Biology, ecology and trophic interactions of elasmobranchs and other fishes in riverine waters of Northern Australia

Dean Colin Thorburn

This thesis is presented for the Doctor of Philosophy

2006
DECLARATION

I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution

Dean Colin Thorburn
Abstract

In light of the extirpation of a number of elasmobranch species commonly encountered in fresh and estuarine waters elsewhere in the world, 39 river systems were sampled throughout northern Australia to determine the species present. A total of 502 elasmobranchs representing 36 species, in addition to 1531 teleosts representing 46 species, were captured. In regard to elasmobranch species known to frequent riverine habitats, the bull shark *Carcharhinus leucas* was captured in the highest number, followed by the freshwater sawfish *Pristis microdon*, the freshwater whipray *Himantura chaophraya* and the dwarf sawfish *Pristis clavata*. Although these species were generally captured in low numbers, all were widely distributed throughout the region. Furthermore, the waters of King Sound, Western Australia, and the rivers entering it, i.e. the Fitzroy, May and Robinson rivers, were found to contain far higher numbers of *P. microdon* and *P. clavata* than any of the other rivers sampled, as well as the northern river shark *Glyphis* sp. C, and which subsequently provided an ideal locality to study the biology of these species.

The Fitzroy River was shown to act as a nursery for *P. microdon* and *P. clavata*, where immature individuals remain for a maximum of four or five years before migrating to marine waters. Investigations of the rostra and rostral tooth morphology of *P. microdon* indicated their usefulness as a diagnostic tool in differentiating this species from other members of the genus, including *P. clavata*, and for differentiating between the sexes, i.e. female *P. microdon* generally possess 17-21 teeth cf. 19-23 teeth in males. However, no significant difference in the number of rostral teeth was found between female and male *P. clavata*, with both sexes possessing an average of 42. Furthermore, the facts that *P. clavata* was captured up to 2332 mm in total length and all of the individuals were immature, indicates that the description of this species as a ‘dwarf’ sawfish is erroneous.

The use of rivers of northern Australia as nurseries was also apparent for *C. leucas*, with none of the 111 individuals dissected (ranging in length from 681 to 1365 mm TL) being mature. Furthermore, this species appeared to remain within the rivers for approximately four years. Stomach content analysis and field observations confirmed
an opportunistic, and often aggressive, feeding nature, and thus the species may pose some risk to bathers utilising inland waters far upstream (i.e. over 300 km).

Morphometrics and radiographs of 10 *Glyphis* sp. C captured from the macrotidal waters of King Sound (the first capture of this species in Western Australia) indicated that these specimens possessed both a wider range in total vertebral count (i.e. 140-151 cf. 147-148) and number of diplospondylous caudal centra (i.e. 64-70 cf. 65-68) than that previously reported and lent support for its synonymisation with *Glyphis gangeticus*. Radiographs also revealed the spinal deformation and fusing of vertebrae in three of the ten individuals, which may be attributable to a genetic abnormality indicative of inbreeding within a small gene pool.

Analyses of stomach content and stable carbon (δ13C) and nitrogen (δ15N) isotope ratios of fishes occurring in the Fitzroy River indicated that the diets of a majority of the species present are broad, and greatly influenced by the seasonal availability of different prey types. While stomach content analysis suggested that aquatic insects, and to a lesser extent filamentous algae, represent vitally important food sources for many of the species present, stable isotope analysis strongly suggested that this latter food source may not be an important direct energy source, and that prey types which persist throughout the year (e.g. fish, molluscs and *Macrobrachium rosenbergii*) may in fact be more important sources of the energy than dietary data revealed. Dietary overlap was found to be the highest during the wet season when prey availability was high, decreased in the early dry season as fishes became more specialised in their feeding, before increasing again in the late wet when food became very limited. These analyses also supported the views that juvenile fishes may target high energy food items to attain higher growth rates and a large size rapidly, in order to achieve competitive feeding advantages and reduce the risk of predation, and that many species will maximise their energy intake in response to changes in resource availability.
Acknowledgements

The opportunity to study fascinating species and explore some of the most remote rivers of northern Australia was a true privilege. Before departing on the initial survey I was convinced that six months in the bush chasing sharks and rays would satisfy all my boyhood dreams of adventure and exploration, but in reality all it has done is made me dream for more.

This research was only achieved through the support of a great number of people. Particular thanks must go to Andrew Rowland, Dr Howard Gill and Dr David Morgan for their help in every facet of this thesis, during field trips, for their expertise as scientists, their passion for fish biology and ecology and their good humour as mates. Thank you also to other members of the Centre for Fish and Fisheries Research and Murdoch University, including Dr Steve Beatty, Dr William White, Michael Taylor and Matthew Pember, and to Dr Eric Paling for his supervision, guidance and support. Thanks also to Drs Peter Last and John Stevens for presenting the opportunity to conduct the initial surveys, and Stirling Peverell for his coordination of the Queensland survey team. The support of staff at the Museum and Art Galleries of the Northern Territory, in particular Dr Helen Larson, Dr Barry Russell and Steven Gregg, was also crucial to the success of sampling in the Northern Territory.

These studies were also strongly supported by members of the Kimberley Land Council, Kimberley Language Resource Centre, Department of Conservation and Land Management, Department of Fisheries, Natural Heritage Trust and the World Wildlife Fund for Nature. Furthermore, the support for these projects, willingness to participate, acceptance and guidance through country and hospitality shown by traditional owners in various regions throughout northern Australia was truly great, and a wonderful experience. Thanks also to Jim and Geraldine Kelly, Joe Duncan, Karen Dayman and Mal Nevermann for their hospitality while in Derby and Fitzroy Crossing.

Finally, I would never have succeeded if not for the support of my family, of my mother Wendy, father Allan and brothers Gary and Aaron. I also wish I had more
time to thank my grandfather Colin Garnaut for being perhaps my greatest role model. I have also truly been blessed with a great number of friends and who often provided the encouragement to keep going. And to my beautiful Marianne, thank you for your support, friendship and love, for keeping me company when alone at night when miles from anywhere, for patching me up when I returned and understanding how much this research has meant to me.
Table of Contents

Abstract 1
Acknowledgements 3
Table of contents 5
Publications and technical reports 11

Chapter 1
General introduction
1.1 Ichthyological fauna of northern Australia 12
 1.1.1 The origin of fishes of northern Australia 12
 1.1.2 Chondrichthyan fauna 14
 1.1.3 Freshwater elasmobranchs 14
 1.1.4 Current threats and conservation status of freshwater elasmobranchs 16
1.2 Aims of this thesis 17

Chapter 2
Freshwater and estuarine elasmobranchs and other fishes of northern Australia
2.1 Introduction 20
2.2 Materials and Methods 21
 2.2.1 Sampling for fish 21
 2.2.2 Environmental variables 22
 2.2.3 Protocols for fish sampling and species identification 22
2.3 Results 23
 2.3.1 Elasmobranchs 23
 2.3.2 Teleost fishes captured in the Northern Territory and Western Australia 25
2.4 Discussion 25
 2.4.1 Elasmobranchs 25
 2.4.2 Teleost records 27
2.5 Conclusions of the survey 28
Chapter 3

The freshwater sawfish *Pristis microdon* Latham 1794 in the western Kimberley, Western Australia, including notes on its ecology, biology and cultural significance to the indigenous peoples of the Fitzroy River

3.1 Introduction 29

3.2 Materials and Methods 32

3.2.1 Study site 32

3.2.2 Environmental variables and habitat 32

3.2.3 Sample sites and methods 33

3.2.4 Measurements and tagging 33

3.2.5 Age and length 33

3.2.6 Stage of maturity 34

3.2.7 Stomach contents 34

3.2.8 Relationship of rostrum length and total length 35

3.2.9 Sexual dimorphism of rostral tooth number 35

3.2.10 Identification of rostral features for use in differentiating sawfish species 35

3.3 Results 35

3.3.1 Sex ratio, length ranges and capture locations 35

3.3.2 Tagging 37

3.3.3 Age and length 37

3.3.4 Stage of maturity 37

3.3.5 Diet of *P. microdon* 38

3.3.6 Rostrum length versus total length, and sexual dimorphism of rostrum tooth number 38

3.3.7 Differentiation of *P. microdon* and *P. clavata* rostrum teeth 39

3.4 Discussion 39

3.4.1 Habitat utilisation and growth 39

3.4.2 Diet 42

3.4.3 Migration of *P. microdon* in the Fitzroy River 43

3.4.4 The use of rostrums in distinguishing between sawfish species, sexes within a species, the total length of animals and for describing historical patterns of distribution 44
3.4.5 Cultural significance of sawfish to indigenous peoples of the Fitzroy River

3.4.6 Conservation recommendations

Chapter 4
Records of the dwarf sawfish *Pristis clavata* Garman 1906 from the western Kimberley, Western Australia

4.1 Introduction

4.2 Materials and Methods

4.2.1 Sample sites and methods

4.2.2 Environmental variables and habitat

4.2.3 Measurements and tagging

4.2.4 Age and length

4.2.5 Stage of maturity

4.2.6 Stomach contents

4.2.7 Sexual dimorphism of rostral tooth number, and relationship of rostrum length and total length

4.3 Results

4.3.1 Sex ratio, length ranges and capture locations

4.3.2 Tagging

4.3.3 Age and length, maturity and diet

4.3.4 Sexual dimorphism of rostrum tooth number, and rostrum length versus total length

4.4 Discussion

4.4.1 Conservation recommendations

Chapter 5
The northern river shark *Glyphis* sp. C in Western Australia, including aspects of its biology, ecology, morphometry and a provisional description

5.1 Introduction

5.2 Methods

5.2.1 Sample sites, methods, environmental variables and habitat

5.2.2 Length, weight, maturity and diet

5.2.3 Morphometrics and meristics
Chapter 6
The bull shark *Carcharhinus leucas* (Valenciennes) in rivers of northern Australia

6.1 Introduction 65
6.2 Materials and Methods 67
6.2.1 Study sites, environmental variables and habitat 67
6.2.2 Sample collection 67
6.2.3 Measurements and field dissection 67
6.2.4 Length-weight, length-frequency and age 68
6.2.5 Maturation 69
6.2.6 Diet 69
6.3 Results 70
6.3.1 Capture locations, sex ratio, length ranges and habitat 70
6.3.2 Length-weight, age and growth, and maturity 70
6.3.3 Diet of *C. leucas* 71
6.4 Discussion 71
6.4.1 Habitat and distribution 71
6.4.2 Size and age structure of *C. leucas* in northern Australian rivers 72
6.4.3 Feeding behaviour and predation 73
6.4.4 Risk of attack 74

Chapter 7
The seasonal diet of freshwater fishes of a Kimberley river, Western Australia
7.1 Introduction 76
7.2 Methods
7.2.1 Seasonality and sample sites 79
7.2.2 Sampling for fishes 80
7.2.3 Mouth morphology 80
7.2.4 Dietary data 81
7.2.5 Dietary differences between size categories and different seasons within a species 81
7.2.6 Seasonal comparison between species within a season 82

7.3 Results 83
7.3.1 Ontogenic dietary differences 83
7.3.2 Seasonal dietary differences within a species 84
7.3.3 Diets of the estuarine and/or rare fishes 84
7.3.4 Seasonal dietary overlap of freshwater fishes of the Fitzroy River 85

7.4 Discussion 88
7.4.1 Ontogenic changes in the diets of Fitzroy River fishes 89
7.4.2 Seasonal dietary variation of individual species 92
7.4.3 Seasonal resource partitioning in the Fitzroy River 93
7.4.4 Conclusions 94

Chapter 8
The trophic relationships of freshwater fishes of the Fitzroy River, Western Australia, determined by $\delta^{13}C$ and $\delta^{15}N$ stable isotopes: a complement to stomach content analysis
8.1 Introduction 96
8.2 Methods 98
8.2.1 Sampling regime 98
8.2.2 Sample preparation 99
8.2.3 Analysis of $\delta^{13}C$ and $\delta^{15}N$ 101
8.2.4 Trophic position 101
8.2.5 IsoSource mixing model 102

8.3 Results 103
8.3.1 Seasonal $\delta^{13}C$ and $\delta^{15}N$ signatures and trophic position 103
8.3.2 Assimilation of food sources in fishes of the Fitzroy River 104
8.4 Discussion 106
8.4.1 Energetically important food sources of the fishes of the Fitzroy River:
Comparison of stomach contents analysis and stable isotope analysis 106
8.4.2 Competition and seasonal trophic level variation 106
8.4.3 Conclusions 107

Chapter 9
Summary and general conclusions 109
9.1 Summary: Elasmobranchs of northern rivers 110
9.1.1 Distribution 110
9.1.2 Pristis microdon 111
9.1.3 Pristis clavata 111
9.1.4 Glyphis sp. C 112
9.1.5 Carcharhinus leucas 112
9.2 Trophic interactions of fishes in the Fitzroy River 113
9.3 Future research 114
9.4 The last stronghold: Protective legislation in Australia 115

References 118
Publications and technical reports

The following publications and technical reports were produced during these studies.

