THE THERMODYNAMIC CHEMISTRY OF THE
AQUEOUS COPPER-AMMONIA THIOSULFATE SYSTEM

Silvia Beatriz Black

This Thesis is presented for the degree of doctor of Philosophy of Murdoch University
Murdoch University
2006
DECLARATION

I declare that this thesis is my own account of my research and contains as its main content work that has not previously been submitted for a degree or examination at any tertiary education institution.

Silvia B. Black

______________ day of _________________ 2006
ABSTRACT

A fundamental thermodynamic study was undertaken in order to establish the speciation of copper(I) and copper(II) during the leaching and recovery of gold from thiosulfate-copper-ammonia solutions. Despite considerable research into this complex leaching system, the lack of important fundamental chemistry has delayed the implementation of the thiosulfate process as an alternative to cyanidation. Over the last two decades, research in this field has focused on the kinetics and electrochemistry of leaching, which involves the use of copper(II) as an oxidant. However, the fundamental thermodynamic data for copper(I) and copper(II) in this system is limited.

Ion association was found to significantly affect the dissociation constant of the ammonium ion in solutions containing sodium sulfate and/or sodium thiosulfate, thus influencing the free ammonia concentration in solution. These findings highlight the importance of using the correct dissociation constant value in thermodynamic studies that involve ammonia in order to obtain precise stability constants.

It has been established that the mixed-ligand complexes $\text{Cu(NH}_3\text{)(S}_2\text{O}_3\text{)}_2^{3-}$ and $\text{Cu(NH}_3\text{)(S}_2\text{O}_3\text{)}^{-}$ exist in solution and they are more stable than the other species $\text{Cu(S}_2\text{O}_3\text{)}_3^{5-}$, $\text{Cu(NH}_3\text{)}_2^{+}$ and $\text{Cu(NH}_3\text{)}_3^{+}$ at high concentrations of ammonia and/or thiosulfate. The relative proportions of each two species is dependant on the $[\text{NH}_3] : [\text{S}_2\text{O}_3^{2-}]$ ratio in solution. This is reflected in two- and three-dimensional speciation diagrams that have been constructed for typical leaching
and recovery processes using the stability constants obtained in this study. The 3-dimensional diagrams reveal subtle speciation trends that are not easily discernable from the 2-dimensional diagrams.

An investigation into the effect of high sulfate and chloride concentrations showed that these anions are not involved in the complexation with copper(I)-ammonia or copper(I)-ammonia-thiosulfate species under the experimental conditions studied. However, these anions and perchlorate formed relatively stable species with the copper(II)-ammine complexes in the absence of thiosulfate. Stability constants were obtained for the species Cu(NH$_3$)$_4$SO$_4$\(^0\), Cu(NH$_3$)$_4$Cl\(^+\) and Cu(NH$_3$)$_4$ClO$_4$\(^-\) and it is suggested that these anionic ligands form outer-sphere complexes with the Cu(NH$_3$)$_4$\(^{2+}\) ion.

Various methods of predicting stability constants for mixed-ligand complexes from those for the corresponding single ligand systems have been evaluated for this copper(I) system. Although the results have not been quantitatively accurate, the trends suggest that an appropriate method may serve as a useful qualitative tool to predict the possible existence of mixed-ligand complexes.

The combined application of 2- and 3-dimensional speciation and potential diagrams could be used as a hydrometallurgical tool in the design, optimization and control of possible future processes for the extraction of gold using thiosulfate in the presence of copper ions and ammonia. The work presented in this thesis adds to our understanding of the chemistry of copper(I) and copper(II) in this leaching system.
ACKNOWLEDGEMENTS

I would like to thank my supervisors Professor Mike Nicol and Dr Gamini Senanayake. I valued their integrity and enthusiasm and particularly Professor Nicol's sharp mind and Dr Senanayake's clarity of thinking. It has been a privilege to be working closely with these two high calibre scientists, who in their quest for furthering the knowledge of science created an energetically enjoyable atmosphere around them.

I would like to acknowledge the following,
The A.J. Parker Cooperative Research Centre for Extractive Metallurgy and Murdoch University for their financial support through the provision of a two-year partnership scholarship.
The Chemistry Centre (WA) for granting me two years leave away from work, which allowed my full dedication to this project.
The technical support and efficiency of Ken Seymour, Justin McGuinnity, Lyn Sunderland, Stewart Kelly, the staff at Murdoch University's workshop, chemical store and IT department.
Dr Sergei Pisarevsky and Mrs Lioudmila Pissarevskaja for translating Russian papers.
CONTENTS

ABSTRACT .. i

ACKNOWLEDGEMENTS ... iii

CONTENTS .. iv

LIST OF FIGURES ... ix

LIST OF TABLES .. xviii

SYMBOLS .. xxiii

1 INTRODUCTION .. 1

1.1 Brief Overview of the Gold Industry ... 1

1.2 The Leaching and Recovery of Gold ... 3

1.3 Chemistry of the Leaching of Gold with Thiosulfate 4

1.4 Objectives of the Project .. 11

2 LITERATURE REVIEW ... 12

2.1 Stability Constants .. 12

2.2 Ion Association ... 15

2.3 Dissociation Constant of Ammonium Ion ... 16

2.4 Copper(I) Solutions ... 21

2.5 Copper(I)-Ammonia System ... 23

2.6 Copper(I)-Ammonia-Chloride System ... 28

2.7 Copper(I)-Thiosulfate System ... 32

2.8 Copper(I)-Thiosulfate-Chloride System .. 36

2.9 Copper(I)-Ammonia-Thiosulfate System ... 38

2.10 Influence of Anions on the Copper(II)-Ammonia System 39

2.11 Selection of Methods for the Determination of Stability Constants 43

2.12 Summary and Project Scope .. 45
5.6 Copper(I)-Ammonia System .. 88
5.7 Copper(I)-Thiosulfate System ... 90
5.8 Copper(I)-Ammonia-Thiosulfate System............................... 91
 5.8.1 Sulfate Media .. 91
 5.8.2 Chloride Media .. 94
5.9 Copper(II)-Ammonia System .. 95
 5.9.1 UV/Visible Spectrophotometry .. 95
 5.9.2 Potentiometry ... 95

6 RESULTS: COPPER(I)-AMMONIA AND COPPER(I)-THIOSULFATE
SYSTEMS ... 97
 6.1 Evaluation of Roll-Mixing .. 97
 6.2 The Effect of the Medium on the Dissociation Constant of Ammonium Ion (pKₐ) ... 98
 6.3 Copper(I)-Ammonia System ... 107
 6.3.1 Comparison of Media Effects 107
 6.3.2 Effect of Sulfate on the Copper(I)-Ammonia System 110
 6.3.3 Effect of Chloride on the Copper(I)-Ammonia System 112
 6.3.3.1 Titration with Chloride at Fixed Ammonia Concentrations .. 113
 6.3.3.2 Titration with Ammonia at Fixed Chloride Concentrations .. 114
 6.3.3.3 Titration with Chloride at Fixed Ammonia Levels in Sulfate Solutions ... 116
 6.3.4 Discussion ... 119
 6.3.4 Speciation in the Copper(I)-Ammonia System 120
 6.4 Copper(I)-Thiosulfate System ... 126
 6.4.1 Determination of Thiosulfate Co-ordination to Copper(I) ... 130
6.4.2 Determination of Stability Constants ... 132
6.5 Summary ... 134
7 RESULTS: COPPER(I)-AMMONIA-THIOSULFATE SYSTEM 136
 7.1 Sulfate Media .. 136
 7.1.1 Speciation Model 1 ... 140
 7.1.2 Speciation Model 2 ... 142
 7.1.3 Preliminary β values ... 144
 7.1.4 Accurate Determination of Stability Constants 146
 7.2 Chloride Media .. 149
 7.2.1 Varying Chloride Concentration ... 149
 7.2.2 Constant Chloride Concentration .. 151
 7.2.3 Stability Constants of Mixed Complexes in Chloride Media 154
 7.3 Summary ... 156
 7.4 Assessment of Predictive Methods ... 157
8 RESULTS: INFLUENCE OF ANIONS ON THE COPPER(II)-AMMONIA
 SYSTEM ... 162
 8.1 UV/Vis. Spectrophotometry ... 162
 8.2 Potentiometry .. 164
 8.3 Discussion .. 167
 8.3.1 Stability Constants of Mixed Complexes .. 169
 8.3.2 Ionic Strength Effects .. 175
 8.4 Summary and Further Discussion ... 179
9 SPECIATION AND CELL POTENTIAL DIAGRAMS ... 182
 9.1 Copper(I)-Ammonia System .. 184
 9.2 Copper(I)-Thiosulfate System ... 186
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3 Copper(I)-Ammonia-Thiosulfate System in Sulfate Media</td>
<td>189</td>
</tr>
<tr>
<td>9.3.1 Species Distribution Diagrams</td>
<td>189</td>
</tr>
<tr>
<td>9.3.2 3-Dimensional Speciation Plots</td>
<td>194</td>
</tr>
<tr>
<td>9.4 Copper(I)-Ammonia-Thiosulfate System in Chloride Media</td>
<td>198</td>
</tr>
<tr>
<td>9.5 3-Dimensional Plots of the Cell Potential</td>
<td>199</td>
</tr>
<tr>
<td>9.6 Discussion and Practical Applications</td>
<td>202</td>
</tr>
<tr>
<td>10 CONCLUSIONS</td>
<td>206</td>
</tr>
<tr>
<td>11 RECOMMENDATIONS FOR FUTURE STUDY</td>
<td>210</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>211</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>226</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>233</td>
</tr>
<tr>
<td>APPENDIX C</td>
<td>236</td>
</tr>
<tr>
<td>APPENDIX D</td>
<td>238</td>
</tr>
<tr>
<td>APPENDIX E</td>
<td>240</td>
</tr>
<tr>
<td>APPENDIX F</td>
<td>242</td>
</tr>
<tr>
<td>APPENDIX G</td>
<td>244</td>
</tr>
<tr>
<td>APPENDIX H</td>
<td>246</td>
</tr>
<tr>
<td>APPENDIX I</td>
<td>248</td>
</tr>
<tr>
<td>APPENDIX J</td>
<td>250</td>
</tr>
<tr>
<td>APPENDIX K</td>
<td>252</td>
</tr>
<tr>
<td>APPENDIX L</td>
<td>255</td>
</tr>
<tr>
<td>APPENDIX M</td>
<td>257</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1.1 Annual gold production in Australia between 1890 and 2003.1
Figure 1.2 Gold production (tonnes) in the World between 1840 and 2000.2
Figure 1.3 A model for the dissolution of gold in the thiosulfate leaching system.
Aus. Extracted from Aylmore and Muir (2001b). ...4
Figure 1.4 A schematic representation of sulphur speciation in solution.
Equations are not stoichiometrically balanced. ...6
Figure 1.5 Thermodynamic data for sulphur at different oxidation states and at
several pH values. Extracted from Moleman and Dreisinger (2002).7
Figure 1.6 Proposed reactions involving copper(I) and copper(II) with ammonia
and thiosulfate. ...8
Figure 2.1 pKₐ (NH₄⁺) values vs. ionic strength fitted to a polynomial
expression, I at 25°C. Extracted from Table 2.3. ...18
Figure 2.2 pKₐ (NH₄⁺) values as a function of ionic strength in various media.
Graph constructed using the data reported by Maeda et al. (1997; 1993; 1995). ...19
Figure 2.3 Log-log plot of β(Cu(I)-N) vs. β(Ag(I)-N) for monoammine (1N) and
diammine (2N) complexes. Ag data at I = 3 and 25°C from Smith et al.
(2004). ..26
Figure 2.4 Variation of the stability of the Cu(NH₃)₂⁺ complex with ionic strength
at 25°C ...27
Figure 2.5 Linear free energy relationship for the copper(I) and silver(I)
thiosulfate complexes. Ag(I) data at I = 3 and 25°C from Smith et al. (2004).
Copper(I) data from Table 2.9 ...35
Figure 3.1 Comparison of the calculated and observed $\Delta G_{\text{complex}}$ values for copper(I)-NH$_3$ and copper(I)-S$_2$O$_3^{2-}$ complexes (data from Table 3.1). ...50

Figure 3.2 Stability constants for the Ag(I)-NH$_3$-S$_2$O$_3^{2-}$ system reported by Perera and Senanayake (2004) and DeMarco et al. (1986). The ligands S = S$_2$O$_3^{2-}$ and N = NH$_3$...52

Figure 3.3 Stability constants for the copper(I)-NH$_3$, copper(I)-S$_2$O$_3^{2-}$ and copper(I)-Cl$^-$ systems reported by Stupko et al. (1998), Toropova et al. (1955) and Solis et al. (1995)...53

Figure 3.4 Linear free energy correlation between $\log \beta$ (Cu(I)-L$_2$) and $\log \beta$ (Ag(I)-L$_2$) with different ligands (L)......54

Figure 3.5 Correlation between $\log \beta$ (Cu(I)-L$_3$) and $\log \beta$ (Ag(I)-L$_3$) with different ligands (L).................................55

Figure 3.6 Correlation of stability constants for copper(I)-NH$_3$ and copper(I)-S$_2$O$_3^{2-}$ species (Stupko et al. 1998; Toropova et al. 1955). Ag data at $l = 3$ and $25^\circ C$ from Smith et al. (2004). Ligand S = S$_2$O$_3^{2-}$ and N = NH$_3$.......57

Figure 4.1 Example of a potentiometric curve representing the formation of a mono-ligand metal complex...63

Figure 4.2 Variation of $\log \varphi = (E_{\text{val}} - E_0)/0.0591$ with log [Br] at increasing thiosulfate concentrations. Extracted from Boos and Popel (1970)...........66

Figure 4.3 Results obtained from using an Excel spreadsheet for the determination of coordination numbers and stability constants...................69

Figure 5.1 Electrodes used in the study. From left to right: platinum wire, copper wire and silver/silver chloride electrodes.............................77
Figure 5.2 Photo of cell system 2. A) gas inlet/outlet tube; B) glass cell; C) burette tip; D) reference electrode assembly; E) magnetic stirrer bar; F) copper wire electrode; G) water inlet; H) water outlet; I) cell cover.78

Figure 5.3 Schematic representation of cell system 2 ...80

Figure 5.4 Schematic representation of cell system 3 ...81

Figure 6.1 Titration curves for 1 M NH₃ solutions (25 mL) with 1 M H₂SO₄ at I = 3.0 (Na₂SO₄), triplicate results ..99

Figure 6.2 Plot of pH versus log ([NH₃] - [H⁺]/[H⁺]) for one titration of 1 M NH₃ solution with 1 M H₂SO₄ at I = 3.0 (Na₂SO₄) ...100

Figure 6.3 Estimation of pKₐ in sulfate media using an Excel spreadsheet. I = 3.0, 25 °C. First page only ..104

Figure 6.4 Titration curves for 1 M NH₃ with 2 M H⁺ ions in sulfate and 3 M NH₃ with 3 M H⁺ ions in other anionic media ..105

Figure 6.5 Potentiometric titrations of copper(I)-NH₃ with ammonia in various sodium-anion media at pH 9.9 and [SO₄²⁻] = 1.0 M in sulfate media. pH 9.5 and [anion] = 3.0 M for the other media ...108

Figure 6.6 Quadruplicate potentiometric titrations of copper(I)-NH₃ in ClO₄⁻ media with sulfate at pH 9.5 ...110

Figure 6.7 Potentiometric titrations of copper(I)-NH₃ in ClO₄⁻ solutions with chloride at pH 9.5 ...113

Figure 6.8 Potentiometric titrations of copper(I)-NH₃ in mixed Cl⁻/ClO₄⁻ media with ammonia at pH 9.5 ...114

Figure 6.9 Comparison of potentiometric titration curves from Figure 6.8 with curves obtained from similar experiments in the absence of perchlorate (shown in red) at pH 9.5 ..115
Figure 6.10 Comparison of potentiometric titration curves from Figure 6.8 with curves obtained from similar experiments in the absence of chloride (shown in red) at pH 9.5. ..115

Figure 6.11 The effect of chloride concentration on the potentiometric titration of copper(I)-NH$_3$ (I = 3, Na$_2$SO$_4$) with chloride at pH 10.............116

Figure 6.12 Potentiometric titrations of copper(I)-NH$_3$ solutions in sulfate media with ammonia at pH 9.9 (7 data sets) ..120

Figure 6.13 Potentiometric titrations of copper(I)-NH$_3$ with ammonia in perchlorate media at pH 9.5 (7 data sets)...121

Figure 6.14 Potentiometric titrations of copper(I)-NH$_3$ with ammonia in chloride media at pH 9.5 (5 data sets)...121

Figure 6.15 Thermodynamic data for the copper(I)-NH$_3$ system. N = NH$_3$.....124

Figure 6.16 Potential of a copper electrode in the titration of 0.01 M CuSO$_4$ with 2 M Na$_2$S$_2$O$_3$. E_{cell} adjusted for a [Cu(I)] variation of less than 10\% (Appendix F). ..126

Figure 6.17 Plot of a simulated titration of 0.03 M copper(II) with 0.1 M thiosulfate using Outokumpu HSC Chemistry for Windows software (Roine 2002). Fractions correspond to copper and sulphur as thiosulfate.127

Figure 6.18 Four titration curves of 0.01 M CuSO$_4$ with 2 M Na$_2$S$_2$O$_3$, showing reproducibility of the potentiometric method. E_{cell} adjusted for a [Cu(I)] variation of less than 10\% (Appendix F). ...128

Figure 6.19 Duplicate titration curves of 0.02 M CuSO$_4$ with 2 M Na$_2$S$_2$O$_3$ at pH ranges a) 7.3 to 8.6 and b) 6.7 to 10. E_{cell} adjusted for a [Cu(I)] variation of less than 10\% (Appendix F)...129
Figure 6.20 Potentiometric titration curve of 0.001 M CuSO₄ with 0.1 M Na₂S₂O₃. [S₂O₃²⁻]free calculated based on equation 6.19. E_{cell} adjusted for a [Cu(I)] variation of less than 10% (Appendix F). ..131

Figure 6.21 Linear free energy relationship between Cu(I) and Ag(I) thiosulfate complexes. Ag data at I = 3 and 25 °C from Smith et al. (2004). S = S₂O₃²⁻. ..133

Figure 7.1 Potentiometric titrations of copper(I)-NH₃ solutions in sulfate media with thiosulfate, by method 1 at various total ammonia concentrations and pH = 9.9. [Cu(I)] = 0.03 M. ..137

Figure 7.2 Potentiometric titrations of copper(I)-NH₃ solutions in sulfate media with thiosulfate, by method 2 at various total ammonia concentrations and pH = 9.9. E_{cell} adjusted for a [Cu(I)] variation of less than 10% (Appendix F). [Cu(I)] = 0.03 M. ...137

Figure 7.3 Experimental data fitted to the mathematical model for speciation model 1. ..140

Figure 7.4 Experimental data fitted to the mathematical model for speciation model 2. ..142

Figure 7.5 Estimation of stability constants based on the in-house program for the copper(I)-NH₃-S₂O₃²⁻ ..147

Figure 7.6 Potentiometric titrations (some in duplicate) of copper(I)-NH₃ solutions in chloride media with thiosulfate at varying chloride concentrations at pH = 9.5 and I = 3.0 (NaCl/NaClO₄). E_{cell} adjusted for a [Cu(I)] variation of less than 10% (Appendix F). [Cu(I)] = 0.03 M, [NH₃]ₖ = 1.0 M ..150
Figure 7.7 Potentiometric curves (some in duplicate) for the titration of copper(I)-NH₃ solutions in chloride media with thiosulfate by method 2 at pH = 9.5. \(E_{\text{cell}} \) adjusted for a [Cu(I)] variation of less than 10% (Appendix F). [Cu(I)] = 0.03 M, [Cl⁻] = 3.0 M. .. 151

Figure 7.8 Potentiometric titrations of copper(I)-NH₃ solutions with thiosulfate in (---) sulfate media, [SO₄²⁻] = 1.0 M, pH 9.9 and (----) chloride media, [Cl⁻] = 3.0 M, pH 9.5 at total ammonia concentrations of a) 0.4 M, b) 1 M, c) 2 M, d) 4 M and e) 6 M. \(E_{\text{cell}} \) adjusted for a [Cu(I)] variation of less than 10% (Appendix F). [Cu(I)] = 0.03 M. | denotes the inflection point of each curve. .. 152

Figure 7.9 Stability constants estimated for the copper(I)-NH₃-S₂O₃²⁻ system in chloride media .. 155

Figure 7.10 Correlation of experimental thermodynamic data for copper(I)-NH₃ and copper(I)-S₂O₃²⁻ species. Ag data at I = 3 and 25 °C from Smith et al. (2004). Ligand S = S₂O₃²⁻ and N = NH₃. The dashed line denotes the relationship \(Y = 0.5(1.479 + 0.974)X \). .. 158

Figure 7.11 Graphical representation of all thermodynamic data determined in sulfate media. Ligand S = S₂O₃²⁻ and N = NH₃. ... 159

Figure 7.12 Graphical representation of all thermodynamic data determined in chloride media. Ligand S = S₂O₃²⁻ and N = NH₃. ... 160

Figure 8.1 The effect of sulfate concentration on the UV/Vis spectrum for Cu(NH₃)₄²⁺. [Cu(II)] = 0.01 M, [NH₃]₀ = 0.2 M, 25 °C. .. 163

Figure 8.2 Typical potentiometric titration curve for oxidation of a copper(I) solution in sulfate media with 0.3 M H₂O₂. [SO₄²⁻] = 1.57 M, [Cu(I)] = 0.03 M, [NH₃]₀ = 0.5 M. .. 164
Figure 8.3 First derivative plot for the titration of a copper(I) solution in sulfate media with 0.3 M H₂O₂, [SO₄²⁻] = 1.57 M, initial [Cu(I)] = 0.03 M, [NH₃]ᵣ = 0.5 M. ... 166

Figure 8.4 Calculations to determine the speciation in the copper(II)-NH₃ system in sulfate media at pH 9.6, l = 4.7, 25°C. ... 171

Figure 8.5 Calculations to determine the speciation in the copper(II)-NH₃ system in chloride media at pH 9.3, l = 4.7, 25°C. ... 172

Figure 8.6 Calculations to determine the speciation in the copper(II)-NH₃ system in perchlorate media at pH 9.5. ... 173

Figure 8.7 Activity coefficient of ammonia in different salt media (Durst et al. 1966; Maeda 1997; Maeda and Nakagawa 1983). ... 175

Figure 9.1 Effect of total ammonia on the distribution of copper(I)-NH₃ species in sulfate media at pH = 10, [Cu(I)] = 0.03 M. ... 184

Figure 9.2 Effect of total thiosulfate concentration on the fraction total distribution of copper(I)-thiosulfate species for 0.001 M Cu(I) at pH 10, l = 3.0 (Na₂SO₄) and 25 °C. ... 187

Figure 9.3 Effect of total thiosulfate concentration on the fraction total distribution of copper(I)-thiosulfate species for 0.01 M Cu(I) at pH 10, l = 3.0 (Na₂SO₄) and 25 °C. ... 187

Figure 9.4 Effect of total copper(I) concentration on the fraction total distribution of copper(I)-thiosulfate species for 0.1 M S₂O₃²⁻ at pH 10, l = 3.0 (Na₂SO₄) and 25 °C. ... 188

Figure 9.5 Effect of total thiosulfate and ammonia concentrations on the species distribution for the copper(I)-NH₃-S₂O₃²⁻ system in sulfate media at
pH 10, I = 3.0 and 25°C, [Cu(I)] = 0.03 M. 2N = Cu(NH$_3$)$_2^+$, 3N = Cu(NH$_3$)$_3^+$, 3S = Cu(S$_2$O$_3$)$_3^{5-}$, 1N1S = Cu(NH$_3$)(S$_2$O$_3$)$_2^-$, 1N2S = Cu(NH$_3$)(S$_2$O$_3$)$_2^3-$……191

Figure 9.6 Effect of total ammonia and thiosulfate concentrations on the species distribution for the copper(I)-NH$_3$-S$_2$O$_3^{2-}$ system at pH 10, I = 3.0 (Na$_2$SO$_4$) and 25°C, [Cu(I)] = 0.03 M. 2N = Cu(NH$_3$)$_2^+$, 3N = Cu(NH$_3$)$_3^+$, 3S = Cu(S$_2$O$_3$)$_3^{5-}$, 1N1S = Cu(NH$_3$)(S$_2$O$_3$)$_2^-$, 1N2S = Cu(NH$_3$)(S$_2$O$_3$)$_2^3-$……192

Figure 9.7 3-Dimensional plot of the fraction of Cu(NH$_3$)(S$_2$O$_3$)$_2^3-$ as a function of total thiosulfate and ammonia concentrations at pH 10, I = 3.0 (Na$_2$SO$_4$) and 25°C, [Cu(I)] = 0.03 M…………………………………………………………194

Figure 9.8 3-Dimensional plot of the fraction of Cu(NH$_3$)(S$_2$O$_3^-$) for various concentrations of total ammonia and thiosulfate at pH 10, I = 3.0 (Na$_2$SO$_4$) and 25°C, [Cu(I)] = 0.03 M…………………………………………………………195

Figure 9.9 3-Dimensional plot of the fraction of Cu(S$_2$O$_3$)$_3^{5-}$ as a function of total ammonia and thiosulfate concentrations at pH 10, I = 3.0 (Na$_2$SO$_4$) and 25°C, [Cu(I)] = 0.03 M…………………………………………………………196

Figure 9.10 3-Dimensional plot of the fraction of Cu(NH$_3$)$_2^+$ at various total ammonia and thiosulfate concentrations at pH 10, I = 3.0 (Na$_2$SO$_4$) and 25°C, [Cu(I)] = 0.03 M…………………………………………………………197

Figure 9.11 3-Dimensional plot of the fraction of Cu(NH$_3$)$_3^+$ as a function of total ammonia and thiosulfate concentrations at pH 10, I = 3.0 (Na$_2$SO$_4$) and 25°C, [Cu(I)] = 0.03 M…………………………………………………………197

Figure 9.12 Various perspectives of a 3-Dimensional plot of the Cu(I)-Cu(0) potentials versus total ammonia and thiosulfate concentrations for the copper-ammonia-thiosulfate system in sulfate media and at 25°C. [Cu] = 0.03 M…………………………………………………………200
Figure 9.13 3-Dimensional plot of the Cu(II)-Cu(I) potentials for the copper-ammonia-thiosulfate system in sulfate media versus total ammonia and thiosulfate concentrations at 25°C. [Cu] = 0.03 M. The insets show alternative perspectives of the plot. ..201

Figure 9.14 Dependence of the initial copper(II) reduction rate on the sequence of mixing. 0.1 M Na₂S₂O₃, 0.4 M NH₃, 0.8 M Na₂SO₄, 10 mM CuSO₄, 30°C.

Extracted from Breuer and Jeffrey (2003a)..204
LIST OF TABLES

Table 2.1 Equations for the calculation of mean activity coefficients*. Extracted from Beck and Nagypal (1990). .. 13

Table 2.2 Formation constants for various ion-pairs at 25°C (extracted from Smith et al. (2004)). .. 15

Table 2.3 Dissociation Constants of Ammonium Ion, pK₄ (NH₄⁺), in NH₄NO₃ media at 25°C (extracted from Smith et al. (2004)) 17

Table 2.4 Dissociation Constants of Ammonium Ion (pK₃) at I = 3.0 and 25°C reported by Maeda et al. (1997; 1979; 1993; 1995; 1983) 19

Table 2.5 Stability constants for copper(I)-ammonia complexes ... 24

Table 2.6 Species Reported for the copper(I)-NH₃-Cl⁻ System at 25°C. 28

Table 2.7 Absorption maxima (λ_max) for copper(I)-Cl⁻ species ... 29

Table 2.8 Stability constants of copper(I)-Cl⁻ complexes at 25°C (extracted from Solis et al. (1995)) .. 31

Table 2.9 Thermodynamic data for copper(I)-thiosulfate complexes (at 25°C unless otherwise stated) .. 32

Table 2.10 Thermodynamic data for copper(I)-thiosulfate complexes reported by Golub et al. (1976) .. 34

Table 2.11 Thermodynamic data for copper(I)-thiosulfate-chloride complexes at 25°C .. 36

Table 2.12 Mixed ligand complexes suggested for the copper(II)-NH₃ system. .. 40

Table 3.1 Calculated ΔG values (kcal) for mono-ligand and mixed-ligand complexes of copper(I) compared with observed ΔG values 49
Table 3.2 Predicted stability constant values for mixed ammine/thiosulfate complexes of copper(I) using various methods ... 58
Table 5.1 Composition of copper(I) solutions A and B ... 75
Table 5.2 Experimental details for pK_a (NH_4^+) experiments 83
Table 5.3 Composition of solutions A and B in various ionic media. $[\text{Cu(I)}] = 0.03$ M, pH = 10 for sulfate medium and 9.5 for all other media 84
Table 5.4 Composition of solutions used to study the effect of sulfate on the Copper(I)-Ammonia-Perchlorate System, $[\text{Cu(I)}] = 0.03$ M, pH = 9.5 85
Table 5.5 Composition of solutions used to study the effect of chloride on the Copper(I)-Ammonia-Perchlorate System, $[\text{Cu(I)}] = 0.03$ M, pH = 9.5 86
Table 5.6 Composition of solutions used in a second approach to the study of the effect of chloride on the Copper(I)-Ammonia-Perchlorate System, $[\text{Cu(I)}] = 0.03$ M .. 86
Table 5.7 Composition of copper(I) solutions A and B, with their respective combinations being colour matched. $[\text{Cu(I)}] = 0.03$ M 87
Table 5.8 Composition of copper(I) solutions A and B in sulfate medium, $[\text{Cu(I)}] = 0.03$ M, pH = 10, $l = 3.0$ (Na$_2$SO$_4$) ... 88
Table 5.9 Composition of copper(I) solutions A and B in perchlorate medium, $[\text{Cu(I)}] = 0.03$ M, pH = 9.5, $l = 3.0$ (NaClO$_4$) ... 89
Table 5.10 Composition of copper(I) solutions A and B in chloride medium, $[\text{Cu(I)}] = 0.03$ M, pH = 9.5, $l = 3.0$ (NaCl) ... 89
Table 5.11 Reagent concentrations used for studying the copper(I)-thiosulfate system. $l = 3.0$ (1 M Na$_2$SO$_4$) ... 90
Table 5.12 Composition of solutions used in method 1 to study the Copper(I)-
Ammonia-Thiosulfate system in sulfate media, pH = 10, I = 3 (Na₂SO₄),
[Cu(I)] = 0.03 M...92

Table 5.13 Composition of solutions used in method 2 to study the Copper(I)-
Ammonia-Thiosulfate system in sulfate media, pH = 10, I = 3 (Na₂SO₄).
[Cu(I)] = 0.03 M...93

Table 5.14 Composition of solutions used in method 2 to study the Copper(I)-
Ammonia-Thiosulfate system in chloride media, pH = 9.5, I = 3 (NaCl).
Constant [Cl⁻] = 3 M, [Cu(I)] = 0.03 M...94

Table 5.15 Composition of solutions used in method 2 to study the Copper(I)-
Ammonia-Thiosulfate system in chloride media, pH = 9.5, [Cu(I)] = 0.03 M.
Varying chloride concentration. Final [NH₃] /[S₂O₃²⁻] ratio = 5:1........94

Table 5.16 Composition of test solutions for the study of the copper(II)-
ammonia system in sulfate media by UV/Vis spectrophotometry.........95

Table 5.17 Compositions of copper(I) solution A in sulfate, perchlorate or
chloride media used in the potentiometric study of the copper(II)-ammonia
system...96

Table 6.1 Loss of ammonia during preparation of copper(I) solutions........98

Table 6.2 Dissociation Constant of Ammonium Ion in Various Media. The
Values in Parenthesis are Literature Values from Table 2.4..............100

Table 6.3 Dissociation constant of ammonium ion in sodium sulfate solutions.
..103

Table 6.4 Ligand concentrations and ratios for the study of the effect of chloride
on the copper(I)-NH₃ system. [Cu(I)] = 0.03 M...............................112

xx
Table 6.5 Stability constants for the main species in the copper(I)-NH$_3$ system in various media at 25°C and I = 3.0..........................123
Table 6.6 Comparison of the step-wise equilibrium constants for the formation of Cu(NH$_3$)$_3$$^+$ (shaded blue) with the literature values (shaded yellow). ...125
Table 6.7 pK$_a$ (NH$_4$$^+$) values and stability constants for the main species in the copper(I)-NH$_3$ and copper(I)-S$_2$O$_3$$^{2-}$ systems in various media at 25°C and I = 3.0..134
Table 7.1 Coordination number for ammonia with copper(I) at various thiosulfate concentrations. [NH$_3$$_7$ = 0.4 to 4.5 M.139
Table 7.2 Stability constants for speciation model 1..141
Table 7.3 Stability constants for speciation model 2..143
Table 7.4 Stability constants for mixed-ligand copper(I)-NH$_3$-S$_2$O$_3$$^{2-}$ complexes in sulfate and chloride media at 25°C and I = 3.0.156
Table 8.1 Half-wave potentials obtained from copper(I) oxidation curves at low and high concentrations of sulfate, chloride and perchlorate.166
Table 8.2 Log β values used in the calculations, “Calc 1, 2 and 3” of Table 8.3. ..177
Table 8.3 Calculated E$_{coll}$ values for the copper(II)-NH$_3$-Cl$^-$, copper(II)-NH$_3$-SO$_4$$^{2-}$ and copper(II)-NH$_3$-ClO$_4$$^-$ systems at pH 9.5 and 25°C.177
Table 8.4 Stability constants for copper(I) and copper(II) species in various media at 25°C ...179
Table 9.1 Summary of trends observed from Figures 9.2 and 9.3.186
Table 9.2 Summary of trends in the copper(I)-ammonia-thiosulfate system in sulfate media at pH 10. ...189
Table 9.3 Summary of trends in sulfate media at fixed thiosulfate concentrations at pH 10. .. 193

Table 9.4 Summary of trends for species distribution in chloride media at pH 9.5 .. 198
SYMBOLS

β = Cumulative stability constant of a complex.

K = Step-wise formation constant.

$[\text{NH}_3]_T$ = Total ammonia concentration (M). i.e. the sum of the concentrations of protonated and aqueous ammonia i.e. $[\text{NH}_4^+] + [\text{NH}_3]$

$[\text{NH}_3]_F$ = Concentration of free or uncomplexed aqueous ammonia (M).

$[\text{NH}_3]$ = Concentration of complexed plus free aqueous ammonia (M).

E_{Cell} = The measured voltage of a cell.

I = Ionic strength.

E_J = Junction potential.

Var = varied.

NR = Not reported.

0 corr = Constants corrected to zero ionic strength by the application of some theoretical or empirical formula; this procedure is not always sharply distinguished from extrapolation.

$[\text{S}_2\text{O}_3^{2-}]_{\text{free}}$ = Concentration of thiosulfate available for complex formation.