Techniques for a Wind Energy System Integration with an Islanded Microgrid

The most common way to supply electricity to remote customers is with diesel generators [2]. However, power generation based on diesel fuel can be offset by wind energy. Wind resource is the most promising energy choice due to its enormous availability. The development of new technologies for renewable sources offers attractive economic and environmental merits for energy support [3]. In Canada, integration of wind energy in distribution network to meet energy requirement in rural and remote areas is growing rapidly [4]. In Ramea wind-diesel project, a wind generator is integrated with the diesel generators to supply an islanded system [4]. Various designing aspects are reported for diesel generators operating in conjunction with wind turbines and energy storage in [5]. The design methodology and analysis approach for unit sizing of an islanded wind-diesel system is developed in [6].

This research discusses the integration techniques of a variable speed wind system with an islanded microgrid. In [7], an integration of a doubly-fed induction generator (DFIG) based wind generator within microgrid is introduced. It focuses on variable droop control for DFIG to adjust the output power according to available wind power. The case study of Rhodes Island power system is investigated in [8]. It introduces a frequency controller for PMSG and DFIG types of wind turbines to regulate frequency in the islanded microgrid. In frequency droop control, frequency varies according to load variation. In literature, various kinds of droop control strategies have been proposed [9–11]. In [12], isochronous load sharing is discussed for inverter based distributed generation. In this, the inverter operates at constant set reference frequency regardless of load. However, load power measurement is required to achieve this.

The frequency regulation in an islanded microgrid using a wind power system is discussed in [13], where the frequency of the microgrid is maintained constant irrespective of load variation through wind system. The controller regulates power from the wind system according to load variation in the microgrid. Thus, the wind system is used only to maintain the microgrid frequency constant rather than using available renewable power to support the load.
In this paper, an optimal power control (OPC) scheme is used for maximum power point track (MPPT) in WECS. The PMSG based WECS is considered, which is connected to the microgrid through a back to back (B2B) voltage source converter (VSC). This B2B converter is required to connect low frequency generator of the WECS to the microgrid which is operating around the set reference frequency of 50 Hz. This paper mainly focuses on integration techniques of WECS with an islanded microgrid. The islanded microgrid operates in frequency droop control. To integrate the WECS at the set reference frequency with the islanded microgrid, modified droop control with isochronous concept is proposed to maintain the system frequency constant with the load fluctuation and wind power variation. Moreover, another integration technique using synchronization concept is also presented in which isochronization is not required. Extensive digital computer simulation results using PSCAD/EMTDC are presented to validate the proposals.

2 System structure

The system considered has a microgrid with two diesel generators (DGENs) and a WECS that operates in MPPT (Figure 1). The diesel generator set consists of a 4-stroke internal combustion (IC) engine coupled to a synchronous generator. The IC engine speed is controlled through the fuel input rate by a speed governor. A PID controller is used in the governor to maintain output speed. The synchronous generator contains an exciter and an automatic voltage regulator (AVR). The AVR controls the field supply of the generator to maintain the required terminal voltage. Note that the reference speed (for governor) and generator terminal voltage (for AVR) are obtained from the frequency droop control. The WECS is connected to the microgrid through a back to back converter. The system data used are given in the Appendix. The BTB converter consists of two conventional voltage source converters (VSC-1 and VSC-2) connected through a common dc link capacitor. VSC-1 is used to control the power flow from the wind turbine, while VSC-2 is used to control the dc link capacitor voltage \(V_{dc} \) constant. The microgrid frequency varies within the droop limits according to the load variations. VSC-2 connected to the microgrid, should operate at the same frequency of the microgrid. To achieve this, two techniques are proposed: (1) synchronization of the VSC-2 voltage at the same frequency of the microgrid and (2) modifying the frequency droop control such that the microgrid always operates at the set reference frequency.

3 Wind energy conversion system

3.1 Wind turbine with PMSG model

The wind power that is captured by the blade and converted into mechanical power can be calculated by [14]
\[P_m = \frac{1}{2} \rho A v_w^3 C_p \]

(1)

where \(\rho \) is the air density, \(A \) is the cross-sectional area through which the wind passes, \(v_w \) is the wind speed and \(C_p \) is the power coefficient of the blade. The rotor efficiency \(C_p \) is calculated from [15]

\[C_p = 0.5176 \left(\frac{116}{\lambda_i} - 0.4\beta - 5 \right) e^{0.0068 \lambda_i} \]

(2)

where \(\beta \) is the pitch angle, \(\lambda \) is the tip speed ratio (TSR), which is defined as the blade tip moving speed divided by the wind speed, and \(\lambda_i \) is given by [16]

\[\frac{1}{\lambda_i} = \frac{1}{\lambda + 0.83\beta} - \frac{0.035}{\beta^3 + 1} \]

(3)

The wind turbine operates at the generator control mode when the wind speed is below the rated wind speed, and works under the pitch control mode when the wind speed exceeds the rated value [17]. The parameters of the wind turbine and PMSG used are given in the Appendix.

3.2 PMSG operation with varied wind speeds

To verify the modelling and control strategy applied in this paper, the varied wind speeds are written as the following equations:

\[v_w = \begin{cases}
v_m & t < t_1 \\
 v_m + k \cdot (t - t_1) & t_1 < t < t_2 \\
 v_m + k \cdot (t_2 - t_1) & t > t_2
\end{cases} \]

(4)

\[v_{ES} = k \cdot (t_2 - t_1) \]

(5)

where \(v_w \) is the wind speed available to the turbine, \(v_m \) is the mean wind speed, \(k \) is the ramp change in the wind speed, \(t_1 \) and \(t_2 \) are the starting and ending time respectively of the wind speed ramping duration, \(v_{ES} \) is the external wind speed of the wind source.

3.3 OPC based MPPT for PMSG

The schematic diagram of the PMSG with B2B voltage source converters is shown in Figure 2. The kinetic energy of the wind is converted into mechanical energy by the wind turbine and then transmitted to the generator. VSC-1 controls the active power through MPPT, while VSC-2 maintains the DC link capacitor voltage constant.

To extract the maximum power from the wind energy, turbine blades should change their speed as the wind speed changes. Reference [18] gives out three methods to realize the MPPT control. Based on the PMSG model in this paper, to control the generator power, a method similar to Optimal Torque Control (OTC) is applied. This is called Optimal Power Control (OPC). The principle of the OTC is that the wind turbine mechanical torque \(T \) and the turbine speed \(\omega_p \) have the following relationship at MPPT [18]

\[T \propto \omega_p^2 \]

(6)

Assuming that the generator power is denoted by \(P_g \), which is given in OPC as

\[P_g \propto \omega_p^3 \]

(7)

It should be noted that the values of the turbine speed and the generator speed are equal, considering that the PMSG model is a direct drive. Besides, the generator mechanical torque is equal to its electromagnetic torque in the steady state. Equation (7) is the basis of OPC. Suppose

\[P_g = K_{opt} \times \omega_p^3 \]

(8)

where \(K_{opt} \) is calculated according to the generator rated parameters as

\[\begin{align*}
K_{opt} &= \frac{p}{\omega_p^3} \\
\omega_p^3 &= 2\pi f^* \frac{L}{p}
\end{align*} \]

(9)

In (9), \(P^* \), \(\omega_p^* \), \(f^* \) and \(p \) are the rated power, rated speed, rated frequency and pole pairs of the generator.

3.4 Control of B2B Converters

To control MPPT wind power flow to the microgrid, VSC-1 generates the voltage across the filter capacitor (\(C_{fu} \)) with an angle deviation from the PMSG output voltage. This power angle is calculated by a PI controller as

\[\delta_1 = K_P (P_g - P) + K_I \int (P_g - P) \, dt \]

(10)

where \(P_g \) is the wind power calculated from (8) and \(P \) is the actual power from the PMSG.

The purpose of the VSC-2 is to hold the voltage \((V_{dc}) \) across the DC link capacitor constant. Note that this voltage will remain constant only when it neither supplies nor absorbs any real power. Therefore the power obtained from wind turbine should ideally appear at the grid side. However, this is not practical since the converter losses must also be supplied from the generated power. Therefore holding the capacitor voltage is tantamount to extracting the maximum possible power from the wind turbine after supplying the converter losses.
For the DC voltage control another PI controller (PI-2) is designed, which is given by

\[\delta_2 = K_{P2} (V_{dc, ref} - V_{dc}) + K_{I2} \int (V_{dc, ref} - V_{dc}) \, dt \]

(11)

where \(V_{dc, ref} \) is the reference dc capacitor voltage and \(V_{dc} \) is the actual dc capacitor voltage. \(K_{P2} \) and \(K_{I2} \) are proportional and integral gains of the controller respectively. The converters are controlled in a hysteresis band output feedback control as explained in [19].

To illustrate the operation of OPC based MPPT control, consider the WECS that is connected to an infinite bus (Figure 2). The wind speed pattern is assumed as

\(t_1 = 3 \, \text{s}, \quad t_2 = 4 \, \text{s}, \quad k = 1, \quad V_m = 10 \, \text{m/s} \)

Figure 3(a) shows the wind speed variation pattern. In this the mean wind speed is 10 m/s, which ramps up between 3 s and 4 s to 11 m/s. The power output of the WECS follows the same pattern of the wind speed, as can be seen from Figure 3(b). The TSR versus wind speed is shown in Figure 3(c), where the TSR is kept at its optimal value regardless of the change in wind speed. The small fluctuation that can be seen in TSR is due to the control of VSC-1, which cannot respond instantaneously because of the dynamics of its LC filters. The rotor efficiency \((C_p) \) against wind speed is plotted in Figure 3(d). It is also constant following the TSR. Figures 3(c) and (d) demonstrate that a stable maximum efficiency is being achieved when wind speed is varying. This indicates the effectiveness of the applied MPPT control. The WECS is connected with the utility. Therefore, VSC-2 operates at the fix frequency \((\omega_g) \) of the utility. When the WECS gets integrated with the MG, \(\omega_g \) cannot remain constant. Therefore measures have to be taken to eliminate any system oscillation due to frequency mismatch.

4 Integration of WECS with microgrid

Since the microgrid operates in the frequency droop control, the frequency can vary within the limits of a frequency band. Therefore, VSC-2 must be synchronized with the microgrid frequency. As mentioned before, two techniques are proposed for the interconnection. These are discussed below.

4.1 Frequency droop control with isochronization

In this technique, the frequency of the microgrid is held constant at 50 Hz by integrating isochronization with frequency droop control. Therefore, the VSC-2 can connect to the microgrid at the set reference frequency. In the islanded microgrid, the DGs operate in the conventional frequency droop control, given by

\[\omega = \omega^* + m \times (0.5 \times P^* - P) \]

(12)

where the instantaneous and rated frequency of the DGs are \(\omega \) and \(\omega^* \) respectively. The rated and measured real powers are represented by \(P^* \) and \(P \) respectively. The droop coefficient is denoted by \(m \). The droop parameters of all DGs in a microgrid depend on their respective ratings such that all of them operate at the same frequency in the steady state. How these droop parameters can be calculated has been explained in [20].

Equation (12) signifies that when the system frequency is rated (50 Hz), the DG should supply half of its rated power. The frequency will be below (above) 50 Hz when the DG supplies more (less) than half of its rated power. The droop gain is calculated based on a frequency
limit of ± 0.3 Hz. In isochronous mode, the frequency of the microgrid must remain constant at 50 Hz. Therefore, if the droop control and isochronous mode are combined, the system can operate at the set reference frequency while sharing load power according to DG ratings.

To achieve this, the droop line shifts according to the load variation while preserving its slope. For constant droop coefficient, each DG has its own droop line according to its rating with the constant droop coefficient. The droop line shifts in such a way that it retains the same slope and can supply load power demand at the set reference frequency.

The droop lines of Figure 4 are considered for one of the DGs. Ordinarily, the DG operates in line-1. This implies that when it supplies P_1, the frequency should be ω_1. However, it is required that the DG operates at 50 Hz (ω^*). Therefore the frequency must be compensated by the amount $\Delta \omega = \omega^* - \omega_1$. We also need to maintain the power sharing, which depends on the slope of the droop lines. Therefore the quantity $\Delta\omega$ must be kept zero against any frequency variation due to load change. To achieve this, a PID controller is used to set frequency variation to zero. This is shown in Figure 5. The output of the PID controller is added to the output of the droop controller to produce ω_1', which is the input of the DGEN speed governor. Note that in steady state, $\omega_1' = \omega^*$. This means that the droop line is now shifted to line-2, which gives the power output of P_1 at ω^*.

4.2 Synchronization with microgrid

In this technique, the microgrid operates in conventional frequency droop control and its frequency varies within the frequency band according to the load power demand. Therefore, to connect the WECS with the microgrid, VSC-2 must be synchronized with the microgrid to operate at the
same frequency (Figure 6). To achieve this, a simple algorithm is used for synchronization, which is discussed below.

The frequency of the microgrid is set at ω. The instantaneous voltages at the point of connection of VSC-2 are given as

$$v_a = V \times \sqrt{2} \sin(\omega t + \phi)$$
$$v_b = V \times \sqrt{2} \sin(\omega t - 120^\circ + \phi)$$
$$v_c = V \times \sqrt{2} \sin(\omega t + 120^\circ + \phi)$$

Using symmetrical component theory [21], the positive sequence component of the instantaneous voltage of (13) will be

$$v_{a1} = \frac{v_a + v_b + v_c}{3}$$
$$= \frac{V}{\sqrt{2}} [\sin(\omega t + \phi) - j \cos(\omega t + \phi)]$$
$$v_{a1} = \frac{V}{\sqrt{2}} (\alpha + j\beta)$$

where $a = e^{j120^\circ}$ and

$$\alpha = \sin(\omega t + \phi), \quad \beta = -\cos(\omega t + \phi)$$

Note that from (11) δ_2 is obtained. The purpose is to add this angle with positive sequence voltage of (14).

Therefore, the positive sequence of the reference voltage across the filter capacitor of VSC-2 is

$$V_{vsc2} = \frac{V}{\sqrt{2}} [\sin(\omega t + \phi + \delta_2) - j \cos(\omega t + \phi + \delta_2)]$$
$$V_{vsc2} = \frac{V}{\sqrt{2}} [\sin(\omega t + \phi) \cos \delta_2 + \cos(\omega t + \phi) \sin \delta_2$$
$$- j \cos(\omega t + \phi) \cos \delta_2 + j \sin(\omega t + \phi) \sin \delta_2$$
$$= \frac{V}{\sqrt{2}} [(\alpha + j\beta) \cos \delta_2 - (\beta - j\alpha) \sin \delta_2$$

From (16) and (17), V_{vsc2} can be calculated. The instantaneous negative sequence is the complex conjugate of the positive sequence. Also, since the system is assumed to be balanced, the instantaneous zero sequence will be zero. Therefore, using inverse symmetrical component transform, the instantaneous reference voltages across the capacitor are obtained. Thus VSC-2 can track this reference output voltage without any explicit frequency measurement.

5 Simulation studies

Simulation studies are carried out in PSCAD/EMTDC to verify the discussed techniques above with different patterns of wind speed in WECS connected to the microgrid. The parameters of the considered system are given in the Appendix.

Three different case studies are considered. These are

(a) Nominal operation of the islanded microgrid
(b) WECS integration with the microgrid using isochronization
(c) WECS integration with the microgrid using frequency synchronization

Case (a): The considered 11 kV microgrid consists of two DGENs with ratings of 500 kW and 250 kW respectively and its local load. The droop coefficients for each DG are calculated from their ratings. The local load is assumed to be 625 kW. As shown in Figure 7(a), both DGENs share the power in the ratio of 2:1 according to their ratings. The microgrid frequency is 49.8 Hz with the conventional droop control method as shown in Figure 7(b). The synchronization technique is applied at 2 s and it can be seen from Figure 7(b) that the frequency converges to 50 Hz. However the powers remain unaltered. Once the load power changes at 11 s, the
power supplied by the DGs also changes in a same ratio, which is shown in Figure 8(a). However, in Figure 8(b), it can be seen that with the proposed method, the system retains at the set reference value of 50 Hz. This verifies that the system frequency maintains at the set reference with load power sharing according to the ratings of the DGs.

Case (b): The microgrid operates in frequency droop control with isochronous mode. Therefore, the microgrid operates at the set reference frequency and hence VSC-2 can also operate at the same frequency. The results are discussed below.

Case (b.1): Microgrid with constant speed WECS

For this case, it has been assumed when the WECS system is connected to the microgrid at 2 s, the sources are operating in the steady state. The WECS supplies its total power to the microgrid. The real power flow in the microgrid is shown in Figure 9(a). It can be seen from this figure that the power supplied by the DGs reduces proportionally, maintaining the sharing ratio. The frequency of the microgrid is shown in Figure 9(b). It can be seen...
that the system frequency is retained at the set reference value of 50 Hz even after the integration of the WECS. The dc link capacitor voltage is shown in Figure 10. It is held constant at 2.5 kV barring some transients by VSC-2 even after the WECS connects to the microgrid.

Case (b.2): Microgrid with variable speed WECS

In this case, the wind speed of the WECS is considered variable. As shown in Figure 11, initially the wind speed is constant at 10 m/s. Then at 10 s, it starts ramping up to 12 m/s till 12 s. The output power of WECS also follows the pattern of the wind speed as shown in Figure 12(a). Once the wind speed increases, the output power of WECS also increases and therefore the power supplied by the DGENs reduces. The system frequency with the variation of the output power of the WECS is also maintained at the set reference value of 50 Hz as shown in Figure 12(b).

Case (b.3): Tripping of WECS

Usually wind turbines start to operate when the wind speed exceeds 4–5 m/s, and are shut off at speeds over 25–30 m/s [14]. If wind speed is less than the cut in speed or higher than the cut off speed, WECS will be disconnected from the microgrid. In this case, the wind speed is reduced from 10 m/s to
the cut in speed as shown in Figure 13. Therefore, the power \(P_w \) from WECS becomes zero after 11 s. It can be seen in Figure 14(a) that now load power is supplied only from the DGENs. Furthermore, the system frequency is retained constant at the set reference value as shown in Figure 14(b).

Case (c): The microgrid operates in conventional frequency droop control and the frequency of the microgrid varies within the frequency band according to load variation. Therefore, for connecting the WECS with the microgrid, the synchronization algorithm is used. The simulation results are discussed below.

Case (c.1): Microgrid with constant speed WECS

It is assumed that when WECS connects to the microgrid at 2 s, the wind speed is constant at 10 m/s. From Figure 15(a), it can be seen that the power supplied from the DGENs reduces and the system frequency also increases due to power reduction. This is shown in Figure 15(b). The dc capacitor voltage is held constant by VSC-2 during the connection of WECS with microgrid as shown in Figure 16.

It can be seen in Figure 17(a) that once the load is increased to 625 kW at 10 s, the power of DGENs increases in a same proportion and the power of WECS \((P_w) \) is retained constant. The frequency of the microgrid also reduces as shown in Figure 17(b).

Case (c.2): Microgrid with variable speed WECS

In this case, it is assumed that the wind speed ramps up from 10 m/s to 11 m/s. The power flow from the WECS follows the wind speed pattern and the powers of DGENs reduce according to the available
Figure 14: Power flow in microgrid with WECS and frequency in Case (b.3).

Figure 15: Real power sharing and frequency of the microgrid in Case (c.1).
WECS power and load requirement. This is shown in Figure 18(a). The variation in microgrid frequency is shown in Figure 18(b).

6 Conclusions

In this paper, Optimal Power Control (OPC) scheme is used for MPPT control to draw maximum possible power from the WECS. The WECS is connected through a back to back converter to supply the available maximum power to the microgrid. Two different techniques of WECS integration to the microgrid are proposed in this paper. The microgrid operates in frequency droop control. In the first technique, an isochronization method is used in which the droop line is shifted such that each DG supplies its required power at 50 Hz. This has been discussed in details. The other technique is to synchronize WECS at the microgrid frequency. A simple synchronization method is proposed in which only measurements of the instantaneous PCC voltages are needed. Both these two proposed techniques are validated through computer simulation using PSCAD/EMTDC. It has been shown that both of them work satisfactorily during load change, WECS connection or disconnection with the microgrid. The operation is seamless where no large transient is visible.

Acknowledgement: The authors thank the Australian Research Council (ARC) for the financial support for this project through the ARC Discovery Grant DP110104554.

Funding: Department of Industry and Science, Australian Government, Australian Research Council “DP110104554”.

Figure 17: Real power sharing and frequency of the microgrid with local load variation in Case (c.1).
Appendix

Table 1: Wind turbine and PMSG parameters.

<table>
<thead>
<tr>
<th>Parameters names</th>
<th>Parameter values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotor radius</td>
<td>58 cm</td>
</tr>
<tr>
<td>Air density</td>
<td>1.225 kg/m³</td>
</tr>
<tr>
<td>Rated wind speed</td>
<td>12 m/s</td>
</tr>
<tr>
<td>Rated apparent power</td>
<td>0.5 MVA</td>
</tr>
<tr>
<td>Rated line-to-line voltage</td>
<td>11 kV</td>
</tr>
<tr>
<td>Rated frequency</td>
<td>10 Hz</td>
</tr>
<tr>
<td>Number of pole pairs</td>
<td>49</td>
</tr>
</tbody>
</table>

Table 2: Parameters of the DGs connected in microgrid.

<table>
<thead>
<tr>
<th>System quantities</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>DG1 feeder impedance</td>
<td>$R_f = 3.025 , \Omega$, $L_f = 57.8 , \text{mH}$</td>
</tr>
<tr>
<td>DG2 feeder impedance</td>
<td>$R_f = 3.025 , \Omega$, $L_f = 57.8 , \text{mH}$</td>
</tr>
<tr>
<td>DGs rated power</td>
<td>DGEN-1: 500 kW,</td>
</tr>
<tr>
<td></td>
<td>DGEN-2: 250 kW</td>
</tr>
<tr>
<td>Droop coefficient (frequency–voltage)</td>
<td>$m_1 = 0.0075 , \text{rad/MWs}$</td>
</tr>
<tr>
<td></td>
<td>$m_2 = 0.015 , \text{rad/kWs}$</td>
</tr>
<tr>
<td></td>
<td>$n_1 = 0.02 , \text{kV/MVAr}$</td>
</tr>
<tr>
<td></td>
<td>$n_2 = 0.04 , \text{kV/MVAr}$</td>
</tr>
</tbody>
</table>

Table 3: Diesel generator set data.

<table>
<thead>
<tr>
<th>System data</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage</td>
<td>11 kV</td>
</tr>
<tr>
<td>Rated power DGEN1</td>
<td>250 kW</td>
</tr>
<tr>
<td>Rated power DGEN2</td>
<td>500 kW</td>
</tr>
<tr>
<td>Rated frequency</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Rated speed</td>
<td>1,500 rpm</td>
</tr>
<tr>
<td>Reactance</td>
<td>Value (per unit)</td>
</tr>
<tr>
<td>X_p : Unsaturated d axis synchronous reactance</td>
<td>0.116</td>
</tr>
<tr>
<td>X'_d : Unsaturated d axis transient synchronous reactance</td>
<td>7.4×10^{-3}</td>
</tr>
<tr>
<td>X''_d : Unsaturated d axis subtransient synchronous reactance</td>
<td>2.94×10^{-3}</td>
</tr>
<tr>
<td>X_q : Unsaturated q axis synchronous reactance</td>
<td>6.37×10^{-3}</td>
</tr>
<tr>
<td>X''_q : Unsaturated q axis subtransient synchronous reactance</td>
<td>5.24×10^{-3}</td>
</tr>
<tr>
<td>X_0 : Negative-sequence reactance</td>
<td>0.044</td>
</tr>
<tr>
<td>X_0 : Zero-sequence reactance</td>
<td>2.45×10^{-3}</td>
</tr>
<tr>
<td>Time constants</td>
<td>Value (ms)</td>
</tr>
<tr>
<td>l''_{do} : d axis subtransient open circuit time constant</td>
<td>25</td>
</tr>
</tbody>
</table>

(continued)
Table 3: (continued)

<table>
<thead>
<tr>
<th>System data</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{qo}' : q axis subtransient open circuit time constant</td>
<td>4</td>
</tr>
<tr>
<td>t_{do}' : d axis transient open circuit time constant</td>
<td>368</td>
</tr>
<tr>
<td>t_a : Armature time constant</td>
<td>25</td>
</tr>
</tbody>
</table>

Table 4: Parameters of the isochronization (PID) controller.

<table>
<thead>
<tr>
<th>System data</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportional gain (K_P)</td>
<td>0.1</td>
</tr>
<tr>
<td>Integral gain (K_I)</td>
<td>10</td>
</tr>
<tr>
<td>Constant coefficient (a)</td>
<td>200</td>
</tr>
</tbody>
</table>

References