
http://researchrepository.murdoch.edu.au/3362/

Copyright © 2009 Elsevier B.V.
It is posted here for your personal use. No further distribution is permitted.
ON SHORTEST CRUCIAL WORDS AVOIDING ABELIAN POWERS

SERGEY AVGUSTINOVICH, AMY GLEN, BJARNI V. HALLDÓRSSON, AND SERGEY KITAEV

Abstract. Let $k \geq 2$ be an integer. An abelian k-th power is a word of the form $X_1X_2\cdots X_k$ where X_i is a permutation of X_1 for $2 \leq i \leq k$. A word W is said to be crucial with respect to abelian k-th powers if W avoids abelian k-th powers, but Wx ends with an abelian k-th power for any letter x occurring in W.

Evdokimov and Kitaev [2] have shown that the shortest length of a crucial word on n letters avoiding abelian squares is $4n - 7$ for $n \geq 3$. Furthermore, Glen et al. [3] proved that this length for abelian cubes is $9n - 13$ for $n \geq 5$. They have also conjectured that for any $k \geq 4$ and sufficiently large n, the shortest length of a crucial word on n letters avoiding abelian k-th powers, denoted by $\ell_k(n)$, is $k^2n - (k^2 + k + 1)$.

This is currently the best known upper bound for $\ell_k(n)$, and the best known lower bound, provided in [3], is $3kn - (4k + 1)$ for $n \geq 5$ and $k \geq 4$. In this note, we improve this lower bound by proving that for $n \geq 2k - 1$, $\ell_k(n) \geq k^2n - (2k^3 - 3k^2 + k + 1)$; thus showing that the aforementioned conjecture is true asymptotically (up to a constant term) for growing n.

Keywords: pattern avoidance; abelian power; crucial word.

MSC (2000): 05D99; 68R05; 68R15.

1. Introduction

Let $A_n = \{1, 2, \ldots, n\}$ be an n-letter alphabet and let $k \geq 2$ be an integer. A word W over A_n contains a k-th power if W has a factor of the form $X^k = XX\cdots X$ (k times) for some non-empty word X. For example, the word $V = 1324324$ over A_4 contains the (non-trivial) 4-th power $(32)^4 = 32323232$. A word W contains an abelian k-th power if W has a factor of the form $X_1X_2\cdots X_k$ where X_i is a permutation of X_1 for $2 \leq i \leq k$. The cases $k = 2$ and $k = 3$ give us abelian squares (introduced by Erdős [1]) and abelian cubes, respectively. For instance, the preceding word V contains the abelian square 32323232 and the word 123312213 is an abelian cube.

A word W is (abelian) k-power-free if W avoids (abelian) k-th powers, i.e., if W does not contain any (abelian) k-th powers. For example, the word 1234324 is abelian cube-free, but not abelian square-free since it contains the abelian square 234324.

A word W is crucial with respect to a given set of prohibited words (or simply prohibitions) if W avoids the prohibitions, but Wx does not avoid the prohibitions for any letter x occurring in W. A minimal crucial word is a crucial word of the shortest length. For example, the word $W = 21211$ (of length 5) is crucial with respect to abelian cubes since it is abelian cube-free and the words $W1$ and $W2$ end with the abelian cubes 111 and 21212, respectively.
respectively. Actually, W is a minimal crucial word over $\{1, 2\}$ with respect to abelian cubes. Indeed, one can easily verify that there do not exist any crucial abelian cube-free words on two letters of length less than 5.

Let $\ell_k(n)$ denote the length of a minimal crucial word on n letters avoiding abelian k-th powers. Evdokimov and Kitaev [2] have shown that $\ell_2(n) = 4n - 7$ for $n \geq 3$. Furthermore, Glen et al. [3] proved that $\ell_3(n) = 9n - 13$ for $n \geq 5$, and $\ell_3(n) = 2, 5, 11,$ and 20 for $n = 1, 2, 3,$ and 4, respectively. The latter authors also showed that $\ell_k(n) \leq k^2n - (k^2 + k + 1)$ for $n \geq 4$ and $k \geq 3$, and they made the following conjecture.

Conjecture 1. [3] For any $k \geq 4$ and sufficiently large n, we have $\ell_k(n) = k^2n - (k^2 + k + 1)$.

The best known lower bound for $\ell_k(n)$, provided in [3], is $3kn - (4k + 1)$ for $n \geq 5$ and $k \geq 4$. The main result of this short note is the following improvement to the foregoing lower bound.

Theorem 1. For $k \geq 2$ and $n \geq 2k - 1$, $\ell_k(n) \geq k^2n - (2k^3 - 3k^2 + k + 1)$.

The above theorem shows in particular that Conjecture 1 is true asymptotically (up to a constant term) for growing n. Note that for $k = 2$ the lower bound in Theorem 1 cannot be improved as it gives the exact value of $\ell_2(n)$.

2. **Proof of Theorem 1**

For a crucial word X (with respect to abelian k-th powers) on the n-letter alphabet A_n, we let $X = X_1\Delta_1$, where Δ_i is the factor of minimal length such that Δ_i^i is an abelian k-th power for $i \in A_n$. Note that we can rename letters, if needed, so we can assume that for any minimal crucial word X, one has

$$\Delta_1 \subset \Delta_2 \subset \cdots \subset \Delta_n = X$$

where “\subset” means (proper) right factor (or suffix). In other words, for each $i = 2, 3, \ldots, n$, we have $\Delta_i = Y_i\Delta_{i-1}$ for some non-empty Y_i. In what follows we will use X_i and Y_i as stated above. We note that the definitions imply:

$$X = X_i\Delta_i = X_iY_i\Delta_{i-1} = X_{n-1}Y_{n-1}Y_{n-2} \cdots Y_2\Delta_1,$$

for any $i = 2, 3, \ldots, n - 1$. Furthermore, in the case of crucial words avoiding abelian k-th powers, we write $\Delta_{ij} = \Omega_{i,1}\Omega_{i,2} \cdots \Omega_{i,k}$, where the k blocks $\Omega_{i,j}$ are equal up to permutation, and we denote by $\Omega'_{i,k}$ the block $\Omega_{i,k}$ without the rightmost i.

Lemma 2. Let $X = \Omega_{n,1}\Omega_{n,2} \cdots \Omega'_{n,k} = Y_nY_{n-1} \cdots Y_1$ be a crucial word on A_n avoiding abelian k-th powers ($k \geq 2$). For any i, $1 \leq i \leq n - 1$, if the factor $Y_{i+1}Y_i$ entirely belongs to the block $\Omega_{n,j}$ for some j (possibly $\Omega'_{n,k}$), then the letter i occurs at least k^2 times in X.

Proof. Since $\Delta_{i-1}(i-1)$ and $\Delta_{i+1}(i+1)$ are abelian k-th powers (by definition), we deduce that the number of occurrences of the letter i in each of the factors Δ_{i-1} and Δ_{i+1} is divisible by k. Moreover, since Δ_i^i is an abelian k-th power, the number of occurrences of the letter i in Δ_i is $(k - 1)$ modulo k, where $\Delta_i = Y_i\Delta_{i-1}$. For the preceding statements to hold, the
number of occurrences of \(i \) in \(Y_i \) must be at least \(k - 1 \), and hence \((k - 1)\) modulo \(k \). Similarly, the number of occurrences of \(i \) in \(Y_{i+1} \) must be at least 1, and hence 1 modulo \(k \). Therefore, the factor \(Y_{i+1}Y_i \) contains at least \(k \) occurrences of the letter \(i \). Finally, since \(Y_{i+1}Y_i \) is a factor of the block \(\Omega_{n,j} \) for some \(j \) (by hypothesis) and \(Xn = \Omega_{n,1}\Omega_{n,2} \ldots \Omega'_{n,k}n \) is an abelian \(k \)-th power, we conclude that \(i \) occurs at least \(k^2 \) times in \(X \).

Proof of Theorem 1. Let \(X = \Omega_{n,1}\Omega_{n,2} \ldots \Omega'_{n,k} = Y_nY_{n-1} \ldots Y_1 \) be a crucial word on \(A_n \) avoiding abelian \(k \)-th powers \((k \geq 2)\). As an obvious corollary to Lemma 2, one has that if the factor \(Y_{i+1}Y_i \ldots Y_1 \) entirely belongs to the block \(\Omega_{n,j} \) for some \(j \), then each of the letters \(t, t + 1, \ldots, i \) must occur at least \(k^2 \) times in \(X \). Thus, out of all \(Y_i \)'s entirely belonging to a single block \(\Omega_{n,j} \) only one of them can correspond to a letter occurring less than \(k^2 \) times in \(X \), which gives in total at most \(k \) such letters. Additionally, at most \(k - 1 \) \(Y_i \)'s cannot be inside a single block \(\Omega_{n,j} \), and theoretically the letters corresponding to such \(Y_i \)'s could occur less than \(k^2 \) times in \(X \) (we have no information on such \(Y_i \)'s). To summarize, \(X \) would have the minimal possible number of letters if \(X \) was of the form

\[
X = Y_nZ_nY_iY_{i-1}Z_{n-1}Y_{i+1}Y_{i+2} \ldots Y_{i+k-1}Y_{i+k-2}Z_{n-1},
\]

where factor \(Z_i \) entirely belongs to one of \(k - 1 \) blocks \(\Omega_{n,j} \), or the block \(\Omega'_{n,k} \). Moreover, \(Y_n, Y_{i-1}, Y_{i+1}, \ldots, Y_{i+k-2} \) are the leftmost factors entirely inside the corresponding blocks \(\Omega_{n,j} \) or \(\Omega'_{n,k} \); \(Y_{i+1}, Y_{i+2}, \ldots, Y_{i+k-2} \) are factors having letters in two adjacent blocks \(\Omega_{n,j} \) and \(\Omega_{n,j-1} \) for some \(j \); and the factor \(Y_{i+k-1} \) has letters in both \(\Omega_{n,k-1} \) and \(\Omega'_{n,k} \). All of the \(2k - 1 \) factors \(Y_i \) in the above decomposition correspond to letters occurring \(k \) times, whilst any other letter must occur at least \(k^2 \) times. Thus, for \(n \geq 2k - 1 \), the length of \(X \) is bounded from below by

\[
k^2(n - (2k - 1)) + (2k - 1)k - 1 = k^2n - (2k^3 - 3k^2 + k + 1),
\]

where the term \((2k - 1)k - 1 \) comes from the fact that each letter out of those occurring less than \(k^2 \) times in \(X \) occurs at least \(k \) times there, except for the letter \(n \) which may occur only \(k - 1 \) times. \(\Box \)

3. Further Discussion

Even though the goal of this short paper was to prove an “asymptotic version” of Conjecture 1 (rather than attempting to prove the conjecture itself or improving our lower bound as much as possible), we would like to share some ideas that may be helpful for further study of crucial words avoiding abelian powers, particularly with regards to proving/disproving Conjecture 1 or improving the lower bound in Theorem 1.

In our considerations here (and in [3]), we do not use the fact that crucial words avoid abelian powers. Thus, it is natural to study what we call *weakly crucial words* with respect to abelian powers (or other prohibitions); namely words that may contain abelian powers, but extending these words to the right by any letter \(x \) occurring within them creates an abelian power involving the rightmost \(x \). For weakly crucial words, one has a nice hereditary property that erasing any letter in such a word gives a weakly crucial word. In particular, to prove lower bounds for the length of (regular) crucial...
words with respect to abelian k-th powers, one could start by erasing all the letters occurring more than k^2 times, thus obtaining a weakly crucial word, and then work only with letters occurring less than k^2 times (the number of such letters, due to the proof of Theorem 1, is at most $2k-1$). It is likely that the best lower bounds for the lengths of weakly crucial words and regular crucial words with respect to abelian k-th powers coincide.

Our final remark is as follows. Assuming the following conjecture is true, the lower bound in Theorem 1 would be significantly improved to $k^2(n - 3) + 3k - 1 = k^2n - (3k^2 - 3k + 1)$.

Conjecture 2. For a (weakly) crucial word $X = Y_nY_{n-1}\ldots Y_1$ on A_n avoiding abelian k-th powers ($k \geq 2$), there cannot exist 3 letters less than n that occur less than k^2 times in X.

4. Acknowledgements

The first author was partially supported by RFBR grant 07-01-00248-a. The second and fourth authors were supported by the Icelandic Research Fund (grant nos. 09003801/1 and 060005012/3).

References

Sobolev Institute of Mathematics, Novosibirsk, Russia

E-mail address: avgust@math.nsc.ru

Department of Mathematics and Statistics, School of Chemical and Mathematical Sciences, Murdoch University, Perth, WA, 6150, AUSTRALIA

Current address: The Mathematics Institute, School of Computer Science, Reykjavík University, Kringlan 1, IS-103 Reykjavík, ICELAND

E-mail address: amy.glen@gmail.com

The Mathematics Institute, School of Science and Engineering, Reykjavík University, Kringlan 1, IS-103 Reykjavík, ICELAND

E-mail address: bjarnivh@ru.is

The Mathematics Institute, School of Computer Science, Reykjavík University, Kringlan 1, IS-103 Reykjavík, ICELAND

E-mail address: sergey@ru.is