Catalog Home Page

Photosynthetic and growth responses of juvenile Chinese kale (Brassica oleracea var. alboglabra) and Caisin (Brassica rapa subsp. parachinensis) to waterlogging and water deficit

Issarakraisila, M., Ma, Q. and Turner, D.W. (2007) Photosynthetic and growth responses of juvenile Chinese kale (Brassica oleracea var. alboglabra) and Caisin (Brassica rapa subsp. parachinensis) to waterlogging and water deficit. Scientia Horticulturae, 111 (2). pp. 107-113.

Link to Published Version: http://dx.doi.org/10.1016/j.scienta.2006.10.017
*Subscription may be required

Abstract

Chinese kale (Brassica oleracea var. alboglabra) and Caisin (Brassica rapa subsp. parachinensis) are leafy vegetable crops grown in south-east Asian countries where rainfall varies dramatically from excess to deficit within and between seasons. We investigated the physiological and growth responses of these plants to waterlogging and water deficit in a controlled experiment in a glasshouse. Juvenile plants were subjected to waterlogging or water deficit for 19 days in case of Chinese kale and 14 days in case of Caisin and compared with well-watered controls. Caisin tolerated waterlogging better than Chinese kale because it produced hypocotyl roots and gas spaces developed at the stem base. In Chinese kale, waterlogging reduced plant fresh weight (90%), leaf area (86%), dry weight (80%) and leaf number (38%). In contrast, waterlogging had no impact on leaf number in Caisin and reduced plant fresh and dry weights and leaf area by 60-70%. Water deficit reduced leaf area, fresh weight and dry weight of both species by more than half. Leaf number in Chinese kale was reduced by 38% but no effect occurred in Caisin. Water deficit increased the concentration of nitrogen in the leaf dry matter by more than 60% in both species and the leaf colour of water deficient plants was dark green compared with the leaf colour of well-watered plants. Soil water deficit delayed flowering of Caisin while waterlogging accelerated it. Thickening and whitening of the cuticle on the leaves of Chinese kale probably increased its ability to retain water under drought while Caisin adjusted osmotically and Chinese kale did not. Waterlogging and water deficit had strong effects on leaf gas exchange of both Brassica species. Water deficit closed the stomata in both species and this was associated with a leaf water content of 9 g g -1 DW. In contrast, waterlogging reduced conductance from 1.0 to 0.1 mol H 2O m -2 s -1 in direct proportion to changes in leaf water content, which fell from 11 to 5 g g -1 DW. This separation of the effects of water deficit and waterlogging on conductance was reflected in transpiration, internal CO 2 concentration and net photosynthesis. In conclusion, Chinese kale and Caisin showed rather different adaptations in response to waterlogging and water deficit. Caisin was more tolerant of waterlogging than Chinese kale and also showed evidence of tolerance of drought. There is genetic variation to waterlogging within the Brassica genus among the leafy vegetables that could be used for cultivar improvement.

Publication Type: Journal Article
Publisher: Elsevier
Copyright: © 2006 Elsevier B.V.
URI: http://researchrepository.murdoch.edu.au/id/eprint/33095
Item Control Page Item Control Page