be an infinite word over A.

- A *factor* of x is a finite string of consecutive letters in x.
- $\Omega(x)$ denotes the set of all factors of x.
- $\Omega_n(x)$ denotes the set of all factors of x of length n.
- If $w \in \Omega(x)$, we write $w \prec x$.
- A factor w of x is
 \[
 \begin{cases}
 \text{right special} & \text{if } \{wa, wb\} \\
 \text{left} & \text{if } \{aw, bw\}
 \end{cases}
 \]
 are factors of x for some $a, b \in A$, $a \neq b$.
An infinite word t is *episturmian* if:

- $\Omega(t)$ is closed under reversal, and
- t has at most one right special factor of each length.
Episturmian words

An infinite word t is *episturmian* if:

- $\Omega(t)$ is closed under reversal, and
- t has at most one right special factor of each length.

An episturmian word is *standard* if all of its left special factors are prefixes of it.
Let t be a standard episturmian word over A and let

$$u_1 = \varepsilon, \ u_2, \ u_3, \ u_4, \ldots$$

be the sequence of its palindromic prefixes.
Standard episturmian words

Let t be a standard episturmian word over \mathcal{A} and let

$$u_1 = \varepsilon, \ u_2, \ u_3, \ u_4, \ldots$$

be the sequence of its palindromic prefixes.

There exists an infinite word $\Delta(t) = x_1 x_2 x_3 \ldots (x_i \in \mathcal{A})$ such that

$$u_{n+1} = (u_n x_n)^{(+)}, \quad n \in \mathbb{N}^+.$$

Note: $w^{(+)}$ is the shortest palindrome of which w is a prefix.
Let \(t \) be a standard episturmian word over \(\mathcal{A} \) and let

\[
u_1 = \varepsilon, \quad u_2, \quad u_3, \quad u_4, \quad \ldots\]

be the sequence of its palindromic prefixes.

\[\exists \text{ an infinite word } \Delta(t) = x_1x_2x_3 \cdots \quad (x_i \in \mathcal{A}) \text{ such that}\]

\[u_{n+1} = (u_nx_n)^{(+)}, \quad n \in \mathbb{N}^+.\]

Note: \(w^{(+)} \) is the shortest palindrome of which \(w \) is a prefix.

\(\Delta(t) \) is called the *directive word* of \(t \).
Standard episturmian words

- Let t be a standard episturmian word over \mathcal{A} and let

 $$u_1 = \varepsilon, \ u_2, \ u_3, \ u_4, \ldots$$

 be the sequence of its palindromic prefixes.

- \exists an infinite word $\Delta(t) = x_1x_2x_3\cdots \ (x_i \in \mathcal{A})$ such that

 $$u_{n+1} = (u_n x_n)^(+), \ n \in \mathbb{N}^+.$$

 \textbf{Note:} $w^{(+)}$ is the shortest palindrome of which w is a prefix.

- $\Delta(t)$ is called the \textit{directive word} of t.

- $t = \lim_{n \to \infty} u_n$
A class of strict standard episturmian words

Take \(\mathcal{A} = \mathcal{A}_k := \{a_1, a_2, \ldots, a_k\} \).
A class of strict standard episturmian words

Take $\mathcal{A} = A_k := \{a_1, a_2, \ldots, a_k\}$.

t is \textit{k-strict} if each $a_i \in A_k$ appears infinitely often in $\Delta(t)$.
Take $\mathcal{A} = \mathcal{A}_k := \{a_1, a_2, \ldots, a_k\}$.

- t is k-strict if each $a_i \in \mathcal{A}_k$ appears infinitely often in $\Delta(t)$.

k-strict episturmian words are precisely the k-letter Arnoux-Rauzy sequences.
A class of strict standard episturmian words

Take $\mathcal{A} = \mathcal{A}_k := \{a_1, a_2, \ldots, a_k\}$.

- t is k-strict if each $a_i \in \mathcal{A}_k$ appears infinitely often in $\Delta(t)$.

- k-strict episturmian words are precisely the k-letter Arnoux-Rauzy sequences.

For any standard episturmian word t,

$$
\Delta(t) = a_1^{d_1} a_2^{d_2} \cdots a_k^{d_k} a_1^{d_{k+1}} a_2^{d_{k+2}} \cdots a_k^{d_{2k}} a_1^{d_{2k+1}} \cdots,
$$

where each $d_i \geq 0$.

A class of strict standard episturmian words

Take $\mathcal{A} = \mathcal{A}_k := \{a_1, a_2, \ldots, a_k\}$.

- t is k-strict if each $a_i \in \mathcal{A}_k$ appears infinitely often in $\Delta(t)$.

- k-strict episturmian words are precisely the k-letter Arnoux-Rauzy sequences.

For any standard episturmian word t,

$$\Delta(t) = a_1^{d_1} a_2^{d_2} \cdots a_k^{d_k} a_1^{d_{k+1}} a_2^{d_{k+2}} \cdots a_k^{d_{2k}} a_1^{d_{2k+1}} \cdots,$$

where each $d_i \geq 0$.

We restrict our attention to the case when all $d_i > 0$.

Let s be the k-strict standard episturmian word with directive word:

$$\Delta(s) = a_1^{d_1} a_2^{d_2} \cdots a_k^{d_k} a_1^{d_{k+1}} a_2^{d_{k+2}} \cdots a_k^{d_{2k}} a_1^{d_{2k+1}} \cdots, \quad d_i > 0.$$
Example

- Let $\alpha \in (0, 1)$ be irrational with $\alpha = [0; 1 + d_1, d_2, d_3, \ldots]$.
- The characteristic Sturmian word c_α over $\{a, b\}$ has directive word

$$\Delta(c_\alpha) = a^{d_1} b^{d_2} a^{d_3} b^{d_4} a^{d_5} \ldots.$$
Example

- Let $\alpha \in (0, 1)$ be irrational with $\alpha = [0; 1 + d_1, d_2, d_3, \ldots]$.
- The characteristic Sturmian word c_α over $\{a, b\}$ has directive word

$$\Delta(c_\alpha) = a^{d_1}b^{d_2}a^{d_3}b^{d_4}a^{d_5} \ldots .$$

- $c_\alpha = \lim_{n \to \infty} s_n$, where $(s_n)_{n \geq -1}$ is defined by

$$s_{-1} = b, \quad s_0 = a, \quad s_n = s_{n-1}^{d_n}s_{n-2}, \quad n \geq 1.$$
Example

Let $\alpha \in (0, 1)$ be irrational with $\alpha = [0; 1 + d_1, d_2, d_3, \ldots]$.

The characteristic Sturmian word c_α over $\{a, b\}$ has directive word

$$\Delta(c_\alpha) = a^{d_1} b^{d_2} a^{d_3} b^{d_4} a^{d_5} \ldots.$$

$c_\alpha = \lim_{n \to \infty} s_n$, where $(s_n)_{n \geq -1}$ is defined by

$$s_{-1} = b, \quad s_0 = a, \quad s_n = s_{n-1}^{d_n} s_{n-2}, \quad n \geq 1.$$

$\Delta(s)$ resembles $\Delta(c_\alpha)$.

Powers in a class of A-strict standard episturmian words – p.9/17
Example

Let $\alpha \in (0, 1)$ be irrational with $\alpha = [0; 1 + d_1, d_2, d_3, \ldots]$. The characteristic Sturmian word c_α over \{a, b\} has directive word

$$\Delta(c_\alpha) = a^{d_1} b^{d_2} a^{d_3} b^{d_4} a^{d_5} \ldots.$$

$c_\alpha = \lim_{n \to \infty} s_n$, where $\{s_n\}_{n \geq -1}$ is defined by

$$s_{-1} = b, \quad s_0 = a, \quad s_n = s_{n-1}^{d_n} s_{n-2}, \quad n \geq 1.$$

$\Delta(s)$ resembles $\Delta(c_\alpha)$.

One can prove that $s = \lim_{n \to \infty} s_n$ where the sequence $\{s_n\}_{n \geq 1-k}$ is defined by

$$s_1 = a_2, \quad s_2 = a_3, \quad \ldots, \quad s_{-1} = a_k, \quad s_0 = a_1,$$

$$s_n = \begin{cases} s_{n-1}^{d_n} s_{n-2}^{d_{n-1}} \cdots s_0^{d_1} a_{n+1}, & 1 \leq n \leq k - 1, \\ s_n = \begin{cases} s_{n-1}^{d_n} s_{n-2}^{d_{n-1}} \cdots s_{n-k+1}^{d_{n-k+2}} s_{n-k}, & n \geq k \end{cases} \end{cases}.$$
Let $p \geq 2$ be an integer.

A finite word w has a p-th power in s if

$$w^p = \underbrace{ww \cdots w}_{p}$$

is a factor of s.
Powers

Let $p \geq 2$ be an integer.

A finite word w has a p-th power in s if

$$w^p = \underbrace{ww \cdots w}_p$$

is a factor of s.

Key tools in our analysis of powers occurring in s:

- canonical decompositions of s in terms of its building blocks s_n;
- a generalization of singular words.
The set of factors of length $|s_n|$ in c_α is given by

$$\{\text{all conjugates of } s_n\} \cup \{w_n\}$$

where w_n is called the n-th singular factor of c_α.

[Wen and Wen (1994), Melançon (1999), Cao and Wen (2003)]
Singular words

The set of factors of length $|s_n|$ in c_α is given by

$$\{\text{all conjugates of } s_n\} \cup \{w_n\}$$

where w_n is called the n-th singular factor of c_α.

[Wen and Wen (1994), Melançon (1999), Cao and Wen (2003)]

Singular n-words of the i-th kind

The set of factors of s of length $|s_n|$ can be partitioned into k sets.
Singular words

The set of factors of length $|s_n|$ in c_α is given by

$$\{\text{all conjugates of } s_n\} \cup \{w_n\}$$

where w_n is called the n-th \textit{singular factor} of c_α.

[Wen and Wen (1994), Melançon (1999), Cao and Wen (2003)]

Singular n-words of the i-th kind

The set of factors of s of length $|s_n|$ can be partitioned into k sets.

That is:

$$\Omega_{|s_n|}(s) = \mathcal{C}(s_n) \cup \Omega^1_n \cup \cdots \cup \Omega^{k-1}_n.$$
The set of factors of length $|s_n|$ in c_α is given by

\[
\{\text{all conjugates of } s_n\} \cup \{w_n\}
\]

where w_n is called the n-th singular factor of c_α.

[Wen and Wen (1994), Melançon (1999), Cao and Wen (2003)]

Singular n-words of the i-th kind

The set of factors of s of length $|s_n|$ can be partitioned into k sets.

That is:

\[
\Omega_{|s_n|}(s) = C(s_n) \cup \Omega_n^1 \cup \cdots \cup \Omega_n^{k-1}.
\]

Each set Ω_n^i is closed under reversal.
Singular words

The set of factors of length $|s_n|$ in c_α is given by

$$\{\text{all conjugates of } s_n\} \cup \{w_n\}$$

where w_n is called the n-th singular factor of c_α.

[Wen and Wen (1994), Melançon (1999), Cao and Wen (2003)]

Singular n-words of the i-th kind

The set of factors of s of length $|s_n|$ can be partitioned into k sets.

That is:

$$\Omega_{|s_n|}(s) = C(s_n) \cup \Omega^1_n \cup \cdots \cup \Omega^{k-1}_n.$$

Each set Ω^i_n is closed under reversal.

If $w \in \Omega^i_n$ then w is called a singular n-word of the i-th kind.

Such words play a key role in our study of powers occurring in s.

Powers in a class of A-strict standard episturmian words – p.11/17
Powers occurring in s

Let $n \in \mathbb{N}^+$ be fixed.

We define k sets of lengths between $|s_n|$ and $|s_{n+1}|$:

$D_1(n) := \{r|s_n| : 1 \leq r \leq d_{n+1}\},$

$D_i(n) := \{|s_n^r s_{n-1}^{d_{n+1-i}} \cdots s_{n+2-i}^{d_{n+3-i}} s_{n+1-i}| : 1 \leq r \leq d_{n+1}\}, \quad 2 \leq i \leq k - 1,$

$D_k(n) := \{|s_n^r s_{n-1}^{d_{n+1-k}} \cdots s_{n+2-k}^{d_{n+3-k}} s_{n+1-k}| : 1 \leq r \leq d_{n+1} - 1\}.$
Powers occurring in s

Let $n \in \mathbb{N}^+$ be fixed.

We define k sets of lengths between $|s_n|$ and $|s_{n+1}|$:

$$\mathcal{D}_1(n) := \{r|s_n| : 1 \leq r \leq d_{n+1}\},$$

$$\mathcal{D}_i(n) := \{|s_n^r s_{n-1}^{d_n} \cdots s_{n+2-i}^{d_{n+3-i}} s_{n+1-i}| : 1 \leq r \leq d_{n+1}\}, \quad 2 \leq i \leq k - 1,$$

$$\mathcal{D}_k(n) := \{|s_n^r s_{n-1}^{d_n} \cdots s_{n+2-k}^{d_{n+3-k}} s_{n+1-k}| : 1 \leq r \leq d_{n+1} - 1\}.$$

Let $\mathcal{D}_n = \bigcup_{i=1}^k \mathcal{D}_i(n)$.
Let $n \in \mathbb{N}^+$ be fixed.

We define k sets of lengths between $|s_n|$ and $|s_{n+1}|$:

$\mathcal{D}_1(n) := \{ r | s_n | : 1 \leq r \leq d_{n+1} \}$,

$\mathcal{D}_i(n) := \{ |s_n s_{n-i}^{d_{n+1} - i} s_{n+1-i}| : 1 \leq r \leq d_{n+1} \}, \quad 2 \leq i \leq k - 1$,

$\mathcal{D}_{k}(n) := \{ |s_n s_{n-1}^{d_{n+1} - k} s_{n+1-k}| : 1 \leq r \leq d_{n+1} - 1 \}$.

Let $\mathcal{D}_n = \bigcup_{i=1}^{k} \mathcal{D}_i(n)$.

Suppose $w \prec s$ and let $p \geq 2$ be an integer. Then,

$$w^p \prec s \Rightarrow |w| \in \mathcal{D}_n \text{ for some } n.$$
Squares

In s, successive occurrences of a singular word are positively separated.
Squares

In s, successive occurrences of a singular word are positively separated.

Consequently:

Lemma: Suppose $u^2 \prec s$ with $|u| \in \mathcal{D}_n$. Then

$$w \not\preceq u \quad \text{if} \quad w \in \Omega_{n+1-i}^1 \text{ for some } i \in [1, k - 1].$$
In s, successive occurrences of a singular word are \textit{positively separated}.

Consequently:

\textbf{Lemma:} Suppose $u^2 \prec s$ with $|u| \in D_n$. Then

$$w \not\prec u \quad \text{if} \quad w \in \Omega_{n+1-i}^1 \text{ for some } i \in [1, k - 1].$$

That is, u does not contain a singular $(n + 1 - i)$-word of the first kind for any $i \in [1, k - 1]$.
Let $w \prec s$ with $|w| \in \mathcal{D}_n$ for some n.
Squares, cubes, and higher powers

Let $w \prec s$ with $|w| \in D_n$ for some n.

Our main results show:

If $w^p \prec s$, then w is a conjugate of a finite product of blocks from the set $\{s_n, s_{n-1}, \ldots, s_{n+1-k}\}$, depending on $|w|$ and d_{n+1}.
Let $w \prec s$ with $|w| \in \mathcal{D}_n$ for some n.

Our main results show:

If $w^p \prec s$, then w is a conjugate of a finite product of blocks from the set $\{s_n, s_{n-1}, \ldots, s_{n+1-k}\}$, depending on $|w|$ and d_{n+1}.

For instance:

- Let $p \geq 2$.
- Suppose $|w| = r|s_n|$ for some r with $1 \leq r < (d_{n+1} + 2)/p$.
Let $w \prec s$ with $|w| \in \mathcal{D}_n$ for some n.

Our main results show:

If $w^p \prec s$, then w is a conjugate of a finite product of blocks from the set $\{s_n, s_{n-1}, \ldots, s_{n+k}\}$, depending on $|w|$ and d_{n+1}.

For instance:

- Let $p \geq 2$.
- Suppose $|w| = r|s_n|$ for some r with $1 \leq r < (d_{n+1} + 2)/p$.
- Then:

$$w^p \prec s \iff w \text{ is one of the first } |s_n| \text{ conjugates of } (s_n)^r.$$
Example: k-bonacci word

Define the k-bonacci word to be the standard episturmian word η_k with directive word $(a_1 a_2 \cdots a_k)^\omega$.
Example: k-bonacci word

- Define the k-bonacci word to be the standard episturmian word η_k with directive word $(a_1a_2\cdots a_k)^\omega$.

- Since all $d_i = 1$, we have $s_n = s_{n-1}s_{n-2}\cdots s_{n-k}$ for all $n \geq 1$.

(The lengths $|s_n|$ are the k-bonacci numbers.)
Example: k-bonacci word

Define the k-bonacci word to be the standard episturmian word η_k with directive word $(a_1a_2\cdots a_k)^\omega$.

Since all $d_i = 1$, we have $s_n = s_{n-1}s_{n-2}\cdots s_{n-k}$ for all $n \geq 1$.
(The lengths $|s_n|$ are the k-bonacci numbers.)

If $w^p \prec \eta_k$, then

$$|w| = |s_n| + |s_{n-1}| + \cdots + |s_{n+1-i}|$$

for some $n \in \mathbb{N}$ and $i \in [1, k-1]$.
Our main results reveal that, in η_k,

- $(a_1)^2$ is the unique square of length 2;
- all conjugates of s_n have a square;
- only some conjugates of s_n have a cube;
- only some conjugates of $s_n s_{n-1} \cdots s_{n+i}$ have a square.
Our main results reveal that, in η_k,

- $(a_1)^2$ is the unique square of length 2;
- all conjugates of s_n have a square;
- only some conjugates of s_n have a cube;
- only some conjugates of $s_n s_{n-1} \cdots s_{n+1-i}$ have a square.

There are no other integer powers in η_k.

In particular, the k-bonacci word is 4-power free.
Concluding remarks

Our main results on powers suffice to describe all integer powers occurring in any (episturmian) word that is equivalent to s.

Open problem:
Determine all integer powers occurring in general standard episturmian words (with not all d_i necessarily positive).