Fine words over a finite alphabet

Amy Glen

School of Mathematical Sciences
The University of Adelaide, Australia

amy.glen@adelaide.edu.au
http://www.maths.adelaide.edu.au/~aglen

Combinatorics, Automata & Number Theory 2006
Outline

1. Introduction

2. Preliminaries
 - Finite and Infinite Words
 - Episturmian words

3. Fine Words
 - Definition
 - Previous Results
 - Lemma
 - A Characterization of Fine Words
Let t be an infinite word.

Define $\text{min}(t)$ to be the infinite word such that any prefix of $\text{min}(t)$ is the \textit{lexicographically} smallest amongst the factors of t of the same length.

Similarly define $\text{max}(t)$.

\textbf{Definition (Pirillo 2005)}

An infinite word t over a 2-letter alphabet \{a, b\} ($a < b$) is \textit{fine} if $(\text{min}(t), \text{max}(t)) = (as, bs)$ for some infinite word s.

Pirillo (2005) characterized these words.
Let t be an infinite word.

Define $\min(t)$ to be the infinite word such that any prefix of $\min(t)$ is the lexicographically smallest amongst the factors of t of the same length.

Similarly define $\max(t)$.

Definition (Pirillo 2005)

An infinite word t over a 2-letter alphabet $\{a, b\}$ ($a < b$) is *fine* if $(\min(t), \max(t)) = (as, bs)$ for some infinite word s.

Pirillo (2005) characterized these words.
Here, we:

- **extend** the definition of a fine word to more than two letters;
- **characterize** fine words over a finite alphabet.

Main Result

An infinite word t is fine \iff t is a *strict episturmian word*, or t is “skew episturmian” (i.e., a particular kind of infinite word, all of whose factors are *episturmian*).
Here, we:

- **extend** the definition of a fine word to more than two letters;
- **characterize** fine words over a finite alphabet.

Main Result

An infinite word t is fine $\iff t$ is a *strict episturmian word*, or t is “skew episturmian” (i.e., a particular kind of infinite word, all of whose factors are *episturmian*).
Introduction

2 Preliminaries
 - Finite and Infinite Words
 - Episturmian words

3 Fine Words
 - Definition
 - Previous Results
 - Lemma
 - A Characterization of Fine Words
Let \mathcal{A} be a **finite alphabet** and let $u = x_1x_2 \cdots x_m$, each $x_i \in \mathcal{A}$.

- **Length**: $|u| = m$
- **Reversal**: $\tilde{u} = x_mx_{m-1} \cdots x_1$
- u is a **palindrome** if $u = \tilde{u}$
- u^ω denotes the **purely periodic** infinite word $uuu \cdots$
- \mathcal{A}^*: set of all finite words over \mathcal{A}
- ε: the **empty word**
- \mathcal{A}^+: set of all **non-empty** finite words over \mathcal{A}
Let A be a *finite alphabet* and let $u = x_1 x_2 \cdots x_m$, each $x_i \in A$.

- **Length:** $|u| = m$
- **Reversal:** $\tilde{u} = x_m x_{m-1} \cdots x_1$
- u is a *palindrome* if $u = \tilde{u}$
- u^ω denotes the *purely periodic* infinite word $uuu \cdots$
- A^*: set of all finite words over A
- ε: the *empty word*
- A^+: set of all *non-empty* finite words over A
Let \mathcal{A} be a finite alphabet and let $u = x_1x_2\cdots x_m$, each $x_i \in \mathcal{A}$.

- **Length**: $|u| = m$
- **Reversal**: $\tilde{u} = x_mx_{m-1}\cdots x_1$
- u is a palindrome if $u = \tilde{u}$
- u^ω denotes the purely periodic infinite word $uuu\cdots$
- \mathcal{A}^*: set of all finite words over \mathcal{A}
- ε: the empty word
- \mathcal{A}^+: set of all non-empty finite words over \mathcal{A}
Let \mathcal{A} be a \textit{finite alphabet} and let $u = x_1 x_2 \cdots x_m$, each $x_i \in \mathcal{A}$.

- \textbf{Length}: $|u| = m$
- \textbf{Reversal}: $\tilde{u} = x_m x_{m-1} \cdots x_1$
- u is a \textit{palindrome} if $u = \tilde{u}$
- u^ω denotes the \textit{purely periodic} infinite word $uuu \cdots$
- \mathcal{A}^*: set of all finite words over \mathcal{A}
- ε: the \textit{empty word}
- \mathcal{A}^+: set of all \textit{non-empty} finite words over \mathcal{A}
Let \(\mathcal{A} \) be a \textit{finite alphabet} and let \(u = x_1 x_2 \cdots x_m \), each \(x_i \in \mathcal{A} \).

- **Length**: \(|u| = m \)
- **Reversal**: \(\tilde{u} = x_m x_{m-1} \cdots x_1 \)
- \(u \) is a \textit{palindrome} if \(u = \tilde{u} \)
- \(u^\omega \) denotes the \textit{purely periodic} infinite word \(uuu \cdots \)
- \(\mathcal{A}^\ast \): set of all finite words over \(\mathcal{A} \)
- \(\varepsilon \): the \textit{empty word}
- \(\mathcal{A}^+ \): set of all \textit{non-empty} finite words over \(\mathcal{A} \)
Words

Let \(\mathcal{A} \) be a **finite alphabet** and let \(u = x_1 x_2 \cdots x_m \), each \(x_i \in \mathcal{A} \).

- **Length**: \(|u| = m \)
- **Reversal**: \(\bar{u} = x_m x_{m-1} \cdots x_1 \)
- \(u \) is a **palindrome** if \(u = \bar{u} \)
- \(u^\omega \) denotes the **purely periodic** infinite word \(uuu \cdots \)
- \(\mathcal{A}^* \): set of all finite words over \(\mathcal{A} \)
- \(\varepsilon \): the empty word
- \(\mathcal{A}^+ \): set of all non-empty finite words over \(\mathcal{A} \)
Let \mathcal{A} be a finite alphabet and let $u = x_1 x_2 \cdots x_m$, each $x_i \in \mathcal{A}$.

- **Length**: $|u| = m$
- **Reversal**: $\tilde{u} = x_m x_{m-1} \cdots x_1$
- u is a palindrome if $u = \tilde{u}$
- u^ω denotes the purely periodic infinite word $uuu \cdots$
- \mathcal{A}^*: set of all finite words over \mathcal{A}
- ε: the empty word
- \mathcal{A}^+: set of all non-empty finite words over \mathcal{A}
Let \mathcal{A} be a finite alphabet and let $u = x_1x_2 \cdots x_m$, each $x_i \in \mathcal{A}$.

- **Length**: $|u| = m$
- **Reversal**: $\tilde{u} = x_mx_{m-1} \cdots x_1$
- u is a palindrome if $u = \tilde{u}$
- u^ω denotes the purely periodic infinite word $uuu \cdots$
- \mathcal{A}^*: set of all finite words over \mathcal{A}
- ϵ: the empty word
- \mathcal{A}^+: set of all non-empty finite words over \mathcal{A}
Words (cont.)

Let \(x \) be an *infinite word* over \(A \).

- **Factor of** \(x \): a finite string of consecutive letters in \(x \)
- **Prefix of** \(x \): factor occurring at the beginning of \(x \)
- \(\Omega(x) \): *set of all factors* of \(x \)
- \(\text{Ult}(x) \): set of letters occurring infinitely often in \(x \)
- \(\text{Alph}(x) \) := \(\Omega(x) \cap A \), the *alphabet* of \(x \)
Words (cont.)

Let x be an *infinite word* over A.

- **Factor of** x: a finite string of consecutive letters in x
- **Prefix of** x: factor occurring at the beginning of x
- $\Omega(x)$: *set of all factors* of x
- $\text{Ult}(x)$: set of letters occurring infinitely often in x
- $\text{Alph}(x) := \Omega(x) \cap A$, the *alphabet* of x
Let x be an \textit{infinite word} over A.

- \textit{Factor of x}: a finite string of consecutive letters in x
- \textit{Prefix of x}: factor occurring at the beginning of x
- $\Omega(x)$: \textit{set of all factors} of x
- $\text{Ult}(x)$: set of letters occurring infinitely often in x
- $\text{Alph}(x) := \Omega(x) \cap A$, the \textit{alphabet} of x
Let x be an *infinite word* over A.

- **Factor of x**: a finite string of consecutive letters in x
- **Prefix of x**: factor occurring at the beginning of x
- $\Omega(x)$: *set of all factors* of x
- $\text{Ult}(x)$: set of letters occurring infinitely often in x
- $\text{Alph}(x) := \Omega(x) \cap A$, the *alphabet* of x
Let x be an \textit{infinite word} over A.

- \textit{Factor of x}: a finite string of consecutive letters in x
- \textit{Prefix of x}: factor occurring at the beginning of x
- $\Omega(x)$: \textit{set of all factors} of x
- $\text{Ult}(x)$: set of letters occurring infinitely often in x
- $\text{Alph}(x) := \Omega(x) \cap A$, the \textit{alphabet} of x
Let x be an *infinite word* over A.

- **Factor of x**: a finite string of consecutive letters in x
- **Prefix of x**: factor occurring at the beginning of x
- $\Omega(x)$: *set of all factors* of x
- $\text{Ult}(x)$: set of letters occurring infinitely often in x
- $\text{Alph}(x) := \Omega(x) \cap A$, the *alphabet* of x
Suppose \(\mathcal{A} \) is totally ordered by the relation \(<\). Then we can totally order \(\mathcal{A}^+ \) by the *lexicographic order* \(<\).

That is:

Definition

Given two words \(u, v \in \mathcal{A}^+ \), we have \(u < v \iff \) either \(u \) is a proper prefix of \(v \) or \(u = xau' \) and \(v = xbv' \), for some \(x, u', v' \in \mathcal{A}^* \) and letters \(a, b \) with \(a < b \).

- This is the usual alphabetic ordering in a dictionary.
- We say that \(u \) is *lexicographically less* than \(v \).
- This notion naturally extends to infinite words.
Suppose \mathcal{A} is totally ordered by the relation $<$. Then we can totally order \mathcal{A}^+ by the *lexicographic order* $<$. That is:

Definition

Given two words $u, v \in \mathcal{A}^+$, we have $u < v \iff$ either u is a proper prefix of v or $u = xau'$ and $v = xbv'$, for some $x, u', v' \in \mathcal{A}^*$ and letters a, b with $a < b$.

- This is the usual alphabetic ordering in a dictionary.
- We say that u is *lexicographically less* than v.
- This notion naturally extends to infinite words.
Suppose \mathcal{A} is totally ordered by the relation $<$. Then we can totally order \mathcal{A}^+ by the *lexicographic order* $<$.

That is:

Definition

Given two words $u, v \in \mathcal{A}^+$, we have $u < v \iff$ either u is a proper prefix of v or $u = xau'$ and $v = xbv'$, for some $x, u', v' \in \mathcal{A}^*$ and letters a, b with $a < b$.

- This is the usual alphabetic ordering in a dictionary.
- We say that u is *lexicographically less* than v.
- This notion naturally extends to infinite words.
Outline

1. Introduction

2. Preliminaries
 - Finite and Infinite Words
 - Episturmian words

3. Fine Words
 - Definition
 - Previous Results
 - Lemma
 - A Characterization of Fine Words
Sturmian words

- Infinite words with $n + 1$ distinct factors of length n for each $n \in \mathbb{N}$.
- Sturmian words are over a 2-letter alphabet.
- They are exactly the aperiodic infinite words of minimal complexity.

Episturmian words

- A natural generalization of Sturmian words to an arbitrary finite alphabet.
- Sturmian words are exactly the aperiodic episturmian words over a 2-letter alphabet.
Sturmian words

- Infinite words with $n + 1$ distinct factors of length n for each $n \in \mathbb{N}$.
- Sturmian words are over a 2-letter alphabet.
- They are exactly the aperiodic infinite words of minimal complexity.

Episturmian words

- A natural generalization of Sturmian words to an arbitrary finite alphabet.
- Sturmian words are exactly the aperiodic episturmian words over a 2-letter alphabet.
Sturmian words

- Infinite words with $n + 1$ distinct factors of length n for each $n \in \mathbb{N}$.
- Sturmian words are over a 2-letter alphabet.
- They are exactly the aperiodic infinite words of minimal complexity.

Episturmian words

- A natural generalization of Sturmian words to an arbitrary finite alphabet.
- Sturmian words are exactly the aperiodic episturmian words over a 2-letter alphabet.
Sturmian words

- Infinite words with $n + 1$ distinct factors of length n for each $n \in \mathbb{N}$.
- Sturmian words are over a 2-letter alphabet.
- They are exactly the aperiodic infinite words of minimal complexity.

Episturmian words

- A natural generalization of Sturmian words to an arbitrary finite alphabet.
- Sturmian words are exactly the aperiodic episturmian words over a 2-letter alphabet.
Sturmian words
- Infinite words with $n + 1$ distinct factors of length n for each $n \in \mathbb{N}$.
- Sturmian words are over a 2-letter alphabet.
- They are exactly the aperiodic infinite words of minimal complexity.

Episturmian words
- A natural generalization of Sturmian words to an arbitrary finite alphabet.
 - Sturmian words are exactly the aperiodic episturmian words over a 2-letter alphabet.
Sturmian words

- Infinite words with \(n + 1 \) distinct factors of length \(n \) for each \(n \in \mathbb{N} \).
- Sturmian words are over a 2-letter alphabet.
- They are exactly the aperiodic infinite words of minimal complexity.

Episturmian words

- A natural generalization of Sturmian words to an arbitrary finite alphabet.
- Sturmian words are exactly the aperiodic episturmian words over a 2-letter alphabet.
Sturmian words

- Infinite words with $n + 1$ distinct factors of length n for each $n \in \mathbb{N}$.
- Sturmian words are over a 2-letter alphabet.
- They are exactly the aperiodic infinite words of minimal complexity.

Episturmian words

- A natural generalization of Sturmian words to an arbitrary finite alphabet.
- Sturmian words are exactly the aperiodic episturmian words over a 2-letter alphabet.
Definition

An infinite word \(t \) is **episturmian** if:

- \(\Omega(t) \) is \textit{closed under reversal}, and
- \(t \) has at most one \textit{right special factor} of each length.

\(t \) is **standard** if all of its left special factors are prefixes of it.
Standard Episturmian Words

- Let \(t \) be a standard episturmian word over \(A \) and let

\[
U_1 = \varepsilon, \; U_2, \; U_3, \; U_4, \ldots
\]

be the sequence of its palindromic prefixes.

- \(\exists \) an infinite word \(\Delta(t) = x_1x_2x_3\ldots \; (x_i \in A) \) such that

\[
U_{n+1} = (U_nx_n)^{(+), \; n \in \mathbb{N}^+}
\]

where \(w^{(+)} \) is the shortest palindrome having \(w \) as a prefix.

- \(\Delta(t) \) is called the *directive word* of \(t \).
Let t be a standard episturmian word over A and let

$$u_1 = \varepsilon, \; u_2, \; u_3, \; u_4, \ldots$$

be the sequence of its palindromic prefixes.

∃ an infinite word $\Delta(t) = x_1x_2x_3 \cdots (x_i \in A)$ such that

$$u_{n+1} = (u_nx_n)^{(+)}, \quad n \in \mathbb{N}^+$$

where $w^{(+)}$ is the shortest palindrome having w as a prefix.

$\Delta(t)$ is called the **directive word** of t.
Let t be a standard episturmian word over A and let

$$u_1 = \varepsilon, \ u_2, \ u_3, \ u_4, \ldots$$

be the sequence of its palindromic prefixes.

∃ an infinite word $\Delta(t) = x_1x_2x_3\cdots (x_i \in A)$ such that

$$u_{n+1} = (u_nx_n)^{(+)}, \quad n \in \mathbb{N}^+$$

where $w^{(+)}$ is the shortest palindrome having w as a prefix.

$\Delta(t)$ is called the *directive word* of t.

Standard Episturmian Words
For each $a \in \mathcal{A}$, define the morphism Ψ_a on \mathcal{A} by

$$\Psi_a : \begin{cases} a & \mapsto a \\ x & \mapsto ax \end{cases} \text{ for all } x \in \mathcal{A} \setminus \{a\}.$$

All the morphisms Ψ_a generate by composition the monoid of pure epistandard morphisms.

- It includes the identity morphism $\text{Id}_{\mathcal{A}} = \text{Id}$.
- It consists of all the pure standard (Sturmian) morphisms when $|\mathcal{A}| = 2$.

Fine Words
For each $a \in \mathcal{A}$, define the morphism Ψ_a on \mathcal{A} by

$$
\Psi_a : \begin{cases}
 a & \mapsto a \\
 x & \mapsto ax
\end{cases} \text{ for all } x \in \mathcal{A} \setminus \{a\}.
$$

All the morphisms Ψ_a generate by composition the monoid of pure epistandard morphisms.

- It includes the identity morphism $\text{Id}_\mathcal{A} = \text{Id}$.
- It consists of all the pure standard (Sturmian) morphisms when $|\mathcal{A}| = 2$.
For each $a \in \mathcal{A}$, define the morphism Ψ_a on \mathcal{A} by

$$
\Psi_a : \begin{cases}
 a & \mapsto a \\
 x & \mapsto ax
\end{cases} \quad \text{for all } x \in \mathcal{A} \setminus \{a\}.
$$

All the morphisms Ψ_a generate by composition the \textit{monoid of pure epistandard morphisms}.

- It includes the \textit{identity morphism} $\text{Id}_{\mathcal{A}} = \text{Id}$.
- It consists of all the \textit{pure standard (Sturmian) morphisms} when $|\mathcal{A}| = 2$.

Amy Glen

Fine words
For each $a \in \mathcal{A}$, define the morphism Ψ_a on \mathcal{A} by

$$\Psi_a : \begin{cases} a & \mapsto a \\ x & \mapsto ax \text{ for all } x \in \mathcal{A} \setminus \{a\} \end{cases}.$$

All the morphisms Ψ_a generate by composition the \textit{monoid of pure epistandard morphisms}.

- It includes the \textit{identity morphism} $\text{Id}_{\mathcal{A}} = \text{Id}$.
- It consists of all the \textit{pure standard (Sturmian) morphisms} when $|\mathcal{A}| = 2$.
A characterization of standard episturmian words

An infinite word t is standard episturmian with $\Delta(t) = x_1x_2x_3 \cdots \ (x_i \in \mathcal{A}) \iff$ there exists an infinite sequence of infinite words $t^{(0)} = t, t^{(1)}, t^{(2)}, \ldots$ such that $t^{(i-1)} = \Psi_{x_i}(t^{(i)})$ for all $i \in \mathbb{N}^+$.

- Each $t^{(i)}$ is a standard episturmian word with $\Delta(t^{(i)}) = x_{i+1}x_{i+2}x_{i+3} \cdots$, the i-th shift of $\Delta(t)$.
- Define $\mu_n := \Psi_{x_1}\Psi_{x_2}\cdots\Psi_{x_n}, \quad \mu_0 = \text{Id}$.
- Then, the words

$$h_n := \mu_n(x_{n+1}), \quad n \in \mathbb{N},$$

are clearly prefixes of t.

Amy Glen

Fine words
A characterization of standard episturmian words

An infinite word t is standard episturmian with $\Delta(t) = x_1 x_2 x_3 \cdots \quad (x_i \in \mathcal{A}) \iff$ there exists an infinite sequence of infinite words $t^{(0)} = t$, $t^{(1)}$, $t^{(2)}$, \ldots such that $t^{(i-1)} = \psi_{x_i}(t^{(i)})$ for all $i \in \mathbb{N}^+$.

- Each $t^{(i)}$ is a standard episturmian word with $\Delta(t^{(i)}) = x_{i+1} x_{i+2} x_{i+3} \cdots$, the \textit{i-th shift} of $\Delta(t)$.
- Define $\mu_n := \psi_{x_1} \psi_{x_2} \cdots \psi_{x_n}$, $\mu_0 = \text{Id}$.
- Then, the words $h_n := \mu_n(x_{n+1})$, $n \in \mathbb{N}$, are clearly prefixes of t.

Amy Glen
Fine words
An infinite word t is standard episturmian with $\Delta(t) = x_1x_2x_3 \cdots$ ($x_i \in \mathcal{A}$) \iff there exists an infinite sequence of infinite words $t^{(0)} = t, t^{(1)}, t^{(2)}, \ldots$ such that $t^{(i-1)} = \Psi_{x_i}(t^{(i)})$ for all $i \in \mathbb{N}^+$.

- Each $t^{(i)}$ is a standard episturmian word with $\Delta(t^{(i)}) = x_{i+1}x_{i+2}x_{i+3} \cdots$, the \textit{i-th shift} of $\Delta(t)$.

- Define $\mu_n := \Psi_{x_1}\Psi_{x_2}\cdots\Psi_{x_n}$, $\mu_0 = \text{Id}$.

- Then, the words $h_n := \mu_n(x_{n+1})$, $n \in \mathbb{N}$, are clearly prefixes of t.

A characterization of standard episturmian words

Introduction

Preliminaries

Finite and Infinite Words

Episturmian words
A characterization of standard episturmian words

An infinite word t is standard episturmian with $\Delta(t) = x_1 x_2 x_3 \cdots$ ($x_i \in A$) \iff there exists an infinite sequence of infinite words $t^{(0)} = t, t^{(1)}, t^{(2)}, \ldots$ such that $t^{(i-1)} = \Psi_{x_i}(t^{(i)})$ for all $i \in \mathbb{N}^+$

- Each $t^{(i)}$ is a standard episturmian word with $\Delta(t^{(i)}) = x_{i+1} x_{i+2} x_{i+3} \cdots$, the i-th shift of $\Delta(t)$.
- Define $\mu_n := \Psi_{x_1} \Psi_{x_2} \cdots \Psi_{x_n}$, $\mu_0 = \text{Id}$.
- Then, the words $h_n := \mu_n(x_{n+1})$, $n \in \mathbb{N}$, are clearly prefixes of t.

Strict episturmian words

Definition

A standard episturmian word t over A, or any equivalent (episturmian) word, is said to be B-strict (or k-strict if $|B| = k$) if

$$\text{Alph}(\Delta(t)) = \text{Ult}(\Delta(t)) = B \subseteq A$$

- The k-strict episturmian words have complexity $(k - 1)n + 1$ for each $n \in \mathbb{N}$.
- Such words are exactly the k-letter Arnoux-Rauzy sequences.
Strict episturmian words

Definition

A standard episturmian word t over A, or any equivalent (episturmian) word, is said to be B-strict (or k-strict if $|B| = k$) if

$$\text{Alph}(\Delta(t)) = \text{Ult}(\Delta(t)) = B \subseteq A$$

- The k-strict episturmian words have complexity $(k - 1)n + 1$ for each $n \in \mathbb{N}$.
- Such words are exactly the k-letter Arnoux-Rauzy sequences.
A standard episturmian word t over \mathcal{A}, or any equivalent (episturmian) word, is said to be \mathcal{B}-strict (or k-strict if $|\mathcal{B}| = k$) if

$$\text{Alph}(\Delta(t)) = \text{Ult}(\Delta(t)) = \mathcal{B} \subseteq \mathcal{A}$$

The k-strict episturmian words have complexity $(k - 1)n + 1$ for each $n \in \mathbb{N}$.

Such words are exactly the k-letter Arnoux-Rauzy sequences.
Introduction

Preliminaries

- Finite and Infinite Words
- Episturmian words

Fine Words

- Definition
- Previous Results
- Lemma
- A Characterization of Fine Words
Fine Words

Definition

An infinite word t is **fine** if there exists an infinite word s such that, for any letter $a \in \text{Alph}(t)$ and order $<$ such that $a = \min(\text{Alph}(t))$, we have $\min(t) = as$.

Proposition (Pirillo 2005)

Let t be an infinite word over $\{a, b\}$. The following properties are equivalent:

(i) t is fine,

(ii) either t is a Sturmian word, or $t = v\mu(x)^\omega$ where μ is a pure standard Sturmian morphism on $\{a, b\}$, and v is a non-empty suffix of $\mu(x^p y)$ for some $p \in \mathbb{N}$ and $x, y \in \{a, b\}$ ($x \neq y$).
Fine Words

Definition

An infinite word t is fine if there exists an infinite word s such that, for any letter $a \in \text{Alph}(t)$ and order $<$ such that $a = \min(\text{Alph}(t))$, we have $\min(t) = as$.

Proposition (Pirillo 2005)

Let t be an infinite word over $\{a, b\}$. The following properties are equivalent:

(i) t is fine,

(ii) either t is a Sturmian word, or $t = v \mu(x)^\omega$ where μ is a pure standard Sturmian morphism on $\{a, b\}$, and v is a non-empty suffix of $\mu(x^p y)$ for some $p \in \mathbb{N}$ and $x, y \in \{a, b\}$ ($x \neq y$).
Introduction

Preliminaries
- Finite and Infinite Words
- Episturmian words

Fine Words
- Definition
- Previous Results
- Lemma
- A Characterization of Fine Words
Proposition (Justin & Pirillo 2002)

Let s be an infinite word over a finite alphabet \mathcal{A}. The following properties are equivalent:

(i) s is a standard Arnoux-Rauzy sequence,

(ii) for any $a \in \mathcal{A}$ and order $<$ such that $a = \min(\mathcal{A})$, we have $as = \min(s)$.

Proposition (Pirillo 2005)

Let s be an infinite word over a finite alphabet \mathcal{A}. The following properties are equivalent:

(i) s is standard episturmian,

(ii) for any $a \in \mathcal{A}$ and order $<$ such that $a = \min(\mathcal{A})$, we have $as \leq \min(s)$.
Proposition (Justin & Pirillo 2002)

Let s be an infinite word over a finite alphabet \mathcal{A}. The following properties are equivalent:

(i) s is a standard Arnoux-Rauzy sequence,

(ii) for any $a \in \mathcal{A}$ and order $<$ such that $a = \min(\mathcal{A})$, we have $as = \min(s)$.

Proposition (Pirillo 2005)

Let s be an infinite word over a finite alphabet \mathcal{A}. The following properties are equivalent:

(i) s is standard episturmian,

(ii) for any $a \in \mathcal{A}$ and order $<$ such that $a = \min(\mathcal{A})$, we have $as \leq \min(s)$.

Amy Glen

Fine words
Outline

1. Introduction

2. Preliminaries
 - Finite and Infinite Words
 - Episturmian words

3. Fine Words
 - Definition
 - Previous Results
 - Lemma
 - A Characterization of Fine Words

Fine words
Lemma

Let \(\mathcal{A} \) be a finite alphabet and let \(a \in \mathcal{A} \).
Suppose \(t, s \) are infinite words over \(\mathcal{A} \) such that

\[
t = \Psi_z(t^{(1)}) \text{ and } s = \Psi_z(s^{(1)}) \text{ for some } z \in \text{Alph}(t^{(1)}).\]

Then \(\min(t^{(1)}) = as^{(1)} \iff \min(t) = as \).

Remark

- If \(z \) is any letter (not necessarily in \(\text{Alph}(t^{(1)}) \)), then

\[
\min(t^{(1)}) = as^{(1)} \iff \min(t) = \begin{cases} zas & \text{if } z < a, \\ as & \text{if } z \geq a. \end{cases}
\]
Lemma

Let \mathcal{A} be a finite alphabet and let $a \in \mathcal{A}$. Suppose t, s are infinite words over \mathcal{A} such that

$$t = \Psi_z(t^{(1)}) \text{ and } s = \Psi_z(s^{(1)}) \text{ for some } z \in \text{Alph}(t^{(1)}).$$

Then

$$\min(t^{(1)}) = as^{(1)} \iff \min(t) = as$$

Remark

- If z is any letter (not necessarily in $\text{Alph}(t^{(1)})$), then

$$\min(t^{(1)}) = as^{(1)} \iff \min(t) = \begin{cases}
zas & \text{if } z < a, \\
as & \text{if } z \geq a.
\end{cases}$$

- Lemma: a special case of this with $z \in \text{Alph}(t^{(1)}) \subseteq \mathcal{A}$.

Amy Glen
Fine words
Lemma

Let \mathcal{A} be a finite alphabet and let $a \in \mathcal{A}$.
Suppose t, s are infinite words over \mathcal{A} such that

$$t = \Psi_z(t^{(1)}) \quad \text{and} \quad s = \Psi_z(s^{(1)})$$

for some $z \in \text{Alph}(t^{(1)})$.

Then

$$\min(t^{(1)}) = as^{(1)} \iff \min(t) = as$$

Remark

- If z is any letter (not necessarily in $\text{Alph}(t^{(1}))$), then

$$\min(t^{(1)}) = as^{(1)} \iff \min(t) = \begin{cases} zas & \text{if } z < a, \\ as & \text{if } z \geq a. \end{cases}$$

- Lemma: a special case of this with $z \in \text{Alph}(t^{(1)}) \subseteq \mathcal{A}$.
Let $\mathcal{A} = \{a, b, c\}$ with $a < b < c$.

Example (1)

Suppose f is the Fibonacci word over $\{a, b\}$ (i.e., the standard episturmian word directed by $(ab)^\omega$).

- Then $\min(f) = af$.
- Hence $\min(\psi_c(f)) = a\psi_c(f)$.

Example (2)

Suppose f' is the Fibonacci word over $\{b, c\}$.

- Then $\min(f') = bf'$.
- Hence $\min(\psi_a(f')) = ab\psi_a(f')$.
Let \(A = \{a, b, c\} \) with \(a < b < c \).

Example (1)

Suppose \(f \) is the Fibonacci word over \(\{a, b\} \) (i.e., the standard episturmian word directed by \((ab)^\omega \)).

- Then \(\min(f) = af \).
- Hence \(\min(\psi_c(f)) = a\psi_c(f) \).

Example (2)

Suppose \(f' \) is the Fibonacci word over \(\{b, c\} \).

- Then \(\min(f') = bf' \).
- Hence \(\min(\psi_a(f')) = ab\psi_a(f') \).
Let $A = \{a, b, c\}$ with $a < b < c$.

Example (1)

Suppose f is the Fibonacci word over $\{a, b\}$ (i.e., the standard episturmian word directed by $(ab)^\omega$).

- Then $\min(f) = af$.
- Hence $\min(\psi_c(f)) = a\psi_c(f)$.

Example (2)

Suppose f' is the Fibonacci word over $\{b, c\}$.

- Then $\min(f') = bf'$.
- Hence $\min(\psi_a(f')) = ab\psi_a(f')$.
Let $\mathcal{A} = \{a, b, c\}$ with $a < b < c$.

Example (1)

Suppose f is the Fibonacci word over $\{a, b\}$ (i.e., the standard episturmian word directed by $(ab)^\omega$).

- Then $\min(f) = af$.
- Hence $\min(\psi_c(f)) = a\psi_c(f)$.

Example (2)

Suppose f' is the Fibonacci word over $\{b, c\}$.

- Then $\min(f') = bf'$.
- Hence $\min(\psi_a(f')) = ab\psi_a(f')$.

Amy Glen

Fine words
Let $\mathcal{A} = \{a, b, c\}$ with $a < b < c$.

Example (1)

Suppose f is the Fibonacci word over $\{a, b\}$ (i.e., the standard episturmian word directed by $(ab)^\omega$).

- Then $\min(f) = af$.
- Hence $\min(\psi_c(f)) = a\psi_c(f)$.

Example (2)

Suppose f' is the Fibonacci word over $\{b, c\}$.

- Then $\min(f') = bf'$.
- Hence $\min(\psi_a(f')) = ab\psi_a(f')$.
Let $A = \{a, b, c\}$ with $a < b < c$.

Example (1)

Suppose f is the Fibonacci word over $\{a, b\}$ (i.e., the standard episturmian word directed by $(ab)^\omega$).

- Then $\min(f) = af$.
- Hence $\min(\psi_c(f)) = a\psi_c(f)$.

Example (2)

Suppose f' is the Fibonacci word over $\{b, c\}$.

- Then $\min(f') = bf'$.
- Hence $\min(\psi_a(f')) = ab\psi_a(f')$.
Let $A = \{a, b, c\}$ with $a < b < c$.

Example (1)

Suppose f is the Fibonacci word over $\{a, b\}$ (i.e., the standard episturmian word directed by $(ab)^\omega$).
- Then $\min(f) = af$.
- Hence $\min(\psi_c(f)) = a\psi_c(f)$.

Example (2)

Suppose f' is the Fibonacci word over $\{b, c\}$.
- Then $\min(f') = bf'$.
- Hence $\min(\psi_a(f')) = ab\psi_a(f')$.

Amy Glen Fine words
Outline

1. Introduction

2. Preliminaries
 - Finite and Infinite Words
 - Episturmian words

3. Fine Words
 - Definition
 - Previous Results
 - Lemma
 - A Characterization of Fine Words
A Characterization of Fine Words

Notation
Let \(x_p \) denote the prefix of length \(p \) of an infinite word \(x \).

Theorem
Let \(t \) be an infinite word with \(\text{Alph}(t) = A \).
Then, \(t \) is fine if and only if one of the following holds:

(i) \(t \) is a strict episturmian word;
(ii) \(t = v\mu(f) \) where \(f \) is a \(B \)-strict standard episturmian word with \(B = A \setminus \{x\} \), \(\mu \) is a pure epistandard morphism on \(A \), and \(v \) is a non-empty suffix of \(\mu(\tilde{f}_p x) \) for some \(p \in \mathbb{N} \).
A Characterization of Fine Words

Notation

Let x_p denote the prefix of length p of an infinite word x.

Theorem

Let t be an infinite word with $\text{Alph}(t) = A$.
Then, t is fine if and only if one of the following holds:

(i) t is a strict episturmian word;

(ii) $t = v\mu(f)$ where f is a B-strict standard episturmian word with $B = A \setminus \{x\}$, μ is a pure epistandard morphism on A, and v is a non-empty suffix of $\mu(f_p x)$ for some $p \in \mathbb{N}$.
Let $A = \{a, b, c\}$.

Example

Suppose f is the Fibonacci word over $\{a, b\}$. Then, the following infinite words are fine.

- $f = abaababaabaaba \ldots$
- $cf = cabaababaabaaba \ldots$
- $\tilde{f}_4 cf = aabacabaababaab
Let $\mathcal{A} = \{a, b, c\}$.

Example

Suppose f is the Fibonacci word over $\{a, b\}$. Then, the following infinite words are fine.

- $f = abaababaabaaba\ldots$
- $cf = cabaababaabaaba\ldots$
- $\tilde{f}_4 cf = aabacabaababaabaaba\ldots$
- $\psi_a(f) = aabaaabaabaaabaaaba\ldots$
- $\psi_c(cf) = ccacbcacacbcacbcacbcacacbcacacbcaca\ldots$
- $\psi_c(\tilde{f}_4 cf) = cacacbcacacbcacacbcacbcacacbcaca\ldots$
Let $\mathcal{A} = \{a, b, c\}$.

Example

Suppose f is the Fibonacci word over $\{a, b\}$. Then, the following infinite words are fine.

- $f = abaababaabaaba\cdots$
- $cf = cabaababaabaaba\cdots$
- $\widetilde{f}_4cf = aabacabaababaabaaba\cdots$
- $\psi_a(f) = aabaaabaabaabaabaabaaba\cdots$
- $\psi_c(cf) = ccacbcacacbcacbcacacbcacbcacbcacbcacbcacbc\cdots$
- $\psi_c(\widetilde{f}_4cf) = cacacbcacccacbcacacbcacbcacbcacbcacbcacbcacbcacbcaca\cdots$
Let \(\mathcal{A} = \{a, b, c\} \).

Example

Suppose \(f \) is the Fibonacci word over \(\{a, b\} \). Then, the following infinite words are fine.

\[
\begin{align*}
 f &= abaababaabaaba \cdots \\
 cf &= cabaababaabaaba \cdots \\
 \tilde{f}_4 cf &= aabacabaababaabaaba \cdots \\
 \psi_a(f) &= aabaaabaabaaabaaabaabaaaba \cdots \\
 \psi_c(cf) &= ccacbcacacbc
Let $\mathcal{A} = \{a, b, c\}$.

Example

Suppose f is the Fibonacci word over $\{a, b\}$. Then, the following infinite words are fine.

- $f = abaababaabaaba \cdots$
- $cf = cabaababaabaaba \cdots$
- $\tilde{f}_4 cf = aabacabaababaabaaba \cdots$
- $\Psi_a(f) = aabaaabaabaaabaaaabaaba \cdots$
- $\Psi_c(cf) = ccacbcacacbcacbcacacbcacacbcacacbca \cdots$
- $\Psi_c(\tilde{f}_4 cf) = cacacbcacccacbcacacbcacbcacacbcacacbcaca \cdots$
Let $\mathcal{A} = \{a, b, c\}$.

Example

Suppose f is the Fibonacci word over $\{a, b\}$. Then, the following infinite words are **fine**.

- $f = abaababaabaaba\cdots$
- $cf = cabaababaabaaba\cdots$
- $\tilde{f}_4 cf = aabacabaababaabaabaaba\cdots$
- $\psi_a(f) = aabaaabaabaaabaaaba\cdots$
- $\psi_c(cf) = ccacbcacacbcacbcacacbcacacbcac\cdots$
- $\psi_c(\tilde{f}_4 cf) = cacacbcacacbcacacbcacbcacbcacbcac\cdots$
Let $\mathcal{A} = \{a, b, c\}$.

Example

Suppose f is the Fibonacci word over $\{a, b\}$. Then, the following infinite words are fine.

- $f = abaababaabaaba \cdots$
- $cf = cabaababaabaaba \cdots$
- $\tilde{f}_4 cf = aabacabaababaabaaba \cdots$
- $\Psi_a(f) = aabaaabaabaaabaaabaaba \cdots$
- $\Psi_c(cf) = cacbcacacbcacbcacbcacbcacbcac \cdots$
- $\Psi_c(\tilde{f}_4 cf) = cacbcacacbcacbcacbcacbcacbcacbcaca \cdots$
Let $A = \{a, b, c\}$.

Example

Suppose f is the Fibonacci word over $\{a, b\}$. Then, the following infinite words are fine.

- $f = abaababaabaaba \cdots$
- $cf = cabaababaabaaba \cdots$
- $\tilde{f}_4cf = aabacabaababaabaaba \cdots$
- $\psi_a(f) = aabaaabaabaaabaaabaaba \cdots$
- $\psi_c(cf) = cacbcacacbcacbcacbcacacbcacacbca \cdots$
- $\psi_c(\tilde{f}_4cf) = cacbcacacbcacacbcacbcacacbcacacbcacacbca \cdots$