Dogs, Humans and Gastrointestinal Parasites: Unravelling Epidemiological and Zoonotic Relationships in an endemic Tea-Growing Community in Northeast India

Rebecca Justine Traub
Bachelor of Science (Veterinary Biology) Murdoch University
Bachelor of Veterinary Medicine and Surgery (Hons.) Murdoch University

Division of Health Sciences
School of Veterinary and Biomedical Sciences
Murdoch University
Western Australia

This thesis is presented for the degree of Doctor of Philosophy of Murdoch University
2003
I declare that this thesis is my own account of my research and contains as its main content work which has not been previously been submitted for a degree at any other tertiary educational institution.

..............................

Rebecca Justine Traub
Abstract

A simultaneous survey of canine and human gastrointestinal (GI) parasites was conducted in three socioeconomically disadvantaged, tea-growing communities in Assam, India. The aims of this study were to determine the epidemiology of GI parasites of zoonotic significance in dogs and geohelminth infection in humans using a combination of molecular biological and classical parasitological and epidemiological tools.

A total of 328 and 101 dogs participated in the study. The prevalence of GI parasites in dogs was 99%. Parasitic stages presumed to be host-specific for humans such as *Ascaris* spp., *Trichuris trichiura* and *Isospora belli* were also encountered in dog faeces. A polymerase chain reaction - linked restriction fragment length polymorphism (PCR-RFLP) was developed to identify the species of *Ascaris* eggs in dog faeces. The results supported the dog's role as a significant disseminator and environmental contaminator of *Ascaris lumbricoides*, in communities where promiscuous defecation by humans exist.

The prevalence, intensity and associated risk factors for infection with *Ascaris*, hookworms and *Trichuris* were also determined among the human population. The overall prevalence of *Ascaris* was 38% and 43% for both hookworms and *Trichuris*. The strongest predictors for the intensity of geohelminths included socioeconomic status, age, household crowding, level of education and lack of footwear when outdoors.

The zoonotic potential of canine *Giardia* was investigated by genetically characterising *G. duodenalis* isolates recovered from humans and dogs at three different loci. Phylogenetic analysis placed canine *Giardia* isolates within the genetic groupings of human isolates. Further evidence for zoonotic transmission was supported by strong epidemiological data.

A highly sensitive and specific PCR-RFLP based test was developed to detect and differentiate the species of canine hookworms directly from eggs in faeces. Thirty-six percent of dogs were found to harbour single infections with *A. caninum*, 24% single infections with *A. braziliense* and 38% mixed infections with both species. This newly
developed PCR-based test provided a rapid, highly sensitive and specific tool for the epidemiological screening of canine *Ancylostoma* species in a community.

A combination of canine population management, effective anthelmintic regimes and improvements in health education and sanitation is recommended for the control of canine and human gastrointestinal parasites in these communities.
Publications

Refereed journal articles:

Traub, R.J., Robertson, I.D., Irwin, P., Mencke, N., Thompson, R.C.A. The prevalence, intensity and risk factors associated with geohelminth infection in tea-growing communities of northeast India. *Tropical Medicine and International Health*. In press.

Conferences:

Acknowledgements

I would firstly like to thank my supervisors Andrew Thompson, Ian Robertson and Peter Irwin for all their optimism, support and advice, through both the ups and downs. For allowing me the freedom and independence to express my own ideas and passions, and having faith in their ultimate fruition.

I would also like to express my deepest gratitude and respect for Dr Norbert Mencke, whose strong support, trust and faith in my abilities allowed me to obtain financial assistance from Bayer Animal Health, Leverkusen, Germany and funding for all related travel expenses to conferences. His commitment and enthusiasm for supporting “unconventional” zoonoses-related studies amongst underprivileged communities is commendable.

To Mr B.M. Khaitan, Chairman of Williamson Magor & Co., thank you for permission for allowing the fieldwork and research to be conducted at the tea estates in Assam. To all the managerial and medical staff at Phulbari and Addabarie Tea Estates, especially Drs Mahanta, Drs. Phukan. Thank you for your warmth, generosity and hospitality and for making me feel like part of the official tea-garden team.

My sincere thanks and appreciation to Aileen Elliot and Russle Hobbs for always being there to help me identify those exotic parasite stages and sharing my awe and excitement of having found them! To my close friends and office buddies, Peter Adams, Joyce Eade, Jill Meinema, Sze How Bong and Chee Kin Low. Thank you for listening to me moan and groan through the tough times, for giving me laughter, a social life and plenty of distractions. I would have definitely not made it this far and sane if it weren’t for you.

Finally, to my parents George and Patience and close friends Aunty Nellie and Ratha. Your moral support, encouragement and belief in me was the reason I kept pushing forward. Dad, for personally setting me an example of professional excellence and for helping me set up this project in Assam. Mum, for giving me so much strength and love, even when it meant cleaning up leaky test tubes full of s**t in our bath-tub in Calcutta!
You are an inspiration and the best Mum any daughter could wish for. Aunty Nellie thank you for teaching me how to dream and always believing in my capabilities.
Table of Contents

Abstract .. iii

Publications .. v

Acknowledgments .. vii

Table of Contents ... ix

List of Tables .. xvi

List of Figures .. xviii

1 Introduction ... 1
 1.1 The presenting problem ... 1
 1.2 The general aims of this project ... 6
 1.3 The canine zoonoses of major public health significance 7
 1.3.1 Toxocariasis .. 7
 1.3.1.1 Routes and risk factors for infection for humans 7
 1.3.1.2 Clinical manifestations in humans .. 8
 1.3.1.3 Diagnosis of Toxocariasis ... 10
 1.3.1.4 Toxocariasis in India ... 10
 1.3.2 Ancylostomiasis .. 10
 1.3.2.1 Cutaneous larva migrans .. 11
 1.3.2.2 *A. caninum* induced Eosinophilic Enteritis ... 12
 1.3.2.3 Patent human infection with *A. ceylanicum* ... 12
 1.3.2.4 Zoonotic *Ancylostomiasis in India* .. 13
 1.3.3 Echinococcosis ... 14
 1.3.3.1 Transmission dynamics .. 14
 1.3.3.2 Diagnosis of *Echinococcus granulosus* in the dog 15
 1.3.3.3 Cystic Hydatid disease in humans .. 16
1.3.3.4 Echinococcosis in India ... 17
1.3.4 Giardiasis ... 18
 1.3.4.1 The genetic diversity and zoonotic potential of *Giardia*
 duodenalis .. 19
 1.3.4.2 Giardiasis in humans ... 20
 1.3.4.3 Giardiasis in India ... 21
1.3.5 Cryptosporidiasis ... 23
1.4 Foodborne (meat- or fish-borne) zoonoses that utilise dogs
 definitive hosts .. 24
 1.4.1 Gnathostomiasis, Diphyllobothriasis and Sparganosis 24
 1.4.1.1 Gnathostomiasis, Diphyllobothriasis and
 Sparganosis in India ... 25
 1.4.2 Opisthorchiasis, clonorchiasis and paragonimiasis 25
 1.4.2.1 Paragonimiasis, opisthorchiasis and clonorchiasis in humans... 25
 1.4.3 Heterophydiases .. 26
 1.4.4 Foodborne trematode infections in India 27
1.5 Intestinal geohelminth infections in humans- *Ascaris, Trichuris* and
 hookworms: The Burdens of Disease 28
1.6 Diagnosis of gastrointestinal parasites using molecular techniques- an
 epidemiological breakthrough ... 30

2 General Materials and Methods ... 33

2.1 Study Area .. 33
 2.1.1 Assam .. 33
 2.1.1.1 Natural Physical Attributes of Assam 33
 2.1.1.2 Demographic characteristics and the status of
 health in Assam .. 34
 2.1.1.3 Cultural characteristics of Assam 35
 2.1.1.4 The tea industry- Assam's strongest asset 36
 2.1.2 The tea estates under study .. 36
 2.1.2.1 General management of the tea estates 36
 2.1.2.2 Demographics of the tea estates 38
2.2 Study Design... 42
 2.2.1 Health Education and Community Support... 42
 2.2.2 Sampling design.. 43
 2.2.3 Sampling procedure... 43
 2.2.3.1 Questionnaire design and implementation.. 43
 2.2.3.2 Sample collection... 45
 2.2.3.3 Preservation and transportation of faecal sample................................. 46
 2.2.4 Timing and circumstances of field work... 46

2.3 Parasitological Techniques.. 46
 2.3.1 Faecal examination of parasite stages.. 46
 2.3.2 Egg counting techniques.. 47
 2.3.2.1 Quantification of geohelminth eggs recovered from human
 faecal samples using the Kato-Katz technique................................. 47
 2.3.2.2 Purification of Ascarid eggs recovered from human and
 dog faecal samples using a salt and D-glucose
 concentration technique... 49
 2.3.3 Detection of coproantigens of *Echinococcus granulosus* in the faeces
 of dogs... 50

2.4 Molecular Methods.. 50
 2.4.1 DNA Extraction.. 50
 2.4.1.1 DNA extraction of adult *Ascaris* worms.. 50
 2.4.1.2 DNA extraction of *Ascaris* eggs from faeces...................................... 51
 2.4.1.2.1 Technique based on alkaline hydrolysis method 51
 2.4.1.2.2 Cetyl trimethylammonium bromide (CTAB)/
 phenol-chloroform method of extraction.................................. 52
 2.4.1.3 DNA extraction of *Giardia* cysts from faeces.................................. 53
 2.4.1.4 DNA extraction of hookworm eggs... 53
 2.4.2 Agarose gel electrophoresis.. 54
 2.4.3 PCR.. 54
 2.4.3.1 Primer design... 54
 2.4.4 Sequencing.. 55
 2.4.4.1 Sequence analysis.. 55

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.5</td>
<td>Restriction Fragment Length Polymorphism (RFLP)</td>
<td>56</td>
</tr>
<tr>
<td>2.5</td>
<td>Statistical Methods</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>The prevalence and risk factors associated with canine gastrointestinal parasites of zoonotic significance at the tea estates under study</td>
<td>57</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>57</td>
</tr>
<tr>
<td>3.2</td>
<td>Materials and Methods</td>
<td>60</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Use of a nested PCR technique to screen for canine Giardia</td>
<td>60</td>
</tr>
<tr>
<td>3.3</td>
<td>Results</td>
<td>60</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Sample sizes and response rates</td>
<td>60</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Population structure of dogs included in the study</td>
<td>62</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>Age of dogs</td>
<td>62</td>
</tr>
<tr>
<td>3.3.2.2</td>
<td>Sex of dogs</td>
<td>63</td>
</tr>
<tr>
<td>3.3.2.3</td>
<td>Dog breeds</td>
<td>63</td>
</tr>
<tr>
<td>3.3.2.4</td>
<td>Socioeconomic status of dog owners</td>
<td>63</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Results of the questionnaire</td>
<td>63</td>
</tr>
<tr>
<td>3.3.3.1</td>
<td>Questionnaires aimed at dog-owners</td>
<td>63</td>
</tr>
<tr>
<td>3.3.3.2</td>
<td>Knowledge of participants about zoonotic diseases</td>
<td>63</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Parasite prevalence results</td>
<td>64</td>
</tr>
<tr>
<td>3.3.4.1</td>
<td>Results of microscopic screening of canine GI parasites</td>
<td>64</td>
</tr>
<tr>
<td>3.3.4.2</td>
<td>Results of the Echinococcus granulosus coproantigen ELISA test</td>
<td>64</td>
</tr>
<tr>
<td>3.3.4.3</td>
<td>Results of the nested PCR technique for screening canine Giardia</td>
<td>65</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Risk factor analysis</td>
<td>66</td>
</tr>
<tr>
<td>3.4</td>
<td>Discussion</td>
<td>66</td>
</tr>
<tr>
<td>4</td>
<td>The role of the dog as a mechanical transmitter and disseminator of human Ascaris infection</td>
<td>71</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>71</td>
</tr>
<tr>
<td>4.2</td>
<td>Materials and Methods</td>
<td>72</td>
</tr>
</tbody>
</table>
4.2.1 Ascaris egg counting technique……………………………………….… 72
4.2.2 Assessment of Ascaris egg viability after passage through the
dog's gut…………………………………………………………………. 72
4.2.3 Molecular methods……………………………………………………… 73
 4.2.3.1 Polymerase chain reaction………………………………………. 73
 4.2.3.2 PCR- linked restriction length fragment polymorphism………... 73
 4.2.3.3 Sequencing……………………………………………………… 74
4.3 Results…………………………………………………………………………... 74
 4.3.1 Ascaris egg viability…………………………………………………….. 74
 4.3.2 Faecal egg counts and risk factor analysis for dogs............... 74
 4.3.3 Humans…………………………………………………………………. 74
 4.3.4 DNA extraction of Ascaris eggs directly from faeces………………….. 75
 4.3.5 Molecular characterisation……………………………………………… 77
 4.3.6 Sequence analysis………………………………………………………. 79
4.4 Discussion………………………………………………………………………. 79

5 The prevalence, intensities and risk factors associated with
geohelminth infection in tea growing communities of Assam,
India…………………………………………………………………………….. 82

 5.1 Introduction………………………………………………………………………82
 5.2 Materials and Methods………………………………………………………….. 83
 5.2.1 Parasitological techniques………………………………………………. 83
 5.2.2 Statistical methods…………………………………….………………… 84
 5.3 Results…………………………………………………………………………... 84
 5.3.1 Sample sizes and population structure of humans included
 in the study……………………………………………………………… 84
 5.3.1.1 Age structure of participants……………………………………… 85
 5.3.1.2 Gender structure and socioeconomic status of participants…….. 85
 5.3.2 Prevalence and intensity of parasites…………………………………… 85
 5.3.2.1 Socioeconomic status………………………………………….... 98
 5.3.2.2 Age……………………………………………………………… 99
 5.3.2.3 Gender…………………………………………………………. 101
5.3.2.4 Household crowding... 101
5.3.2.5 Education... 102
5.3.2.6 Religion... 102
5.3.2.7 Footwear... 103
5.3.2.8 Defaecation practices.. 103
5.3.2.9 Anthelmintic treatment... 104
5.3.2.10 Pig ownership... 104
5.3.2.11 Water source.. 105
5.3.2.12 Health status.. 105
5.4 Discussion... 105

6 Epidemiological application of a species-specific PCR- RFLP to identify Ancylostoma eggs directly from canine faeces............................. 110

6.1 Introduction... 110
6.2 Materials and Methods... 111
 6.2.1 Molecular methods... 111
 6.2.1.1 Hookworm controls... 111
 6.2.1.2 Polymerase Chain Reaction amplification for the genus Ancylostoma... 112
 6.2.1.3 Sequencing... 112
 6.2.1.4 PCR for differentiating A. caninum and A. braziliense from A. ceylanicum... 113
 6.2.1.5 PCR-linked restriction fragment length polymorphism......... 113
 6.2.1.6 Multiplex PCR-RFLP to amplify A. caninum, A. braziliense and A. ceylanicum.. 113
6.3 Results... 114
 6.3.1 DNA extraction... 114
 6.3.2 Phylogenetic analysis of unidentified hookworm sequence........ 114
 6.3.3 PCR... 115
6.4 Discussion... 117
7 Characterisation of *Giardia* isolates from dogs and humans residing at the tea estates of Assam - evidence to support the zoonotic potential of canine *Giardia*.............................. 121

7.1 Introduction... 121
7.2 Materials and Methods... 122
 7.2.1 Parasitological techniques... 123
 7.2.2 Molecular methods.. 123
 7.2.2.1 DNA extraction from *Giardia* cysts.......................... 123
 7.2.2.2 PCR amplification... 123
 7.2.2.2.1 The SSU-rDNA Gene... 123
 7.2.2.2.2 The Elongation Factor1- Alpha (ef1-α) Gene.............. 123
 7.2.2.2.3 The Triose Phosphate Isomerase (tpi) Gene.............. 124
 7.2.2.3 Sequencing, molecular characterisation and phylogenetic analysis of PCR products.. 125
7.3 Results... 125
 7.3.1 Survey and prevalence results................................... 125
 7.3.2 Molecular characterisation and phylogenetic analysis of *Giardia* isolates found in humans and dogs.............................. 127
7.4 Discussion... 134

8 General Discussion... 139

 8.1 Disease recognition and priority.................................... 139
 8.2 Limitations of conducting research in a remote developing community........ 139
 8.3 Utilisation of Molecular Tools at the "grass-root" level.......... 141
 8.4 The study as a "model" for other developing communities........ 142
 8.5 Future studies.. 143
 8.6 Recommended approaches to controlling human geohelminthiasis........ 146
 8.7 Recommended approaches to control canine zoonoses................ 147

Appendix 1 - Picture poster for preliminary lecture..................... 149
Appendix 2 - Participant consent form................................. 150
Appendix 3 - Dog owner consent form.................................... 151
Appendix 4 - Participant consent form in Hindi.......................... 152
Appendix 5 - Dog owner consent form in Hindi.......................... 153
Appendix 6 - Questionnaire 1: General information on household........ 154
Appendix 7 - Questionnaire 2: Individual data.............................. 156
Appendix 8 - Questionnaire 3: Pet dog/s data............................. 159

References... 162
List of Tables

Table 1.1 - Genetic groupings and alternative nomenclature used to characterise genotypes of *Giardia duodenalis*………………………….. 22

Table 2.1 - Summary of Census for the year 2000 for Phulbari and Addabarie (and Balipara) Tea Estates…………………………………... 40

Table 3.1 - Previously identified risk factors of significance associated with the prevalence of potentially zoonotic GI parasites in dogs……………. 58

Table 3.2 - Number of humans and dogs sampled at each tea estate….…………….. 61

Table 3.3 - Non-response rates of households at each tea estate (%)…………….…. 61

Table 3.4 - The prevalence of parasitic stages found in dog faeces using microscopy………………………………………………………. 65

Table 5.1 - Factors associated with the prevalence of *Ascaris* having a P value ≤ 0.25…………………………………………………………… 87

Table 5.2 - Factors associated with the prevalence of *Trichuris* having a P value ≤ 0.25…………………………………………………………… 88

Table 5.3 - Factors associated with the prevalence of hookworms having a P value ≤ 0.25…………………………………………………………… 90

Table 5.4 - Unweighted logistic regression and odds ratios for the prevalence of *Ascaris*…………………………………………………………… 91

Table 5.5 - Unweighted logistic regression and odds ratios for the prevalence of *Trichuris*……………………………………………………………. 91

Table 5.6 - Unweighted logistic regression and odds ratios for the prevalence of hookworm……………………………………………………………. 91

Table 5.7 - Factors associated with the intensity of *Ascaris* in eggs per gram (epg) having a P value ≤ 0.25…………………………………………... 92

Table 5.8 - Factors associated with the intensity of *Trichuris* in eggs per gram (epg) having a P value ≤ 0.25…………………………………………... 94

Table 5.9 - Factors associated with the intensity of hookworm infection in eggs per gram (epg) having a P value ≤ 0.25………………………………... 95
Table 5.10 - Unweighted least squared linear regression for the intensity of *Ascaris* ... 97

Table 5.11 - Unweighted least squared linear regression for the intensity of *Trichuris* ... 97

Table 5.12 - Unweighted least squared linear regression for the intensity of hookworm.. 98

Table 5.13 - Environmental and behavioural factors highly correlated with socioeconomic status.. 99

Table 7.1 - Summary of genotype results of *Giardia* isolates recovered from humans at three different loci.. 127

Table 7.2 - Summary of genotype results of *Giardia* isolates recovered from dogs at three different loci... 128

List of Figures

Figure 1.1 - A dog following its owner to work in the morning................. 4

Figures 1.2 & 1.3 - The community, especially children shared a close relationship with their semi-domesticated companions................. 5

Figure 2.1 - District map of Assam.. 33

Figure 2.2 - Phulbari Central Hospital.. 37

Figure 2.3 - Location of Phulbari, Addabarie and Balipara tea estates within the district of Sonitpur... 38

Figure 2.4 - Staff housing quarters, Phulbari Tea Estate.................................... 39

Figures 2.5 & 2.6 - Labour quarters.. 41

Figure 2.7 - A preliminary lecture given to a Mother's Club meeting........... 42

Figure 2.8 - Interviewing dog-owners and their families............................... 44

Figure 2.9 - Restraining a dog for faecal collection.. 45

Figure 3.1 - The relative proportion of dogs in each age group that participated in the survey... 62

Figure 4.1 - *Ascaris* eggs following initial steps of the alkaline hydrolysis method.. 75
Figure 4.2 - *Ascaris* eggs following initial steps of the CTAB/ phenol-chloroform method……………………………………………………………. 76

Figure 4.3 - *Ascaris* eggs following 5-10 cycles of freeze-thawing, heating at 95°C and overnight incubation with Proteinase K (10mg/ml)…………………………………… 76

Figure 4.4 - *Ascaris* eggs following autoclaving and overnight incubation with Proteinase K (10mg/ml)……………………………………………………… 76

Figure 4.5 - *Ascaris* eggs following 10 cycles of freeze-thawing and freeze fracturing………………………………………………………………... 77

Figure 4.6 - Determination of the source of the *Ascaris* eggs in dog faeces using RLFIP analysis of the ZX5R-RTITSR PCR products following digestion with restriction enzyme Hae III………………………………… 78

Figure 4.7 - How dogs influence the dynamics of transmission of human parasites with a direct life cycle via coprophagy…………………………………… 80

Figure 5.1 - The relative proportions of human participants in each age group……… 85

Figure 5.2 - The prevalence of various GI parasites among the human population…. 86

Figure 5.3 - Prevalence and intensity (epg) of *Ascaris* among different age groups………………………………………………………………….. 100

Figure 5.4 - Prevalence and intensity (epg) of *Trichuris* among different age groups………………………………………………………………….. 100

Figure 5.5 - Prevalence and intensity (epg) of hookworm infection among different age groups…………………………………………...……….. 101

Figure 6.1 - Phylogeny of hookworms using *Uncinaria* and *Necator americanus* as out-groups, inferred by distance based analysis using Tamura-Nei distance estimates of aligned nucleotide sequences of regions of the ITS gene…………………………………………………………. 115

Figure 6.2 - PCR of the ITS of three canine *Ancylostoma* species………………………… 116

Figure 6.3 - RFLP of the PCR product RTGHF1-RTABCR1 following digestion with restriction endonuclease BStN1……………………………………… 116

Figure 7.1 - Prevalence of *Giardia* in different age groups in humans (n=328)……..126

Figure 7.2A - Phylogeny of the *Giardia* isolates inferred by the distance based analysis using Tamura-Nei distance estimates of aligned nucleotide sequences derived from the PCR products of the SSU-rDNA gene…………………………………………………………... 130
Figure 7.2B - Phylogeny of the *Giardia* isolates inferred by the distance based analysis using Tamura-Nei distance estimates of aligned nucleotide sequences derived from the PCR products of the elongation factor 1-α gene ... 131

Figure 7.2C - Phylogeny of the *Giardia* isolates inferred by the distance based analysis using Tamura-Nei distance estimates of aligned nucleotide sequences derived from the PCR products of the triose phosphate isomerase gene .. 132
This thesis is dedicated to my parents George and Patience, and dear friend Aunty Nellie.