Population and sexual genetics of

Phytophthora cinnamomi

in Australia using microsatellite markers

Mark Paul Dobrowolski

BSc(Hons), The University of Western Australia

This thesis is presented for the degree of

Doctor of Philosophy

of Murdoch University

School of Biological Sciences and Biotechnology

Murdoch University,

Perth, Western Australia,

December, 1999
Declaration

I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for degree at any tertiary education institution. Work that I did not perform is acknowledged (see p xvii).

Mark Paul Dobrowolski
Abstract

Phytophthora cinnamomi is a plant pathogen that causes dieback disease in southern Australia. It threatens the biodiversity of many natural ecosystems due to the susceptibility of the native vegetation. If methods of control are to be successful then we must appreciate the genetic variation in the pathogen and the ways in which this variation is generated. Previously, the only genetic markers available to study *P. cinnamomi* were isozymes, which showed that isolates in Australia were one of three isozyme types.

In this thesis I describe the development of microsatellite DNA markers for *P. cinnamomi*. Five microsatellites were successfully developed into markers for the nuclear genome and protocols for their use were established. Research into microsatellites for the mitochondrial genome is also presented though this was unsuccessful in providing markers useful for population genetic studies.

The developed microsatellite markers were used to study inheritance in sexual progeny of four *P. cinnamomi* crosses. All but one of 201 progeny germinated were outcrosses. A large amount of non-Mendelian inheritance of the microsatellite alleles was observed. This could be explained by a high frequency of imperfect meiosis (e.g., nondisjunction, unequal crossing over) leading to additions and deletions in the chromosome complement of the sexually derived progeny.

A population genetic study of three intensively sampled *P. cinnamomi* disease fronts located in southwest Australia is also presented. A total of 647 isolates were analysed from these hierarchically sampled sites with the microsatellite markers along
with 133 culture collection isolates from across Australia. This analysis revealed that

P. cinnamomi in Australia consists of three clonal lineages, with no sexual
reproduction evident, even though both mating types co-occur. However, within
these clonal lineages I found evidence for frequent mitotic recombination (mitotic
crossing over). This mechanism for producing genetic variation may explain
phenotypic variation known to occur within the identified clonal lineages.
Table of contents

Declaration ii
Abstract iii
Table of contents v
List of figures xi
List of tables xiii
Abbreviations xiii
Acknowledgements xvii

Chapter 1 1

Introduction

Context of the thesis 1
Objectives of the thesis 3
Structure of the thesis 3

Chapter 2 5

Literature review

Molecular markers for Phytophthora 5
Microsatellites 5
Justification for microsatellites as a marker system 6
Mutation in microsatellites 8
Null alleles in microsatellites 9

Sexual genetics of Phytophthora 10
Non-Mendelian inheritance 10
Karyotype variation in related oomycetes 12
Significance of anomalous inheritance 14
Translocation heterozygosity and mating type 15
Inheritance studies in Phytophthora cinnamomi 18
Chapter 3

Development of nuDNA microsatellites

Introduction

Materials and Methods

Isolates and culture conditions

DNA extraction from Phytophthora cinnamomi

DNA for PCR only

DNA for cloning

Gel electrophoresis

Agarose gels

Polyacrylamide gels

Gel staining

Blotting and hybridisation of DNA

Southern blotting

Colony blotting

Hybridisation with oligonucleotides

Hybridisation with poly(AC)•(GT) and poly(AG)•(CT)

Detection of bound probes

Cloning of DNA

Bacterial strains

General DNA manipulations

Plasmid preparation

Ligation

Competent cells, transformation and general bacterial culture

Plasmid extraction

Sequencing of cloned DNA

Microsatellite enrichment procedure

Preparation of reagents

Preparation of nuDNA
Enrichment of microsatellites by hybridisation 39
PCR amplification of microsatellites 39
Primer design 39
PCR conditions 40

Results 40

Presence of microsatellites in Phytophthora cinnamomi nuDNA 40
Screening of a nuDNA library for microsatellites 42
Frequency of (AC)n and (AG)n microsatellites 44
Enrichment of a nuDNA library for microsatellites 44
Development of microsatellite PCR 46
Optimisation of PCR conditions 46
Optimisation of PCR product separation 51

Discussion 52

Chapter 4 54

Investigation of mtDNA microsatellites

Introduction 54

Materials and methods 55

Hybridisation with (T)20 oligonucleotide 55
DNA manipulations 56
PCR and electrophoresis 56

Primer design 56
PCR amplification 56
Electrophoresis and detection of PCR products 57

Results and discussion 58

Cloning of (A)n microsatellites from Phytophthora cinnamomi mtDNA 58
Subcloning 59
Sequencing of (A)n containing clones 59
Amplification of (A)n microsatellites in Phytophthora spp. 60

Development of (A)n microsatellites from Phytophthora infestans mtDNA 64
Amplification of (A)n microsatellites developed from P. infestans mtDNA 64
Sequencing of mtatp9 length variants 66
Conclusions on genetic marker potential 68
Chapter 5

Sexual genetics of Phytophthora cinnamomi

Introduction 69

Materials and methods 70

Isolates used 70

Production of sexual progeny 71

Mating type determination 71

Microsatellite analysis 71

\(^{32}\)P labelling of microsatellites and sequencing gel analysis 71

Statistical analysis 72

Results 73

Progeny growth and mating type 73

Microsatellite amplification and interpretation 75

Locus g13 77

Outcrossed progeny with non-Mendelian inheritance 79

Linkage analysis 86

Non-outcrossed progeny 90

Discussion 92

Non-Mendelian inheritance and meiotic nondisjunction 92

Null alleles 94

Trisomy in A2 parental field isolates 94

Apomictic oospores and selfing 96

Conclusions 97

Chapter 6

Population genetics of Phytophthora cinnamomi in Australia

Introduction 99

Materials and methods 101

Sites chosen for sampling 101

Sampling strategy 102
Isolation of *Phytophthora cinnamomi* from plant tissue 103
Isolation of *Phytophthora cinnamomi* from soil 104
Phytophthora cinnamomi isolate culture 105
Genetic analysis 106

Results 107
Recovery of *Phytophthora cinnamomi* from sites 107
Three microsatellite multilocus genotypes 107
Microsatellite allele size differences 115
Loss of heterozygosity at microsatellite loci 117

Discussion 120
Clonal lineages of *Phytophthora cinnamomi* 120
Clonal lineages worldwide 121
Microsatellite mutation 122
Mitotic crossing over 124
Implications of mitotic crossing over 127

Chapter 7 129

General discussion

Appendices 133

Appendix 1 Publications resulting from this thesis 133
Conference presentations 133
Journal papers 133

Appendix 2 Isolate details and raw genetic data 140
Phytophthora cinnamomi sexual progeny 140
Phytophthora cinnamomi recovery from site sampling 147
Phytophthora cinnamomi field isolates 154
Phytophthora cinnamomi culture collection 172

Appendix 3 DNA sequence data 177
Clones from *Phytophthora cinnamomi* A2400 mtDNA 177
Clones from Phytophthora cinnamomi A2400 nuDNA library screening 178
Clones from Phytophthora cinnamomi A2400 microsatellite enrichment 181
Appendix 4 List of companies 190

References 191
List of figures

Figure 3.1 Southern hybridisation of HindIII digested Phytophthora cinnamomi (Pc) and Saccharomyces cerevisiae (Sc) DNA... 41

Figure 3.2 An example of colony hybridisation of clones from a Phytophthora cinnamomi nuDNA library, probed with poly(AC)•(GT)... 43

Figure 3.3 Southern hybridisation of recombinant plasmids from clones of a Phytophthora cinnamomi nuDNA library identified... 43

Figure 3.4 Polyacrylamide gels showing examples of the effect of varying MgCl₂ concentration in the PCR reaction mixture... 49

Figure 3.5 Polyacrylamide gels showing examples of the effect of additives to the PCR reaction mixture on the amplification of products... 50

Figure 3.6 Optimisation of the separation of microsatellite PCR products on 9% polyacrylamide gels of 1.5 mm thickness... 51

Figure 4.1 NdeII digested mtDNA of Phytophthora cinnamomi isolate A2400 a, separated on agarose gel electrophoresis... 58

Figure 4.2 Nucleotide sequences of Phytophthora cinnamomi mtDNA clones mt2-7 and mt4-12 containing (A)n microsatellites... 63

Figure 4.3 Electrophoretograms of four loci amplified in Phytophthora cinnamomi isolate A2400... 65

Figure 4.4 Sequences of the mtatp9 locus amplified from Phytophthora cinnamomi isolates A15, A125, and A143, aligned with... 67

Figure 5.1 Growth habit at 25 °C after one month of the parents (A15 and A284) and a number of progeny from cross 4 on potato dextrose agar. 74

Figure 5.2 An example of a, amplifications of microsatellite loci with the five primer pairs separated by PAGE and b, their interpretation... 76
Figure 5.3 Autoradiograph of the polyacrylamide sequencing gel separation of 32P-labelled amplifications of locus gl3… 77

Figure 5.4 Diagrammatic representation of the gl3, g20 and gl DNA clones from which the gl3 and gl3(4) primers were designed… 78

Figure 5.5 Model of the possible chromosomal arrangement of the microsatellite alleles within each parental isolate of the four crosses… 89

Figure 5.6 Growth habit at 25 °C after 8 days of parental isolate A2120 and its progeny X1-27, X1-13 and X1-42… 91

Figure 6.1 a, Gel photographs of the four microsatellite loci and b, their interpretation illustrating the three multilocus genotypes… 108

Figure 6.2 Location map of the culture collection isolates indicating the genotype of each isolate. The map parts are a, world, b, eastern Australia… 109

Figure 6.3 Maps of the three intensively sampled sites in south-western Australia indicating the genotype of the isolates recovered… 112

Figure 6.4 a, Gel photographs of the gl3 microsatellite locus and b, its interpretation plus the interpretations at the other three loci… 114

Figure 6.5 Gel photographs illustrating the microsatellite allele size differences found in locus gl3, a, among A2 type 1 isolates of Buller Reserve… 116

Figure 6.6 Gel photographs of microsatellite loci at which some isolates show loss of heterozygosity (LOH)… 119

Figure 6.7 A model of mitotic crossing over, as compared to normal mitosis, in the d39-gl3 linkage group of clonal lineage A2 type 1… 125
List of tables

Table 3.1 Details of isolates used for development of nuDNA microsatellites. 30

Table 3.2 Results summary of cloning and sequencing of microsatellites... 45

Table 3.3 Primer sequences designed for microsatellite loci, their \(T_m \), comments on their development into PCR genetic markers... 47

Table 4.1 Names assigned to mtDNA microsatellite loci, their structure, the primer sequences designed, and the optimal MgCl\(_2\) concentration... 59

Table 4.2 Phytophthora isolates used, their origin, and the size of amplified products of mtDNA loci... 60

Table 5.1 Phytophthora cinnamomi isolates used in the crosses... 70

Table 5.2 Example of a contingency table used to test for linkage... 73

Table 5.3 Genotype frequencies at each microsatellite locus amongst the progeny of each cross... 80

Table 5.4 Test for copy number of alleles in the parental isolates using a chi-square goodness of fit tests of the inheritance:noninheritance... 83

Table 5.5 Test for segregation versus independent assortment of pairs of parental alleles at a locus in progeny of each cross... 85

Table 5.6 Analysis of linkage between alleles in each parent isolate... 87

Table 6.1 A description and location of the sites sampled... 102

Table 6.2 Media used for Phytophthora cinnamomi isolation and culture. 104

Table 6.3 Percentage recovery of Phytophthora cinnamomi from soil and plant samples at the three sites... 107

Table 6.4 The microsatellite genotype changes identified as separate loss of heterozygosity (LOH) events in the three clonal lineages... 118
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>deoxyadenine nucleotide</td>
</tr>
<tr>
<td>ACT</td>
<td>Australian Capital Territory</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>C</td>
<td>deoxycytidine nucleotide</td>
</tr>
<tr>
<td>CALM</td>
<td>Department of Conservation and Land Management (WA)</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>cm</td>
<td>centimetres</td>
</tr>
<tr>
<td>cM</td>
<td>centimorgans (genetic recombination)</td>
</tr>
<tr>
<td>cpDNA</td>
<td>chloroplast DNA</td>
</tr>
<tr>
<td>cpm</td>
<td>counts per minute (radioactivity)</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific and Industrial Research Organisation</td>
</tr>
<tr>
<td>dCTP</td>
<td>deoxycytidine triphosphate</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxynucleoside triphosphate</td>
</tr>
<tr>
<td>EDTA</td>
<td>disodium ethylenediaminetetraacetate</td>
</tr>
<tr>
<td>g</td>
<td>acceleration due to gravity</td>
</tr>
<tr>
<td>G</td>
<td>deoxyguanine nucleotide</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>kbp</td>
<td>kilobase pair</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>km</td>
<td>kilometres</td>
</tr>
<tr>
<td>L</td>
<td>litre</td>
</tr>
<tr>
<td>m</td>
<td>metre</td>
</tr>
<tr>
<td>M</td>
<td>molar (mol L(^{-1}))</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>mJ</td>
<td>millijoule</td>
</tr>
<tr>
<td>mL</td>
<td>millilitre</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar (mmol L(^{-1}))</td>
</tr>
<tr>
<td>mmol</td>
<td>millimoles</td>
</tr>
<tr>
<td>mol</td>
<td>moles</td>
</tr>
<tr>
<td>mtDNA</td>
<td>mitochondrial DNA</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram</td>
</tr>
<tr>
<td>nmol</td>
<td>nanomoles</td>
</tr>
<tr>
<td>NSW</td>
<td>New South Wales</td>
</tr>
<tr>
<td>NT</td>
<td>Northern Territory</td>
</tr>
<tr>
<td>nuDNA</td>
<td>nuclear DNA</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>pmol</td>
<td>picomoles</td>
</tr>
<tr>
<td>PNG</td>
<td>Papua New Guinea</td>
</tr>
<tr>
<td>QLD</td>
<td>Queensland</td>
</tr>
<tr>
<td>rDNA</td>
<td>ribosomal DNA</td>
</tr>
</tbody>
</table>
RNase A ribonuclease A
s second
SA South Australia
SDS sodium dodecyl sulphate
SSC standard saline citrate (NaCl-citrate)
T deoxystyminucleotide
TAS Tasmania
T_m melting temperature of a DNA duplex
Tris Tris(hydroxymethyl)aminomethane
V volt
ν/ν volume per volume
VIC Victoria
vol volumes
w/ν weight per volume
WA Western Australia
$^{\circ}\text{C}$ degrees Celsius
μg micrograms
μL microlitres
μM micromolar ($\mu\text{mol L}^{-1}$)
Acknowledgements

My gratitude must first go to my supervisors, Dr. Phil O’Brien and Dr. Inez Tommerup, who through their support, enthusiasm and friendship, made my life as a PhD student very rewarding. Inez must be thanked especially for providing literature, and for her fruitful discussions on genetics of *P. cinnamomi* while assisting with their culturing.

I would like to thank the following people for their contributions:

Dr. Ken Old and Mark Dudzinski (CSIRO, Canberra) for supplying isolates and additional information;

Dr. Clive Brasier for supplying isolates;

Janine Catchpole (CSIRO, Perth) for producing sexual progeny and their mating type testing (in concert with Dr. I.C. Tommerup), making media, culturing isolates, and assistance with sampling and isolation of field isolates;

Dr. Bryan L. Shearer (CALM) for his collaboration in selecting and sampling *P. cinnamomi* disease fronts and supplying additional isolates;

Aaron Maxwell for his technical assistance with sampling, and isolation and culture of field isolates;

N. Pipe, A. Hardham and B. Grant for supplying *P. infestans* isolates;

B. F. Lang for permission to use the unpublished *P. infestans* complete mtDNA sequence http://megasun.bch.umontreal.ca/People/lang/species/phyt/phyti.html for primer design;

Judy Smith and Francis Brigg for processing my sequencing reactions.
I would like to thank Land and Water Resources Research and Development Corporation, Alcoa of Australia Ltd. and Murdoch University for their financial support for this project. I am also grateful for the Murdoch University Research Studentship I received.

For there personal support, camaraderie, and friendship I thank my fellow students and colleagues, Morag Glen, Letitia Quay, Nui Milton, Denis Ercog, Vidyani Manatunga, Jo Edmondston, Christa Nicholson, Audrey Ah Fong, Panomporn (Tik) Panutat, Gordon MacNish, Mohammed Zamani, Mark Farbey, and other members of the Biotechnology Programme and School of Biological Sciences and Biotechnology.

And finally for there love and patience, I thank my parents, Val and Czeslaw Dobrowolski, and a special thanks to Sue Richmond.