Rickettsiales and rickettsial diseases in Australia

Leonard Heinz Izzard

Bachelor of Applied Science (Honours)

This thesis is presented for the degree of Doctor of Philosophy of Murdoch University

2010
Declaration

I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary institution.

…………………………

Leonard Heinz Izzard
Abstract

Currently, there are 12 known *Rickettsiales* species in Australia. However, research into the diversity and range of these agents in Australia is still far from complete.

A sero-epidemiological study was undertaken around the city of Launceston in Tasmania, Australia to determine the level of exposure to spotted fever group (SFG) rickettsiae among the local cat and dog population. The study showed that over 50% of the dogs and cats tested were positive for SFG rickettsiae antibodies. However, no correlation was observed between the animals’ health and seropositivity at the time of testing.

Ixodes tasmani ticks collected from Tasmanian devils in Tasmania were tested for the presence of SFG and typhus group (TG) rickettsiae using a specific real-time PCR (qPCR), and 55% were found to be positive. The *gltA*, *rompA*, *rompB* and *sca4* genes were then sequenced. Using the current criteria this new rickettsia qualified as a *Candidatus* species, and was named *Candidatus* Rickettsia tasmanensis, after the location from which it was first detected.

Soft ticks of the species *Argas dewae* were collected from bat roosting boxes north of Melbourne. Of the ten ticks collected, seven (70%) were positive for SFG rickettsiae using the qPCR mentioned above. An isolate was obtained using cell culture isolation methods and the *rrs*, *gltA*, *rompA*, *rompB* and *sca4* genes were sequenced. Using the current criteria this new rickettsia qualified as
a novel species, and was tentatively named *Rickettsia argasii* sp. nov. after the tick genus from which it was isolated.

Four family members and their neighbour living in metropolitan Victoria became ill after exposure to a flea-infested kitten. Initial serological analysis indicated a typhus group (TG) rickettsial infection. However, testing of fleas from the group of cats in Lara, Victoria, where the kitten originated, revealed the presence of *R. felis*, the agent of cat flea typhus. This was the first case of human infection with *R. felis* in Australia and the first detection of *R. felis* in fleas in Victoria.

A tourist returning to Australia from the United Arab Emirates was diagnosed with a scrub typhus group (STG) rickettsial infection and the agent was isolated from their blood. Analysis of the *rrs* and *47kDa* genes showed significant divergence compared to all available strains of *Orientia tsutsugamushi*. Due to the degree of genetic divergence and the geographically unique origin of this isolate it was considered to be a new species, which has been tentatively named *Orientia chuto*, with ‘chuto’ being Japanese for ‘Middle East’.

Dogs in central and northern Australia were tested for *Anaplasma platys* using a specifically designed real-time PCR (qPCR) assay. Of the 68 dogs tested, 27 (40%) were positive for *A. platys* DNA, including six dogs from Western Australia. This was the first report of *A. platys* in Western Australia.

These studies offer an insight into the range and diversity of Rickettsiales and rickettsial diseases previously unrecognised in Australia.
Table of Contents

Rickettsiales and rickettsial diseases in Australia .. i

Declaration .. i

Abstract .. ii

Table of Contents ... iv

List of Figures ... x

List of Tables ... xiii

Acknowledgements .. xiv

Preface ... xvi

Abbreviations ... xx

Chapter 1. Literature Review ... 1

1.1. Introduction .. 1

1.2. Taxonomy and Pathogenicity of the order *Rickettsiales* 4

1.2.1. *Anaplasmataceae* .. 4

1.2.1.1. *Anaplasma* ... 4

1.2.1.2. *Ehrlichia* ... 5

1.2.2. *Rickettsiaceae* ... 6

1.2.2.1. *Rickettsia* .. 6

1.2.2.2. *Orientia* ... 7

1.3. Genomics of the order *Rickettsiales* ... 9

1.4. Methods of identification and characterisation of *Rickettsiales* 13

1.4.1. Staining ... 13

1.4.2. Serology ... 13
1.4.3. Isolation.. 14
1.4.4. Polymerase Chain Reaction (PCR).. 14
 1.4.4.1. Conventional PCR ... 15
 1.4.4.2. Real-time PCR (qPCR).. 15
 1.4.4.3. Molecular speciation.. 16
1.5. Geographic distribution of the Rickettsiales................................. 18
1.6. Rickettsiales species in Australia.. 18
 1.6.1. Anaplasma.. 18
 1.6.1.1. Australian (cattle) tick fever (Anaplasma marginale) 18
 1.6.1.2. Canine infectious cyclic thrombocytopenia (Anaplasma platys)
 ... 19
 1.6.2. Ehrlichia .. 20
 1.6.3. Rickettsia.. 20
 1.6.3.1. Murine typhus (Rickettsia typhi)....................................... 22
 1.6.3.2. Queensland tick typhus (Rickettsia australis)............... 25
 1.6.3.3. Flinders island spotted fever (R. honei) 27
 1.6.3.4. Australian spotted fever (R. honei strain marmionii) 28
 1.6.4. Orientia.. 30
 1.6.4.1. Scrub typhus (Orientia tsutsugamushi)............................ 30
 1.6.5. This Study.. 32

Chapter 2. Materials and Methods .. 34
 2.1. Rickettsial Isolation... 34
 2.1.1. Blood sample processing .. 34
 2.1.2. Tick sample processing... 34
 2.1.3. Flea sample processing... 35
2.2. Cell Culture .. 35
2.3. Freezing Samples .. 36
2.4. Molecular Methods .. 37
 2.4.1. DNA sample preparation .. 37
 2.4.2. Primer/probe design and validation .. 37
 2.4.2.1. Primer/probe set design ... 37
 2.4.2.2. Testing Sensitivity .. 38
 2.4.2.3. Testing Specificity .. 39
 2.4.3. qPCR detection .. 39
 2.4.4. Conventional PCR ... 41
 2.4.5. Sequencing .. 45
 2.4.6. Bioinformatics ... 45
2.5. Serology .. 46
 2.5.1. Microimmunofluorescence ... 46

Chapter 3. A serological prevalence study for rickettsial exposure of cats and dogs in Launceston, Tasmania, Australia ... 48
 3.1. Abstract ... 48
 3.2. Introduction .. 49
 3.3. Materials and methods .. 50
 3.3.1. Sample and data collection ... 50
 3.3.2. Detection of antibodies to Spotted Fever Group Rickettsia 51
 3.3.3. Statistical analysis of serological results 51
 3.4. Results ... 51
 3.4.1. Serology Results ... 51
 3.4.2. Statistical analysis ... 52
Chapter 4. **Novel Rickettsia (Candidatus Rickettsia tasmanensis) in Tasmania, Australia**

4.1. Abstract 57

4.2. Introduction... 58

4.3. Methods.. 58

4.4. Results.. 59

4.5. Discussion... 63

Chapter 5 **Isolation of Rickettsia argas sp. nov. from the bat tick Argas dewae**

5.1. Abstract .. 65

5.2. Introduction... 65

5.3. Materials and methods 66

5.4. Results.. 66

5.5. Discussion... 73

Chapter 6. **First reported human cases of Rickettsia felis (cat flea typhus) in Australia**

6.1. Abstract .. 75

6.2. Introduction... 75

6.3. Case Study.. 77

6.4. Methods.. 80

6.4.1. Serology.. 80

6.4.2. PCR... 80

6.4.3. Molecular Characterisation...................... 81

6.4.4. Attempted Isolation and Culture 81
Chapter 6. Results.. 82

6.5. Serology ... 82
6.5.2. Molecular Analysis ... 83
6.5.3. Attempted Isolation and Culture ... 84

6.6. Discussion ... 85

Chapter 7. Isolation of a highly variant Orientia species (O. chuto sp. nov.) from a patient returning from Dubai ... 87

7.1. Abstract ... 87
7.2. Introduction .. 88
7.3. Clinical case history ... 90
7.4. Materials and methods .. 93

7.4.1. Microimmunofluorescence assay (IFA) 93
7.4.2. Culture .. 93
7.4.3. DNA extraction and PCR assays .. 93
7.4.3.1. 16S rRNA gene .. 93
7.4.3.2. 47kDa gene ... 93
7.4.4. Sequencing .. 94
7.4.5. qPCR design .. 95

7.5. Results ... 95

7.5.1. Serology .. 95
7.5.2. Culture .. 96
7.5.3. Molecular analysis .. 96
7.5.4. qPCR .. 99

7.6. Discussion ... 100
Chapter 8. *Anaplasma platys* in Australian dogs detected by a novel real-time PCR assay. ... 104

8.1. Abstract .. 104

8.2. Introduction ... 104

8.3. Methods .. 106

8.3.1. Probe Design .. 106

8.3.2. Assay Optimisation .. 106

8.3.3. Sample Preparation ... 106

8.3.4. PCR reaction .. 107

8.4. Results .. 107

8.4.1. Assay Optimisation .. 107

8.4.2. PCR Results .. 108

8.5. Discussion ... 109

Chapter 9. Concluding Remarks .. 112

Appendices .. 118

Appendix 1: Mathematical determination of copy numbers 118

References ... 119
List of Figures

Figure 1. Phylogenetic relationship of members of the order *Rickettsiales* adapted from the Taxonomy browser within the NCBI website (http://www.ncbi.nlm.nih.gov) showing the order (red), family (purple), genus (blue) and species group (orange)...3

Figure 2. Flow diagram of phylogenetic classification of *Rickettsia* adapted from Fournier et al.81 ..17

Figure 3. Map of Tasmania, Australia, showing number of positive (black) and negative (white) ticks and their locations. The question mark indicates unknown locations. A total of 55% of the ticks were positive for a spotted fever group rickettsia..60

Figure 4. Phylogenetic tree showing the relationship of a 4,834-bp fragment of the outer membrane protein B gene of *Candidatus* Rickettsia tasmanensis (in boldface) compared to all validated rickettsia species. The tree was prepared using the neighbor-joining algorithm within the MEGA 4 software245. Bootstrap values are indicated at each node. Scale bar indicates 2% nucleotide divergence. ..62

Figure 5. Phylogenetic tree showing the relationship of a 1,098bp fragment of the *gltA* gene of *Rickettsia argasii* sp. nov. to all validated rickettsial species. The tree was prepared using the neighbor-joining algorithm, within the Mega 4 software. Bootstrap values are indicated at each node. The scale bar represents a 2% nucleotide divergence. ..68
Figure 6. Phylogenetic tree showing the relationship of a 4,881bp fragment of the rOmpB gene of *Rickettsia argasii* sp. nov. to all validated rickettsial species. The tree was prepared using the neighbor-joining algorithm, within the Mega 4 software. Bootstrap values are indicated at each node. The scale bar represents a 5% nucleotide divergence.

Figure 7. Phylogenetic tree showing the relationship of a 530bp fragment of the rOmpA gene of *Rickettsia argasii* sp. nov. to all validated rickettsial species. The tree was prepared using the neighbor-joining algorithm, within the Mega 4 software. Bootstrap values are indicated at each node. The scale bar represents a 10% nucleotide divergence.

Figure 8. Phylogenetic tree showing the relationship of a 1413bp fragment of the rrs gene of *Rickettsia argasii* sp. nov. to all validated rickettsial species. The tree was prepared using the neighbor-joining algorithm, within the Mega 4 software. Bootstrap values are indicated at each node. The scale bar represents a 0.2% nucleotide divergence.

Figure 9. Phylogenetic tree showing the relationship of a 2,901bp fragment of the sca4 gene of *Rickettsia argasii* sp. nov. to all validated rickettsial species. The tree was prepared using the neighbor-joining algorithm, within the Mega 4 software. Bootstrap values are indicated at each node. The scale bar represents a 2% nucleotide divergence.

Figure 10. A condensed phylogenetic tree showing the relationship of a 1077bp fragment of the gltA gene of *Rickettsia felis* (Lara) among other validated rickettsial species, with the core spotted fever group rickettsiae truncated. The tree was prepared using the neighbor-joining algorithm, within the Mega 4 software.
software. Bootstrap values are indicated at each node. The scale bar represents a 2% nucleotide divergence. .. 84

Figure 11. A regional map showing the distribution of scrub typhus and the location of Dubai within the United Arab Emirates. 89

Figure 12. Eschar on the abdomen of the patient. ... 91

Figure 13. Scrub Typhus serology, showing a marked change in antibody titres to three strains of O. tsutsugamushi over a 57 day period. 92

Figure 14. Phylogenetic trees showing the relationship between the 16S rRNA and 47kDa genes of Orientia chuto strain Churchill to various O. tsutsugamushi strains. The tree was prepared using the neighbor-joining algorithm, within the Mega 4 software. Bootstrap values are indicated at each node. The scale bars represent a 0.2% and 2.0% nucleotide divergence for the 16S rRNA and 47kDa gene respectively... 98

Figure 15. A standard curve showing the C_t versus the number of copies of the template containing plasmid. ... 99

Figure 16. Standard curve showing the relative C_t versus the number of copies of the template containing plasmid... 108

Figure 17: The geographic distribution and number of positive and total A. platys samples collected in Australia. .. 109
List of Tables

Table 1. Current list of validated rickettsial species. ... 11
Table 2. Current list of validated *Anaplasma* and *Ehrlichia* species................. 12
Table 3. Name, conditions and literature references for oligonucleotides used for conventional PCR. .. 43
Table 4. Seropositivity for Spotted Fever Group rickettsiae in dog and cat serum tested at 1/50, 1/100 and 1/200 dilutions showing a lack of statistical relationship (p>0.05) between clinically sick animals and seropositive animals. .. 53
Table 5. GenBank accession numbers of additional sequences used in this study. .. 59
Table 6. Serology results from five patients and a cat post-exposure to a rickettsial agent. ... 83
Table 7. Primer sequences used to amplify the 47 kDa genes (Richards et al.). .. 94
Table 8. qPCR primer and probe set sequences targeting the 16S rRNA gene. .. 95
Table 9. Percentage pairwise divergence plot of *O. chuto* strain Churchill with various strains of *O. tsutsugamushi* showing the significant level of divergence of *O. chuto* strain Churchill. ... 97
Acknowledgements

I would first like to thank my supervisors A/Prof. John Stenos and A/Prof. Stephen Graves from the Australian Rickettsial Reference Laboratory, and Prof. Stan Fenwick from the School of Veterinary and Biomedical Science, Murdoch University, for their patience and support over the previous few years. I would especially like to thank John and Stephen for offering their experience and ideas when I was problem solving and for reviewing my drafts over the years. I would also like to thank the Australian Rickettsial Reference Laboratory and Murdoch University for their financial support throughout my candidature.

Within the Australian Rickettsial Reference Laboratory I would first like to thank Chelsea Nguyen for teaching me serological and culture methods and Michelle Lockhart for her support in assisting me to brainstorm. Furthermore, I would like to thank all of the staff at the Australian Rickettsial Reference Laboratory for their support and friendship.

I would also like to thank collaborators and colleagues who have assisted me with most of my chapters. These include for chapter three, Helen Owen for providing the cat control sera. For chapter 4, I would like to thank Ian Norton, his colleagues, and Dydee Mann for collecting ticks from sites in Tasmania. I would also like to thank Ian Beveridge for his assistance with tick speciation. For chapter five, I would like to thank Lisa Evans for supplying me with the initial tick samples and contacts, and Natasha Schedvin, Robert Bender, Marissa Izzard and Stephen Weste for assisting me with collecting ticks. For chapter six,
I would like to thank Molly Williams and Julian Kelly for bringing this interesting case to my attention and for supplying me with the case study. I would also like to thank Aminul Islam for his assistance with attempted isolation. For Chapter seven, I would like to thank Andrew Fuller for bringing this case to my attention and supplying the case study. As well, I would like to thank Stuart Blacksell, Daniel Paris, Al Richards, Nuntipa Aukkanit, and Ju Jiang for their assistance with sequencing various genes and Chelsea Nguyen for her assistance in culturing this isolate. Finally, for chapter eight, I would like to thank Graeme Brown for supplying me with dog blood samples used in this study.

On a personal note I would like to thank all of my family including, Mum and Dad, Debbie, Steve, David, Sue and my sisters Jo and Bianca. They may not have always known what my projects entailed, nevertheless they always supported me and had faith that I would succeed.

Most of all I would like to thank my new wife Marissa Izzard (née McCaw) for her support throughout not only my PhD but my entire University education. She has been my rock when I was lost for direction and was always there to show me the positives when I was feeling negative. I would also like to thank her for helping to support me financially over my schooling life and for looking at more drafts than I can remember.
Preface

The work in this thesis is my own research. Collaborating authors mentioned in chapters 3 were mainly responsible for sample collection and manuscript revision prior to submission, while in chapter 4, collaborating authors were primarily responsible for manuscript revision prior to submission. The contributions of all other parties are mentioned in the acknowledgments section of this thesis.

Original manuscripts

Izzard L, Stenos J, Fenwick S, Graves S. Rickettsiales and rickettsial diseases in Australia. In Preparation for submission to Annals of the ACTM.

Original published abstracts

Izzard L, Fuller A, Blacksell S, Paris D, Aukkanit N, Graves S, Fenwick S, Nguyen C, Day N, Stenos J. Isolation of a highly variant Orientia sp. from a patient returning from Dubai – **Poster presentation at the 5th International Conference on Rickettsiae and Rickettsial Diseases, Marseille, France (2008)**

Izzard L, Williams M, Kelly J, Graves S, Fenwick S, Stenos J. First cases of *Rickettsia felis* (cat flea typhus) in Australia - **Poster presentation at Murdoch University WA (2009)**

Co-authored manuscripts

Co-authored published abstracts

Abbreviations

AG – Ancestral group

AGRF – The Australian Genomic Research Facility

ASF – Australian spotted fever

ATF – Australia tick fever

BHQ-1 – Black hole quencher-1

Bp – Base pairs

CCFM – Cell culture freezing media

CF – Complement Fixation

C_i – Threshold cycle

DNA – Deoxyribonucleic acid

dNTP – Deoxyribonucleic triphosphate

EDTA – Ethylenediaminetetraacetic Acid

ELISA – Enzyme-linked immuno sorbent assay

FISF – Flinders island spotted fever

FITC – Fluorescein isothiocyanate

gltA – Citrate synthase gene

HEPES – 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
IFA – Immunofluorescent assay
kDa – Kilodalton
NCBI – National Centre for Biotechnology Information
NSW – New South Wales
NTC – No template control
OPNP – Organ Pipes National Park
PBMC – Peripheral Blood Mononuclear Cells
PBS – Phosphate buffered saline
PCR – Polymerase chain reaction
QLD – Queensland
qPCR – Real-time PCR
QTT – Queensland tick typhus
RBC – Red blood cell
RNA – Ribonucleic acid
rompA – Rickettsial outer membrane protein A gene
rompB – Rickettsial outer membrane protein B gene
RPM – Revolutions per minute
rRNA – Ribosomal RNA.
rrs – 16S ribosomal RNA gene
sca4 – The rickettsial gene D / PS–120 gene

SDS – Sodium dodecyl sulphate

SFG – Spotted fever group

TAE – Tris-acetate-EDTA

TG – Typhus group

Tm – Melting temperature

TRG – Transitional group