Solving Momentum-Space Coupled-Channels
Equations for Electron-Atom Scattering
Using a Rotated-Contour Method

Anthony John Blackett
BSc (Hons)

This thesis is presented for the degree of Doctor of Philosophy
at Murdoch University

Division of Science, Murdoch University
March 2002
Declaration

I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary educational institution.

Anthony John Blackett
Abstract

In the last twenty years, electron-atom scattering theory has witnessed significant theoretical developments. One of these advances is the use of the momentum-space convergent close-coupling approach to fully incorporate target atom continua. This theoretical framework is based on the momentum-space Lippmann-Schwinger equation, an integral form of the Schrödinger equation. Although the approach has been highly successful in its application to atomic scattering theory, computing numerical solutions is inherently difficult because the momentum-space LS equation is a singular integral equation. Standard numerical integration techniques are normally employed to solve the problem and as computing power has increased, calculations have improved. However, there remains the problem of the integral's singular nature, which demands complicated methods for selecting integration points, particularly near the energy-dependant singularity. The rotated-contour method uses a complex-variable approach that solves the momentum-space LS equation by integrating along a deformed contour in the complex momentum plane away from the singularities. This method has the potential for simplifying the numerical integrations associated with the close-coupling equations.

A rotated-contour method is first applied to a simple scattering model – electron scattering from the Yukawa potential. This gives some insight into the difficulties that arise when calculating potential matrix elements for complex momenta. The method is then applied to the s-wave model of the electron-hydrogen scattering problem and finally, the full
Abstract

problem. Existing FORTRAN software written to solve the momentum-space LS equations for electron-hydrogen scattering using standard techniques has been converted to C++. Extensive modification of the code has resulted in a flexible Windows-based program with a graphical user interface that runs on any modern computer using PC architecture. The program can calculate results using either a conventional method (no rotation) or a rotated-contour method.

Using a rotated-contour method to solve the momentum-space LS equations necessitates detailed knowledge of the analytic nature and singularity structure of the coupled-channels potentials. This is achieved through the extensive use of the computer symbolic algebra system Maple to compute closed-form solutions for the direct potentials and for a range of partial-wave direct and exchange potentials. It is found that logarithmic branch point singularities are present on the real momentum axis for an extensive class of partial-wave direct-potential matrix elements. The analysis reveals that a rotated-contour method cannot be applied to the full atomic scattering problem due to these analytic problems which are associated with the long-range nature of the Coulomb potential.
Contents

Declaration i
Abstract iii
Contents v
List of Figures xi
List of Tables xiii
Acknowledgements xv

1 Introduction 1

1.1 Momentum-Space Coupled-Channels Equations 1
1.2 Numerical Software .. 4
1.3 Symbolic Computer Algebra 7
1.4 Notation and Conventions ... 8

2 Atomic Scattering Amplitudes: A Computational Overview 11

2.1 One-Channel T-Matrix and Scattering Amplitudes 12
2.2 Solving the Lippmann-Schwinger Equation 15
2.2.1 Partial-wave expansions 16
2.2.2 Cauchy principal-value integral – regularisation 18
2.2.3 Quadrature integration – matrix solution 20
Contents

2.3 Overview of Solving Coupled-Channels Equations 22
2.4 Calculating Potential Matrix Elements 25
 2.4.1 Electron-electron direct matrix elements 27
 2.4.2 Electron-core direct matrix elements 31
 2.4.3 Electron-electron exchange matrix elements 33
 2.4.4 Energy-dependent exchange matrix elements 34
2.5 Calculating Observable Quantities 36
2.6 Characterisation of the LS Kernels 36
 2.6.1 Partial-wave potentials in closed form 37
 2.6.2 Real-valued momentum formulations of LS kernels 39

3 Solving Momentum-Space LS Equations by Rotated Contours 45
 3.1 The Rotated-Contour Method 46
 3.1.1 An analytic example of the rotated-contour method 49
 3.2 Contour Rotation Applied to the LS Equation 51
 3.3 Mapping the LS Equation's Singularity Structure 54
 3.3.1 Restrictions on the contour-rotation angle 58

4 Yukawa Scattering: Illustration of a Rotated-Contour Approach 61
 4.1 Computing Yukawa-Potential Matrix Elements 63
 4.1.1 Partial-wave expansion of the potential matrix 63
 4.1.2 Analytic approach to evaluating potentials 64
 4.1.3 Numerical integration for evaluating potentials 68
4.2 Solving the Lippmann-Schwinger Equation ... 72
4.2.1 Singularity-structure analysis for the Yukawa potential 72
4.2.2 Contour-rotation angle constraints .. 76
4.3 Numerical Solution ... 77
4.3.1 Potential matrix elements ... 78
4.3.2 Second-Born T-matrix elements .. 80
4.3.3 Full T-matrix elements .. 90

5 Analytic Structure of Potentials for s-Wave Model e-H Scattering 93
5.1 s-Wave Model Born-Series' Singularity Structures 94
5.1.1 Singularity structure for the direct 1s-1s kernel 96
5.1.2 Singularity structure for the direct 1s-2s (2s-1s) kernel 99
5.1.3 Singularity structure for the direct 2s-2s kernel 102
5.2 Contour-Rotation Angle Constraints .. 103
5.3 Analytic Continuation of Direct Potentials 104
5.3.1 1s-1s partial-wave direct potential in closed form 104
5.3.2 1s-2s partial-wave direct potential in closed form 105
5.3.3 2s-2s partial-wave direct potential in closed form 106
5.4 Analytic Continuation of Exchange Potentials 107
5.4.1 1s-1s partial-wave exchange potential in closed form 108
5.4.2 1s-2s partial-wave exchange potential in closed form 109
5.4.3 2s-2s partial-wave exchange potential in closed form 110
Contents

5.5 Evaluating Partial-Wave Exchange Integrals 111
 5.5.1 Integrals for the energy-dependent exchange potential 112
 5.5.2 Integrals for the two-electron exchange potential 115

6 Rotated-Contour CC(ns) Electron-Hydrogen Scattering Results 125
 6.1 Program Structure and Methodology 125
 6.1.1 Calculating s-wave direct potentials on a rotated contour .. 127
 6.1.2 Calculating exchange potentials on a rotated contour 129
 6.2 Single-Channel e-H Elastic Scattering – CC(1s) 130
 6.2.1 Direct potential for the 1s-1s transition 131
 6.2.2 Exchange potential for the 1s-1s transition 134
 6.2.3 CC(1s) T-matrix elements and differential cross sections .. 136
 6.3 Two-State Coupling e-H Scattering – CC(1s,2s) 140
 6.3.1 Direct potentials for 2s-2s, 1s-2s and 2s-1s transitions .. 141
 6.3.2 Exchange potentials for 2s-2s, 1s-2s and 2s-1s transitions .. 143
 6.3.3 CC(1s,2s) T-matrix and differential cross sections 145
 6.4 Three-State Coupling e-H Scattering – CC(1s,2s,3s) 146

7 Analytic Structure of General Potentials for e-H Scattering 149
 7.1 Singularity Structures of Direct 1s-2p Kernels 150
 7.1.1 Analytic properties of the 1s-2p_0 direct potential 150
 7.1.2 Analytic properties of the 1s-2p_{s1} direct potential 155
 7.1.3 Analytic properties of general direct potentials 156
7.2 Analytic Structure of Partial-Wave Direct Potentials
7.2.1 Analytic structure of $1s$-$2p$ partial-wave direct potential
7.2.2 Numerical $1s$-$2p$ and $2p$-$1s$ partial-wave direct potential
7.2.3 Analytic structure of $2p$-$2p$ partial-wave direct potential
7.2.4 Numerical $2p$-$2p$ partial-wave direct potential
7.3 Partial-Wave Exchange Potentials
7.3.1 Analytic structure for $1s$-$2p$ exchange potential
7.4 Consideration of Modified Contours

8 Conclusions
8.1 Rotated-Contour Method
8.2 Computer Algebra Systems
8.3 Numerical Software Development in C++

A Selected Useful Formulae
A.1 Wigner 3-j and 6-j Symbols
A.2 Clebsch-Gordan Coefficients
A.3 Legendre and Associated Legendre Polynomials
A.4 Spherical Harmonics
A.5 Integrals
A.6 Hypergeometric Functions
Contents

B Potential Matrix Elements for Electron-Atom Scattering 191

B.1 Potential Matrix as a Partial-Wave Expansion 192
B.2 Partial-Wave Potential Matrix Elements 194
B.3 Direct-Potential Matrix Elements 195
 B.3.1 Electron-core direct-potential matrix elements 196
 B.3.2 Electron-electron direct-potential matrix elements 196
B.4 Exchange-Potential Matrix Elements 203
 B.4.1 Energy-dependent exchange-potential matrix elements ... 205
 B.4.2 Electron-electron exchange-potential matrix elements ... 207

C Content of the CDROM 211

C.1 CDROM Overview .. 211
C.2 CDROM Contents .. 212
C.3 Computed Analytic Potentials 213

References and Bibliography 217
List of Figures

Figure 2.1: Basic atomic scattering experiment 13
Figure 2.2: Direct potential and kernel for 1s-1s e-H scattering 40
Figure 2.3: Direct potential and kernel for 1s-2s e-H scattering 41
Figure 2.4: Direct potential and kernel for 2p-1s e-H scattering 42
Figure 3.1: Complex contours for deriving the rotated-contour method ... 47
Figure 4.1: Real and imaginary parts of spherical Bessel $j_0(z)$ 69
Figure 4.2: Real and imaginary parts of spherical Hankels $h_0^{(1,2)}(z)$ 71
Figure 4.3: Singularity structure of potential matrix elements 74
Figure 4.4: Contour-rotation angle convergence of VG$_0$V for $\mu/k = 5$... 84
Figure 4.5: Rotation convergence of VG$_0$V amplitudes for $\mu/k = 1$... 87
Figure 4.6: Contour-rotation angle convergence of VG$_0$V for $\mu/k = 1/5$... 88
Figure 5.1: Orientation of the momentum-transfer vector \mathbf{K} 95
Figure 5.2: e-H Born-series 1s-1s singularity structure 98
Figure 5.3: e-H Born-series 1s-2s singularity structure 101
Figure 5.4: e-H Born-series 2s-2s singularity structure 102
Figure 6.1: TCrossWin interaction settings dialog box 126
Figure 6.2: 1s-1s half-off-shell partial-wave ($J = 0$) direct potential 132
Figure 6.3: 1s-1s half-off-shell partial-wave ($J = 0$) exchange potential .. 136
Figure 6.4: 1s-1s differential cross section for e-H scattering 140
Figure 6.5: 2s-2s half-off-shell partial-wave ($J = 0$) direct potential 141
Figure 6.6: 1s-2s half-off-shell partial-wave ($J = 0$) direct potential 142
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7</td>
<td>2s-1s half-off-shell partial-wave ((J = 0)) direct potential</td>
<td>142</td>
</tr>
<tr>
<td>6.8</td>
<td>2s-2s half-off-shell partial-wave ((J = 0)) exchange potential</td>
<td>143</td>
</tr>
<tr>
<td>6.9</td>
<td>1s-2s half-off-shell (J = 0) partial-wave exchange potential</td>
<td>144</td>
</tr>
<tr>
<td>6.10</td>
<td>2s-1s half-off-shell (J = 0) partial-wave exchange potential</td>
<td>144</td>
</tr>
<tr>
<td>6.11</td>
<td>1s-1s and 1s-2s differential cross sections</td>
<td>145</td>
</tr>
<tr>
<td>6.12</td>
<td>1s-1s, 1s-2s and 1s-3s differential cross sections</td>
<td>146</td>
</tr>
<tr>
<td>7.1</td>
<td>Singularity structure of 1s-2p (e-H) direct potentials</td>
<td>153</td>
</tr>
<tr>
<td>7.2</td>
<td>Direct potential log function and its derivative</td>
<td>160</td>
</tr>
<tr>
<td>7.3</td>
<td>Direct potential log function on rotated contour</td>
<td>161</td>
</tr>
<tr>
<td>7.4</td>
<td>2p-1s half-off-shell partial-wave ((J = 0)) direct potential</td>
<td>165</td>
</tr>
<tr>
<td>7.5</td>
<td>1s-2p half-off-shell partial-wave ((J = 0)) direct potential</td>
<td>165</td>
</tr>
<tr>
<td>7.6</td>
<td>2p-2p direct potential log function and its derivatives</td>
<td>167</td>
</tr>
<tr>
<td>7.7</td>
<td>2p-2p half-off-shell partial-wave ((J = 0)) direct potential</td>
<td>168</td>
</tr>
<tr>
<td>7.8</td>
<td>2p-2p half-off-shell partial-wave ((J = 1)) direct potential</td>
<td>169</td>
</tr>
<tr>
<td>7.9</td>
<td>1s-2p half-off-shell partial-wave ((J = 0)) exchange potential</td>
<td>172</td>
</tr>
<tr>
<td>7.10</td>
<td>2p-1s half-off-shell partial-wave ((J = 0)) exchange potential</td>
<td>173</td>
</tr>
<tr>
<td>7.11</td>
<td>1s, 2s, 2p differential cross sections (exchange only)</td>
<td>174</td>
</tr>
</tbody>
</table>
List of Tables

Table 2.1: \(1s-1s\) direct-potential matrix elements for e-H scattering 38
Table 4.1: Potentials for electron-Yukawa scattering 79
Table 4.2: \(V\Gamma_0V\) for electron-Yukawa potential scattering 83
Table 4.3: T-matrix convergence for electron-Yukawa scattering 91
Table 6.1: \(1s-1s\) partial-wave \((J = 0)\) direct potentials 131
Table 6.2: \(1s-1s\) on-shell direct potential and second-Born T-matrix 134
Table 6.3: \(1s-1s\) partial-wave \((J = 0)\) exchange potentials 135
Table 6.4: \(1s-1s\) on-shell potential and second-Born T-matrix 137
Table 6.5: \(1s-1s\) on-shell T-matrix and V-matrix . 138
Table 7.1: \(2p-1s\) partial-wave \((J = 0)\) direct potentials 164
Acknowledgements

I must first give my appreciation and thanks to Professor Andris Stelbovics, my PhD supervisor, for his guidance and helpful support not only throughout this thesis, but through my entire undergraduate and postgraduate studies. Andris' depth of knowledge over a broad spectrum of scattering theory has been invaluable, and he has always been willing and able to provide expert help whenever it was required. His continued support in the face of apparently insurmountable problems gave me renewed vigour which ultimately resulted in the completion of this thesis.

My sincere gratitude goes to my wife Carol who has suffered immeasurably over the many years that it has taken to reach this conclusion of my studies. Without her continued support at home, completing this thesis would have been impossible. We can now look forward to enjoying our future together free of study and the lonely nights and weekends that have been an inescapable aspect of our life over the past thirteen years since starting my undergraduate studies as a part-time student.

My thanks also goes to Associate Professor Stephen Thurgate, who first directed me onto this path of study in physics, and his support throughout my studies is very much appreciated. I'm also indebted to Associate Professor Ken Harrison for his fascinating undergraduate course on the Complex Variable, and for listening to and answering my many questions concerning complex variable techniques. I would also like to extend my
Acknowledgements

appreciation for the contribution of moral support given by Professor Igor Bray in the latter stages of the thesis and for his willingness to help wherever possible.

My appreciation is also offered to Dr Bill Scott for his helpful discussions on Maple, its idiosyncrasies, and for his generous provision of a copy of maple7 at a most fortuitous time. Appreciation is also given to Dr Chris Lund for his moral support and for the financial support that he gave in the form of work that allowed me to survive this difficult time.

I would also like to acknowledge my fellow students, Tony Shackleton and Philip Bartlett, for the many discussions we had on numerical and algebraic computing, and to Katrina Lyon and Dr Chris Lund for the use of their colour laser printer in the production of this thesis.

Finally, financial support for this work was provided primarily by the Australian Federal Government through the Australian Postgraduate Award Scheme and without which, this work would not have been undertaken.