Water Flow in Seagrass Ecosystems

by

Michael van Keulen

This thesis is presented for the degree of
Doctor of Philosophy

Murdoch University
1998
CANDIDATE’S DECLARATION

I declare that this thesis is entirely my own account of my research and has not been submitted for a degree at any other university.

[Signature]
Abstract

Water motion has been shown to influence almost every aspect of the ecology of seagrass communities; seagrass communities have likewise been shown to significantly influence water movement around them. This thesis examines the important role of water motion on seagrass ecosystems by integrating field and laboratory studies of several aspects of seagrass ecology influenced by water motion.

To facilitate the study of hydrodynamics of seagrass ecosystems, a solid state electronic current meter was designed and developed, using thermistors as flow sensing devices. Important characteristics of the meters include: no moving parts, compact size, high sensitivity (resolution better than ± 0.5 cm s⁻¹), and high sampling rate (greater than 0.2 Hz). Deployment of the meters in field measurements provided reliable and meaningful results of flow conditions through seagrass canopies, and they show great potential for use in many studies of marine ecology.

Field studies of water velocity profiles revealed significant differences between the shapes of profiles of different seagrass species, particularly between species of Posidonia and Amphibolis. Of particular note is the observation of a region of high water velocity beneath the leafy canopy of Amphibolis, which was not present in the Posidonia plants.

Water velocity profile measurements, sediment grain size analyses and standing stock measurements were conducted across an exposure gradient in a Posidonia sinuosa meadow. These studies revealed that, while the exposed location experienced a higher ambient water velocity than the sheltered site, the baffling influence of the seagrass canopy reduced the water velocity to approximately the same at both sites, within the meadow, although the effects varied seasonally. It was also observed that the seagrass meadow produced apparent skimming flow under the low flow conditions measured at the sheltered location; this phenomenon reflects the capacity for flow redirection over the canopy, and has important implications for the sub-canopy ecosystem and the protective role of seagrasses on the seabed.

Field and laboratory studies on the role of seagrass density on the hydrodynamic nature of seagrass ecosystems revealed that water velocity profiles through meadows of reduced densities, and different shoot arrangements, were markedly different to “natural” profiles, implying the
existence of a “critical density” (approximately 25% of natural meadow density) with regard to canopy hydraulics.

The role of water motion at an individual leaf scale was investigated with a series of laboratory flume studies of photosynthetic rates of seagrass and algae. The results show that the response of photosynthetic rate to water velocity depends very much on the plant species, with the algae markedly more productive (on a unit chlorophyll basis) than the seagrasses tested. Increases in photosynthetic rate were observed at water velocities above approximately 2.5 cm s\(^{-1}\); negligible photosynthetic activity was observed below this velocity. Calculation of P v. I curves indicated that the Posidonia species had high I\(_k\) values at low velocities (1360 μmol quanta m\(^{-2}\) s\(^{-1}\) for P. australis and 250.8 μmol quanta m\(^{-2}\) s\(^{-1}\) for P. sinuosa at 1.58 cm s\(^{-1}\)), which decreased with increasing water velocity (to 138.9 and 24.77 μmol quanta m\(^{-2}\) s\(^{-1}\) for P. australis and P. sinuosa respectively), while the algal species had relatively constant values of I\(_k\) across all water velocities (85.42 to 312.7 μmol quanta m\(^{-2}\) s\(^{-1}\) for Ulva lactuca and 169.7 to 573.9 μmol quanta m\(^{-2}\) s\(^{-1}\) for Laurencia cruciata). Dye visualization studies showed that the algae remained quite rigid at all the velocities tested, while the seagrass leaves compressed as velocity increased. This resulted in an increased rate of turbulence creation by the algae, which is believed to enhance photosynthetic rates, through improved nutrient exchange rates across the boundary layer adjacent to the thallus.

Further dye visualization studies revealed the significance of blade morphology on the creation of microscale turbulence at the surface of seagrass leaves. Epiphytic growth on seagrass leaves was observed to play an important role in breaking up water flow across the leaf surface, thereby enhancing the creation of microscale turbulence.

From these studies, it is clear that water motion influences all aspects of the functioning of all components of seagrass communities, playing a role in nutrient supply, reproduction, physical stability, temperature and metabolic functions. The influence of seagrass meadows on coastal hydrodynamics is also apparent, with potential impacts on sediment stability, recruitment of benthic species and coastal erosion. This thesis has clearly demonstrated that water motion is an important parameter in seagrass ecology, and requires serious consideration in seagrass research, conservation and rehabilitation programmes.
Acknowledgements

All projects of this nature require copious quantities of assistance in all manner of things, and I will be the first to admit I am no island.

My sincere thanks go to my supervisor, Michael Borowitzka, who first sparked my interest in seagrasses; who kept the academic fires burning on my behalf; who gave me the time to work it all out; and who believed in my naïve optimism through all the years.

Eric Paling has been a wonderful friend and mentor, giving generously of his time, energy and enthusiasm in many lively discussions and readings of thesis drafts. His constant support and encouragement was greatly appreciated, and gratefully received.

To Di Walker, who kindly invited me to participate in the ARC-funded seagrass density manipulation project at Penguin Island, and gave generously of her time for helpful discussions, a special thank you.

Thanks to Hugh Kirkman, Roger Lethbridge, Jenny Davis, Bruce Hegge, Evamaria Koch, Gary Kendrick, Andy Grice, Erik van Keulen and Lesley Brain for useful discussions on water flow, seagrasses and how it might all work. Special thanks to Jennifer Verduin, who helped to explain the less biological aspects of water flow, and made me feel less of a stranger in a strange land.

Many people have helped me in the field, “to keep an eye on me”, and put up with conditions which were often cold, wet, uncomfortable and noisy, when they thought they were coming out on a little boat cruise; some even came out for a second time! Special thanks to Lesley, Doris, Ray, Andy, Erik, Tim B., Tim C., Claudia, and numerous students who helped me out during their spare time at the MEB field camps.

Thank you to my family for their support through what has been an obsession. My parents have helped me considerably throughout this venture, both logistically and emotionally; their encouragement and boundless faith over the years has helped keep me on track. Special thanks to Jess, Jayme and Ashlee who tolerated the many hours of “not disturbing Daddy”, and helped keep me grounded.

My most heart-felt thanks and love go to Lesley, who taught me about statistics, experimental design, philosophy, and many other things along the way. Without her tireless help in the field and enlightening discussions on all aspects of the project, this thesis would have been impossible to complete. Her tolerance, support, faith and love have been an inspiration.
Table of Contents

Water Flow in Seagrass Ecosystems .. i
Abstract ... iii
Acknowledgements .. v
Table of Contents ... vi

CHAPTER 1. GENERAL INTRODUCTION ... 1
1.1 General introduction ... 1
1.2 The role of physical factors in seagrass communities 2
 1.2.1 General overview of physical factors influencing primary productivity in
 seagrass communities .. 2
 1.2.2 Light ... 3
 1.2.3 Temperature ... 6
 1.2.4 Salinity ... 7
 1.2.5 Nutrients ... 8
 1.2.5.1 Mineral nutrients ... 8
 1.2.5.2 Inorganic carbon ... 9
 1.2.5.3 Dissolved organic carbon ... 13
 1.2.5.4 The significance of seagrass detritus as a nutrient source ... 14
 1.2.6 Water motion .. 17
 1.2.6.1 Physiological effects of water motion 19
 1.2.6.2 The influence of water motion on community recruitment .. 21
 1.2.6.3 Water motion effects on sediment transport in seagrass
 communities ... 23
 1.2.6.4 Water flow effects on nutrient cycling in seagrass ecosystems24
 1.2.5 Water flow effects on light dynamics in seagrass ecosystems 26
 1.2.6 The influence of seagrasses on water motion 29
1.3 Aims: ... 32

CHAPTER 2. DESIGN, TESTING AND CALIBRATION OF A NOVEL
ELECTRONIC CURRENT METER .. 34
2.1 Introduction .. 34
2.2 Current meter design ... 38
 2.2.1 Introduction ... 38
 2.2.2 Principles of construction .. 38
 2.2.2.1 Probe construction ... 38
 2.2.2.2 Sensor ... 39
 2.2.2.3 Signal amplification ... 40
2.2.3 Principles of operation ... 42
 2.2.3.1 General operation ... 42
 2.2.3.2 Testing and Calibration 42
 2.2.4 Field deployment .. 45

2.3 Trial Deployment .. 48
 2.3.1 Introduction .. 48
 2.3.2 Results .. 48

2.4 Discussion ... 53
 2.4.1 Field deployment ... 53

 2.4.2 Technical aspects of the current meters 55

CHAPTER 3. THE HYDRODYNAMIC ENVIRONMENT OF SEA GRASS MEADOWS ... 57

 3.1 Introduction .. 57
 3.1.1 Aims .. 58

 3.2 Profiles through different meadows 60
 3.2.1 Introduction ... 60
 3.2.2 Methods ... 61
 3.2.3 Results ... 66
 3.2.4 Discussion .. 68

 3.3 Study of exposed and sheltered meadows 72
 3.3.1 Introduction ... 72
 3.3.2 Materials and Methods 72
 3.3.3 Results ... 74
 3.3.4 Discussion .. 76

 3.4 Sediment size fraction analysis 78
 3.4.1 Introduction ... 78
 3.4.2 Methods ... 79
 3.4.3 Results ... 80
 3.4.4 Discussion .. 84

 3.5 General summary ... 87

CHAPTER 4. SEA GRASS DENSITY EFFECTS ON WATER FLOW 89

 4.1 Introduction .. 89
 4.1.1 Aims .. 91

 4.2 Density manipulation experiment 92
 4.2.1 Introduction ... 92
 4.2.2 Methods ... 92

 4.2.2.1 Experimental treatment design 92
 4.2.2.2 Water flow measurements 93
 4.2.2.3 Data analysis 95

 4.2.3 Results .. 95
 4.2.4 Discussion .. 97

 4.3 Bending of seagrasses under different flow regimes 100
 4.3.1 Introduction .. 100
4.3.2 Materials and methods ... 102
 4.3.2.1 Seagrass collection ... 102
 4.3.2.2 Flume design ... 102
 4.3.2.3 Methods .. 103
4.3.3 Results ... 105
 4.3.3.1 Angle of bending .. 105
 4.3.3.2 Canopy height .. 106
 .. 110
 4.3.3.3 Bending index .. 110
4.3.4 Discussion .. 114
 4.3.4.1 Angle of bending .. 114
 4.3.4.2 Canopy height .. 117
 4.3.4.3 Bending index .. 117
4.4 Comparisons of *Amphibolis griffithii* and *A. antarctica* canopy hydraulics .. 118
 4.4.1 Introduction .. 118
 4.4.2 Materials and methods 119
 4.4.3 Results ... 119
 4.4.4 Discussion .. 122
4.5 General summary .. 124

CHAPTER 5. WATER MOTION AND PRODUCTIVITY 126
5.1 Introduction ... 126
 5.1.1 Aims .. 130
5.2 *Posidonia sinuosa* standing crop studies 131
 5.2.1 Introduction .. 131
 5.2.2 Materials and Methods 131
 5.2.3 Results ... 133
 5.2.3.1 Biomass samples 133
 5.2.3.2 Leaf shoot numbers 134
 5.2.4 Discussion .. 135
5.3 Laboratory based productivity studies 138
 5.3.1 Introduction .. 138
 5.3.2 Physiological Flume Design 139
 5.3.2.1 Introduction ... 139
 5.3.2.2 Experimental design considerations 139
 5.3.2.3 System components 140
 5.3.2.3.1 Drive system 140
 5.3.2.3.2 Diffuser .. 142
 5.3.2.3.3 Test section 143
 5.3.2.3.4 Exit Section 146
 5.3.2.3.5 Contraction Section 146
 5.3.2.3.6 Probe Block 147
 5.3.2.3.7 Remaining Tubings 147
 5.3.2.3.8 Light Source 148
5.3.3 Making physiological measurements using the flume 149
 5.3.3.1 Calibration and set-up 149
 5.3.3.2 Sample runs ... 150
 5.3.3.3 Chlorophyll analyses 151
 5.3.3.4 P v. I curves ... 151
 5.3.3.5 Dye visualization studies 152

5.3.4 Results .. 153
 5.3.4.1 Influence of water motion on photosynthesis 153
 5.3.4.2 Dye visualization studies 163
 5.3.4.3 Influence of epiphytes on photosynthetic rate of
 seagrass leaves .. 171

5.3.5 Discussion .. 173

5.4 General Discussion ... 179

CHAPTER 6. SUMMARY AND CONCLUSIONS. 183

REFERENCES. ... 192