
http://researchrepository.murdoch.edu.au/36236/
Accepted Manuscript

Zoonotic Cryptosporidium and Giardia shedding by captured rangeland goats

Khalid Al-Habsi, Rongchang Yang, Andrew Williams, David Miller, Una Ryan, Caroline Jacobson

PII: S2405-9390(16)30204-0
DOI: doi: 10.1016/j.vprsr.2016.11.006
Reference: VPRSR 46
To appear in: Veterinary Parasitology: Regional Studies and Reports

Received date: 13 September 2016
Accepted date: 28 November 2016

Please cite this article as: Khalid Al-Habsi, Rongchang Yang, Andrew Williams, David Miller, Una Ryan, Caroline Jacobson, Zoonotic Cryptosporidium and Giardia shedding by captured rangeland goats. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Vprsr(2016), doi: 10.1016/j.vprsr.2016.11.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Short Communication

Zoonotic Cryptosporidium and Giardia shedding by captured rangeland goats

Khalid Al-Habsi\(^a\), Rongchang Yang\(^a\), Andrew Williams\(^a\), David Miller\(^a\), Una Ryan\(^a\)*, Caroline Jacobson\(^a\)

\(^a\)School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150.

*Corresponding author: Una Ryan
Phone: 08 9360 2482
Fax: 08 9310 4144
E-mail: Una.Ryan@murdoch.edu.au

Key words: Cryptosporidium; Giardia; Rangeland goats; zoonotic.
ABSTRACT

Faecal shedding of Cryptosporidium and Giardia by captured rangeland goats was investigated using a longitudinal study with four faecal samples collected from 125 male goats once monthly for four months, commencing immediately after capture and transport to a commercial goat depot (feedlot). Goats were composite breed and aged approximately 9-12 months on arrival. Faecal samples were screened for Cryptosporidium and Giardia presence and concentration using quantitative PCR and sequencing at the 18S ribosomal RNA locus (Cryptosporidium), and glutamate dehydrogenase and β-giardin loci (Giardia). Longitudinal prevalence for Cryptosporidium was 27.2% (point prevalence range 3-14%) with 3 species identified: C. xiaoii (longitudinal prevalence 13.6%), C. ubiquitum (6.4%) and C. parvum (3.2%). Sub-typing at the gp60 locus identified C. ubiquitum XIIa, C. parvum IIAA17G2R1 and C. parvum IIAA17G4R1. This is the first report of the zoonotic C. parvum subtype IIAA17G4R1 in goats. The pattern of genotypes shed in faeces changed over the duration of study with C. ubiquitum identified only at the first and second samplings, and C. parvum identified only at the fourth sampling. Longitudinal prevalence for Giardia duodenalis was 29.6% (point prevalence range 4-12%) with all positives sub-typed as assemblage E. Only 2/125 goats were identified to be shedding Cryptosporidium or Giardia on more than one occasion. This is the first report of Cryptosporidium and Giardia genotypes in captured rangeland goats. Faecal shedding of zoonotic Cryptosporidium spp. and potentially zoonotic G. duodenalis has implications for food safety and effluent management. Keywords: Cryptosporidium; Giardia; Rangeland goats; zoonotic.
1. Introduction

Strong growth in the Australian goat meat industry has been largely supported by goats derived from rangeland (extensive) production systems. Rangeland goats are a composite breed naturalised throughout Australian rangelands, typically unmanaged (undomesticated) and opportunistically captured and utilised for meat production. Diarrhoea and ill-thrift are cited as important issues for rangeland goats following capture, particularly under intensive management conditions in feedlots prior to slaughter (MLA, 2016). Causes of diarrhoea and ill-thrift in captured rangeland goats are not well described, although it is suggested that stress associated with capture, transport and domestication of wild goats, and high stocking densities in feedlots increase shedding and transmission of disease agents with veterinary and public health importance, e.g. *Eimeria* and *Salmonella* (MLA 2016).

Reviews of available evidence have concluded that *Cryptosporidium* spp. and *Giardia duodenalis* may cause diarrhoea, weight loss and mortalities in goat kids, although evidence of disease in goats post-weaning age is less clear (de Graaf et al., 1999; O’Handley and Olsen 2006; Geurden et al., 2010; Santin, 2013). Six *Cryptosporidium* species and genotypes have been reported in goats; *C. parvum, C. hominis, C. xiaoi, C. ubiquitum, C. andersoni* and rat genotype II (Robertson, 2009; Koinari et al., 2014; Ryan et al., 2014; Peng et al., 2016). *Giardia duodenalis* assemblages A, B and E have been identified in goats (Robertson, 2009; Zhang et al., 2012; Peng et al., 2016). Importantly, some *Cryptosporidium* and *G. duodenalis* genotypes reported in goats have public health significance, having zoonotic potential and capacity for contamination of water supplies (Robertson, 2009; Ryan et al., 2014).

The epidemiology of *Cryptosporidium* and *Giardia* in rangeland goats in Australia is not described, and may have implications for management of goats pre-slaughter. The present study therefore aimed to investigate the faecal shedding of *Cryptosporidium* and *Giardia* species by captured rangeland goats using molecular tools.
2. Materials and methods

2.1. Animals and sample collection

Sampling occurred once monthly for four months (S1 to S4) from 125 male rangeland goats (composite breed) following capture and beginning immediately after arrival at a commercial goat depot (feedlot) near Geraldton, Western Australia in February, 2014. On arrival (S1), goats weighed 30.7 ± 0.3 kg (mean ±SEM) with estimated age 9–12 months based on dentition. Goats were housed in four group pens (approximately 30 goats per pen). Grain-based pellets, hay and water were supplied ad libitum. Goats were consigned for slaughter after conclusion of the experiment when they reached acceptable slaughter weight.

Faecal samples were collected directly from the rectum and stored on ice or a refrigerator (4.0°C) until DNA extraction was performed. Sample collection methods were approved by Murdoch University Animal Ethics Committee (approval number R2617/13).

2.2. DNA isolation

Four freeze–thaw cycles were employed followed by genomic DNA extraction from 200 mg of each faecal sample using a Power Soil DNA Kit (MolBio, Carlsbad, California), which includes a mechanical bead disruption step using glass beads to increase the efficiency of DNA extraction. A negative control (no faecal sample) was used in each extraction group.

2.3. PCR screening, amplification and sequencing

Faecal samples were screened for the presence of Cryptosporidium and Giardia spp. using quantitative PCR (qPCR) as previously described (Yang et al., 2014a; Yang et al., 2014b). Analytical specificity and sensitivity testing of the qPCR assays was previously described (Yang et al., 2014a; Yang et al., 2014b), with no cross-reactions with other genera and detection of all Cryptosporidium and Giardia isolates tested. The assays detected 2 Cryptosporidium oocysts and 1 Giardia cyst per µl of faecal DNA extract. Mean RSQ and % RDS were 0.99 and 1.5%. for Cryptosporidium, and 0.98 and 5.5% for Giardia respectively.
The number of oocyst equivalents per gram of faeces was calculated on the premise that one oocyst contains 40 fg of genomic DNA (Guy et al., 2003).

Cryptosporidium qPCR positives were amplified at the 18S rRNA locus using a nested PCR as previously described (Morgan et al., 1997). Subtyping at the gp60 locus was conducted for C. parvum (Ng et al., 2008) and C. ubiquitum (Li et al., 2014). Giardia positive isolates were amplified at the glutamate dehydrogenase (gdh) and β-giardin (bg) loci (Read et al., 2004; Lalle et al., 2005). Triose-phosphate isomerase (tpi) assemblage E-specific primers (Geurden et al., 2008) were used to confirm the assemblages typed at the gdh and bg loci. Purified PCR products were sequenced using an ABI Prism™ Dye Terminator Cycle Sequencing kit (Applied Biosystems, California). Nucleotide sequences were analyzed using Chromas lite version 2.0 (http://www.technelysium.com.au) and aligned with reference sequences from GenBank using Clustal W (http://www.clustalw.genome.jp).

2.4. Statistical analysis

Statistical analyses were performed using IBM SPSS Statistics Version 21 for Mac. Goats were classified as positive (parasite DNA detected) or negative (no parasite DNA detected) for Cryptosporidium and Giardia. Point prevalence was determined by proportion of positive goats for each sample occasion. Two-tailed Chi-square tests were used to compare point prevalence between sampling occasions. Longitudinal prevalence was calculated as the proportion of goats with parasite DNA detected on at least one occasion. Prevalence 95% confidence intervals were calculated using Jeffrey’s interval method (Brown et al., 2001). Differences in shedding intensity for Cryptosporidium and Giardia between time points were assessed using a univariate general linear model with timepoint included as a fixed factor and least squares difference post hoc test. Levene’s test was used to determine for equality of variance (P>0.05). P-values of 0.05 were used to declare statistical significance.

3. Results
3.1. Cryptosporidium and Giardia prevalence

A total of 36/500 faecal samples were qPCR-positive for *Cryptosporidium* and 38/500 were PCR-positive for *Giardia*. Point and longitudinal prevalences are shown in Table 1. Point prevalence fell between the first and second sampling for both *Cryptosporidium* and *Giardia*. By S4, point prevalence for both *Cryptosporidium* and *Giardia* were not different to S1. Two goats were *Cryptosporidium*-positive on two occasions (S1 and S3; S3 and S4) and one goat was *Giardia*-positive on two occasions (S1 and S4). No goats were *Cryptosporidium*- or *Giardia*-positive on more than two occasions. Concurrent *Cryptosporidium* and *Giardia* infections were identified at each sampling occasion (Table 1).

3.2. Cryptosporidium species and subtypes

Overall 29/36 *Cryptosporidium*-positive samples were successfully sequenced at the 18S locus and three *Cryptosporidium* species were detected; *C. xiaoi* (n=17), *C. ubiquitum* (n=8) and *C. parvum* (n=4). Sub-typing at the gp60 locus identified all eight *C. ubiquitum* positives as XIIa, while *C. parvum* positives were subtyped as IIaA17G2R1 (n=1) and IIaA17G4R1 (n=3). Point prevalence and longitudinal prevalence for species identified by sequencing are shown in Table 1. *Cryptosporidium xiaoi* was identified at all four sampling occasions. *Cryptosporidium ubiquitum* was not identified after S2. *Cryptosporidium parvum* was identified at S4 only. No mixed genotype *Cryptosporidium* infections were identified in any goats at a single sampling occasion. For the two goats that were *Cryptosporidium*-positive on two occasions, one goat was positive for *C. ubiquitum* (S3) and *C. parvum* IIaA17G4R1 (S4), and the other goat was positive for *C. ubiquitum* (S1) with the second isolate (S4) not successfully sequenced. Representative sequences were submitted to GenBank under the accession numbers: KX813706, KX813707, KX813708 and KX813709.

3.3. Giardia assemblages
Overall 26/38 Giardia qPCR positives were successfully typed at the gdh and bg loci and all were identified as Giardia duodenalis assemblage E. This was confirmed using assemblage E-specific tpi primers. No positive samples from S4 were successfully sequenced. Representative sequences were submitted to GenBank under the accession numbers: KX813710 and KX813711.

3.4. Cryptosporidium and Giardia faecal shedding intensity

Faecal shedding intensity (concentration) in positive samples are shown in Table 1. There was no effect of sampling occasion on shedding intensity in positive goats for either Cryptosporidium (P=0.374) or Giardia (P=0.400).

4. Discussion

This is the first report of Cryptosporidium and Giardia genotypes from Australian rangeland goats. The key observations were the low point prevalence of zoonotic genotypes, and a change in pattern of zoonotic Cryptosporidium genotypes shed in faeces changed over time with C. ubiquitum most prevalent immediately following capture, transport, and arrival at the feedlot, and C. parvum only evident after 3 months in the feedlot. This is the first report of the zoonotic C. parvum IIaA17G4R1 genotype in goats. Giardia duodenalis assemblage E was also identified, and is potentially zoonotic. Faecal shedding of zoonotic Cryptosporidium and potentially zoonotic G. duodenalis has impacts for public health, including management of effluent to manage risk of contamination of water supplies (Robertson, 2009).

Both Cryptosporidium and Giardia are considered primary pathogens associated with diarrhoea outbreaks and deaths in goat kids, but asymptomatic infections are common in older animals and the impacts of on the productivity of goats of post-weaning age are not well described (Koudela and Votovec 1998; de Graaf et al., 1999; O’Handley and Olsen 2006; Geurden et al., 2010; Santin, 2013), although they have been associated with reduced
growth, carcase weight and processing efficiency in Australian sheep (Sweeny et al., 2011; Jacobson et al., 2016).

This is the first report for molecular characterization of Cryptosporidium and Giardia from goats in Australia. Two of the three Cryptosporidium species identified (C. parvum and C. ubiquitum) are considered zoonotic and of public health importance. Cryptosporidium ubiquitum is an emerging zoonotic pathogen (Li et al., 2014), but has not been reported in Australian humans to date. Cryptosporidium ubiquitum subtype XIIa has been previously reported in goats (Li et al., 2014; Mi et al., 2014; Wang et al., 2014) and humans (Li et al., 2014), therefore is considered is a potentially zoonotic subtype. The C. parvum subtype IIaA17G2R1 identified in this study has been reported in goats from China (Mi et al., 2014) and is a common subtype identified in humans in Australia (Waldron et al., 2011). The C. parvum IIaA17G4R1 subtype has not been previously reported in goats. Cryptosporidium xiaoi has only been reported in two HIV-positive individuals in Ethiopia and is not considered a major zoonotic species (Adamu et al., 2013). Giardia duodenalis assemblage E has not been reported in Australian humans and was previously thought to be non-zoonotic. However, a recent study in Egypt detected assemblage E in 62.5% of human samples (Abdel-Moein and Saeed, 2016), therefore assemblage E should be considered potentially zoonotic.

Shedding prevalence fell between the first and second sampling. The reason for higher prevalence at the first sampling was not tested, but was likely attributable to stress associated with trapping and transport of the wild goats, including mixing of unfamiliar animals, increased stock density, food deprivation, or contaminated feed/water. Repeated shedding by individual goats was not common (2/125 goats), suggesting new infections were occurring in the feedlot. Furthermore, shedding of zoonotic C. parvum was more likely the longer goats were in the feedlot. Recommendations for management of goats in feedlots should emphasise design of water and feed troughs to minimise faecal contamination of feed and water to limit the transmission of protozoan parasites and bacteria of veterinary and
zoonotic importance (More, 2002). Management of goat manure and effluent should consider potential public health risks associated with *Giardia* and *Cryptosporidium* (Robertson, 2009).

Acknowledgements

This study was funded by Meat and Livestock Australia and Livecorp. We thank Keros and Preston Keynes for providing access to their facilities and assistance with sampling.
References

Table 1: Cryptosporidium and Giardia prevalence and shedding intensity for 125 goats

<table>
<thead>
<tr>
<th>Sampling occasion</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>Longitudinal prevalence*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14.4 (9.1, 21.3)</td>
<td>4.0 (1.5, 8.5)</td>
<td>3.2 (1.1, 7.4)</td>
<td>7.2 (3.6, 12.7)</td>
<td>27.2 (20, 35.5)</td>
</tr>
<tr>
<td>Cryptosporidium spp.</td>
<td>8.8 (4.8, 14.7)</td>
<td>2.4 (0.7, 6.3)</td>
<td>0.8 (0.1, 3.7)</td>
<td>1.6 (0.3, 5.0)</td>
<td>13.6 (8.4, 20.4)</td>
</tr>
<tr>
<td>C. xiaoi</td>
<td>5.6 (2.5, 10.7)</td>
<td>0.8 (0.1, 3.7)</td>
<td>0 (0, 2.0)</td>
<td>0 (0, 2.0)</td>
<td>6.4 (3.1, 11.7)</td>
</tr>
<tr>
<td>C. ubiquitum</td>
<td>0 (0, 2.0)</td>
<td>0 (0, 2.0)</td>
<td>0 (0, 2.0)</td>
<td>3.2 (1.1, 7.4)</td>
<td>3.2 (1.1, 7.4)</td>
</tr>
<tr>
<td>C. parvum</td>
<td>0 (0, 2.0)</td>
<td>0 (0, 2.0)</td>
<td>0 (0, 2.0)</td>
<td>3.2 (1.1, 7.4)</td>
<td>3.2 (1.1, 7.4)</td>
</tr>
<tr>
<td>Not sequenced*</td>
<td>0</td>
<td>0.8</td>
<td>2.4</td>
<td>2.4</td>
<td>-</td>
</tr>
<tr>
<td>Giardia spp.</td>
<td>12.0 (7.2, 18.5)</td>
<td>4.0 (1.5, 8.5)</td>
<td>7.2 (3.6, 12.7)</td>
<td>7.2 (3.6, 12.7)</td>
<td>29.6 (22.1, 38.0)</td>
</tr>
<tr>
<td>G. duodenalis assemblage E</td>
<td>12.0 (7.2, 18.5)</td>
<td>4.0 (1.5, 8.5)</td>
<td>5.6 (2.5, 10.7)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Not sequenced*</td>
<td>0</td>
<td>0</td>
<td>1.6</td>
<td>7.2</td>
<td>-</td>
</tr>
<tr>
<td>Concurrent Crypto. & Giardia</td>
<td>7.2 (3.6, 12.7)</td>
<td>0.8 (0.1, 3.7)</td>
<td>0.8 (0.1, 3.7)</td>
<td>4.0 (1.5, 8.5)</td>
<td>12.8 (7.8, 19.5)</td>
</tr>
</tbody>
</table>

Faecal shedding intensity in positive samples (oocysts per gram of faeces)

<table>
<thead>
<tr>
<th>Sampling occasion</th>
<th>Mean ± standard error</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptosporidium spp.</td>
<td>27 182 ± 13 462</td>
<td>216 – 238 325</td>
</tr>
<tr>
<td></td>
<td>48 732 ± 31 060</td>
<td>1047 – 169 020</td>
</tr>
<tr>
<td></td>
<td>7325±8445</td>
<td>84-16 518</td>
</tr>
<tr>
<td>Giardia spp.</td>
<td>4841±1704</td>
<td>67-14 650</td>
</tr>
<tr>
<td></td>
<td>10 043±6441</td>
<td>551-92 357</td>
</tr>
<tr>
<td></td>
<td>485±200</td>
<td>168-1247</td>
</tr>
<tr>
<td></td>
<td>354±370</td>
<td>36-988</td>
</tr>
<tr>
<td></td>
<td>2443±1130</td>
<td>36-9883</td>
</tr>
</tbody>
</table>

*a,b,c Point prevalence values in rows with different superscripts are significantly different (P<0.05).

*Samples qPCR positive but not successfully sequenced.
Highlights

- First report for Cryptosporidium and Giardia in captured rangeland goats
- Shedding of zoonotic C. parvum and C. ubiquitum
- First report of zoonotic Cryptosporidium parvum subtype IIaA17G4R1 in goats
- Giardia duodenalis Assemblage E identified – considered potentially zoonotic
- Findings have implications for management of captured rangeland goats and effluent