Catalog Home Page

Thermal-drag and transition from Quasi-steady to Highly-unsteady combustion of a fuel droplet in the presence of upstream velocity oscillations

Jangi, M., Shaw, B. and Kobayashi, H. (2010) Thermal-drag and transition from Quasi-steady to Highly-unsteady combustion of a fuel droplet in the presence of upstream velocity oscillations. Flow, Turbulence and Combustion, 84 (1). pp. 97-123.

Link to Published Version: http://dx.doi.org/10.1007/s10494-009-9230-2
*Subscription may be required

Abstract

Numerical studies on the behaviors of combustion of 1-butanol fuel droplet at presence of upstream velocity oscillation are performed. Fuel droplet has an initial diameter of 1.25 mm and ambiance pressure and temperature are 0.4 MPa and 300 K, respectively. These conditions are those in which the microgravity experiments in literature conducted. In the excellent agreement with the experimental data, numerical results show a significant enhancement of the burning rate of droplet compared to what is predicted by quasi-steady film theory models. The mechanism of the enhancement of burning rate is clarified then by observation of a new mechanism that is named thermal-drag, TD. It is shown, depending on the amplitude and frequency of the upstream velocity oscillation, the flame in wake region of droplet can move toward the droplet surface by the force of vortex flow motions produced by the TD mechanism. It is verified that such movement of the flame is responsible for the enhancement of the burning rate and deviation of the response of the evaporation process form the predictions of the quasi-steady model. Frequency analysis of the burning rate reveals that at low frequency and amplitude the FFT diagram of the burning rate contains of only one main peak synchronies with the frequency of upstream velocity oscillation, which implies a quasi-steady response. However; at high frequency and amplitude the diagram includes of wide range of frequencies beside of the main peak that readily shows deviation from the quasi-steady conditions. In the latter, the study on the response of the combustion to the upstream velocity fluctuations in which the fluctuations contains of three wave numbers shows the amplification of the effects of low frequency fluctuations rather than that of damping of the effects of high frequency fluctuations on the evaporation processes.

Publication Type: Journal Article
Publisher: Springer Netherlands
URI: http://researchrepository.murdoch.edu.au/id/eprint/32463
Item Control Page Item Control Page