The conservation status of aquatic insects in
south-western Australia

by

Karen Sutcliffe
B. Sc. (Env. Biol.) (Hons)

This thesis is presented for the degree of Doctor of Philosophy of Murdoch University

March 2003
I declare that this thesis is my own account of my research and contains as its main content work, which has not previously been submitted for a degree at any tertiary education institution.

Signed ………………………

Date ………………………
Abstract

Freshwater ecosystems in south-western Australia have been extensively altered over the last two centuries as a result of human activities. The effect this has had on aquatic fauna, particularly invertebrates, is largely unknown because of inadequate knowledge of the pre-existing fauna. Future changes in the composition of aquatic fauna will also go undetected unless current distributions of existing species are well documented.

This thesis addresses the problem by investigating the current distributions and conservation status of aquatic insects in south-western Australia from three orders: Odonata, Plecoptera and Trichoptera. Extensive distributional data was collected by identifying larval specimens from a large number of samples collected throughout the south-west as part of an Australia-wide macroinvertebrate bioassessment project. In addition, a database created from a species-level biological study of the wheatbelt region of Western Australia was utilised, and previously published records of occurrence for species within the south-west were compiled. These results were then used to assess the conservation status of each species using the IUCN red list criteria.

Environmental parameters measured at time of sampling were also examined using logistic regression to determine which factors are important in influencing the distributions of aquatic insects in south-western Australia. The conservation value of sites based on Odonata, Plecoptera and Trichoptera compositions was also determined and the degree of protection provided for sites of high conservation value investigated.

The high rainfall forested region of the south-west was found to be important for a large number of species, including the majority of those found to be rare and/or restricted.
Overall, 37% of species were found to be threatened, with the Trichoptera containing both the greatest number and highest proportion of threatened species. Logistic regression results generally agreed with the distributions obtained for each species, with rainfall and other parameters indicative of streams in the headwaters of forested catchments being positively associated with species found to be restricted to the high rainfall region. Two parameters known to be affected by human disturbance in the south-west, conductivity and nutrient concentrations, were found to be important in determining the occurrence of many species and this could have important consequences for aquatic insect conservation. Widespread species occurring within the low rainfall region of the south-west did not show as many significant relationships to measured environmental parameters, possibly due to their greater ecological tolerances and adaptations which allow them to persist in a low rainfall environment. The implications of results are discussed, and recommendations for the conservation and management of aquatic insects in south-western Australia are given.
Acknowledgements

I would like to thank the following people for their contributions to this project:

- Jenny Davis for her supervision, guidance, encouragement and support.
- Megan McGuire for her invaluable assistance and willingness to help at every opportunity, including with fieldwork, equipment, computing and administration.
- Ross Taplin from the School of Mathematics and Physical Sciences, Murdoch University, for statistical advice.
- Stuart Halse from CALM for providing access to Ausrivas samples, use of lab facilities, and for comments and feedback on the project.
- Jim Cocking and Mick Scanlon (CALM) for going out of their way to provide data and answer queries, as well as their wonderful company in the lab during the many hours spent identifying specimens.
- Adrian Pinder (CALM) for providing data contained within the Salinity Action Plan database and access to the SAP invertebrate reference collection for verification of specimen identifications.
- Ros St Clair assisted with identification of several specimens and provided comments on the distribution maps.
- Jan Taylor and Bruce Arthur provided useful information and comments on the occurrence of several odonate species at locations within the south-west.
- Grant Hose and Nynette Brown for proof reading my thesis.
- Fieldwork was undertaken throughout the south-west with financial assistance from Murdoch University, CALM and the City of Melville. Murdoch University provided a research and completion scholarship.
- Special thanks to Brendan Brown for his constant encouragement, understanding and support.
Table of Contents

Abstract .. iii
Acknowledgements ... v

Chapter 1 – General introduction .. 1
 1.1 The importance of aquatic insects ... 1
 1.2 The conservation of aquatic insects .. 2
 1.3 The south-west .. 4
 1.3.1 The biogeography of south-western Australia 5
 1.3.2 Climate ... 6
 1.3.3 Aquatic environments in south-western Australia 8
 1.3.4 Aquatic insects of the south-west ... 10
 1.4 Study objectives ... 15

Chapter 2 – Distribution of Odonata, Plecoptera and Trichoptera in south-western
 Australia ... 17
 2.1 Introduction ... 17
 2.2 Methods .. 19
 2.3 Results ... 22
 2.4 Discussion ... 87
Chapter 3 – Conservation status of Odonata, Plecoptera and Trichoptera in south-western Australia…………………………………………………………………………………………….92

3.1 Introduction……………………………………………………………………….92

3.2 Methods……………………………………………………………………………96

3.3 Results………………………………………………………………………………99

3.4 Discussion…………………………………………………………………………104

Chapter 4 – Regression analysis of factors influencing the distributions of Odonata, Plecoptera and Trichoptera in south-western Australia………………109

4.1 Introduction………………………………………………………………………109

4.2 Methods…………………………………………………………………………113

4.3 Results………………………………………………………………………………115

4.4 Discussion…………………………………………………………………………125

Chapter 5 – Conservation value and reservation status of lotic sites in south-western Australia………………………………………………………………………………….128

5.1 Introduction………………………………………………………………………128

5.2 Methods……………………………………………………………………………130

5.3 Results………………………………………………………………………………132

5.4 Discussion…………………………………………………………………………142
Chapter 6 – General discussion, management implications and recommendations………………………………………………………………………………………………..145

References………………………………………………………………………………………………..156