Catalog Home Page

Species-specific markers provide molecular genetic evidence for natural introgression of bullhead catfishes in Hungary

Béres, B., Kánainé Sipos, D., Müller, T., Staszny, Á., Farkas, M., Bakos, K., Orbán, L., Urbányi, B. and Kovács, B. (2017) Species-specific markers provide molecular genetic evidence for natural introgression of bullhead catfishes in Hungary. PeerJ, 5 . e2804.

[img]
Preview
PDF - Published Version
Download (1MB) | Preview
Free to read: http://dx.doi.org/10.7717/peerj.2804
*No subscription required

Abstract

Since three bullhead catfish species were introduced to Europe in the late 19th century, they have spread to most European countries. In Hungary, the brown bullhead (Ameiurus nebulosus) was more widespread in the 1970s–1980s, but the black bullhead (Ameiurus melas) has gradually supplanted since their second introduction in 1980. The introgressive hybridization of the two species has been presumed based on morphological examinations, but it has not previously been supported by genetic evidence. In this study, 11 different Hungarian habitats were screened with a new species-specific nuclear genetic, duplex PCR based, marker system to distinguish the introduced catfish species, Ameiurus nebulosus, Ameiurus melas, and Ameiurus natalis, as well as the hybrids of the first two. More than 460 specimens were analyzed using the above markers and additional mitochondrial sequence analyses were also conducted on >25% of the individuals from each habitat sampled. The results showed that only 7.9% of the specimens from two habitats belonged to Ameiurus nebulosus, and 92.1% were classified as Ameiurus melas of all habitats, whereas the presence of Ameiurus natalis was not detected. Two specimens (>0.4%) showed the presence of both nuclear genomes and they were identified as hybrids of Ameiurus melas and Ameiurus nebulosus. An additional two individuals showed contradicting results from the nuclear and mitochondrial assays as a sign of a possible footprint of introgressive hybridization that might have happened two or more generations before. Surprisingly, the level of hybridization was much smaller than expected based on the analyses of the North American continent’s indigenous stock from the hybrid zones. This phenomenon has been observed in several invasive fish species and it is regarded as an added level of complexity in the management of their rapid adaptation.

Publication Type: Journal Article
Murdoch Affiliation: Centre for Comparative Genomics
Publisher: PeerJ
Copyright: 2017 Béres et al.
UNSD Goals: Goal 15: Conserve Life on Land
URI: http://researchrepository.murdoch.edu.au/id/eprint/35862
Item Control Page Item Control Page

Downloads

Downloads per month over past year