THE EXERCISE PHYSIOLOGY OF THE
RACING GREYHOUND

This thesis is presented for the degree of
Doctor of Philosophy of Murdoch University

by

Ross Staaden

JANUARY 1984

School of Veterinary Studies
Murdoch University

I declare that this thesis is my own account of my
research and contains as its main content work which
has not been submitted for a degree at any University.

Ross Staaden
This thesis is dedicated to my parents for their encouragement and above all their sacrifice. What they went without, so that their children could have an education is not readily appreciated in these materially better times.
ABSTRACT

EXERCISE PHYSIOLOGY OF THE RACING GREYHOUND

R. Staaden

Greyhounds were trained to gallop at maximal running speed on a treadmill constructed for the purpose. This speed considerably exceeded maximal aerobic speed and was termed supramaximal.

A mask was used to collect expired gases into bags during runs of 7.5 to 60 seconds and over the first 8-10 minutes of the recovery period. Respiratory parameters measured included VE, VO$_2$, VCO$_2$, R, f_R, V_T, ventilatory equivalent of O_2 uptake and ventilatory equivalent of CO_2 production. Respiration was found to be synchronised with the gallop stride, enabling both a high f_R and V_T. Mean VE reached 6 l.$kg^{-1}.min^{-1}$. Mean VO$_2$ reached 143ml.$kg^{-1}.min^{-1}$ during the 30-45 second segment of running. Lactic acid draining into the blood stream displaced CO_2 from the bicarbonate buffer system, so that R rose above 1.0. The highest value of R, 2.3 occurred in the second minute of recovery.

The alactacid debt of the greyhound was found to be higher than that of man but was repaid much more rapidly because of the greyhound’s superior oxygen transport system.

The cardiovascular system was studied using electromagnetic and thermodilution flowmeters, and a heart rate telemeter. Changes in blood pressure caused changes in the relationship of the very elastic aortic root and the electromagnetic transducer cuff so that accurate calibration was not possible. Reliable values of cardiac output were obtained by thermodilution. Parameters measured included HR, cardiac output, SV and PCV,
taken before, during and for 1 hour after running. The minimum HR whilst sleeping was also obtained, and averaged 42 b.min\(^{-1}\). The HR was highest during runs of 30 seconds, 318 ± 18 b.min\(^{-1}\). After running it fell sharply to below 160 in the second minute of recovery then rose to 200 b.min\(^{-1}\) 10 minutes after 30 and 45 second runs. HR was close to resting levels 1 hour after running. PCV after 30 seconds of running was 63.5 ± 2.1% and had returned to resting values by 1 hour. Cardiac output during high speed runs was 914 ± 209 ml.kg\(^{-1}\).min\(^{-1}\) while SV at 2.9 ± 0.6 ml.kg\(^{-1}\) was increased 32% above resting SV.

Acid-base balance of jugular venous blood was studied. Comparisons with arterial samples taken at the same time showed a useful relationship of arterial and jugular venous blood for lactate, base excess and pH. The time taken for blood lactate to reach its peak value varied with the intensity and the duration of the run. The jugular venous blood lactate level after 45 seconds of running peaked at 181 ± 15 mg.dl\(^{-1}\) (7 minutes after running), pH fell to 7.094 ± 0.27, base excess to -23.4 ± 2.7 mEq.l\(^{-1}\) and PCO\(_2\) to 23 ± 2 mm Hg. All values had returned to resting level 1 hour after the run.

Oxygen consumption during running, alactacid debt, lactate production and distance covered were used to calculate total energy cost and relative contributions of energy sources and energy cost.m\(^{-1}\). Anaerobic sources were the main contributors in the first 15 seconds but in the 15-30 second segment aerobic sources supplied 53% of the energy required and in the 30 -45 second segment, 79%. The energy source contributions to 30 seconds of running were aerobic 30%, alactacid debt 19% and lactic acid 51%. The energy cost.m\(^{-1}\) at supramaximal speeds was higher than predicted by formulae derived from studies of dogs at submaximal speeds. The first 7.5 seconds of running cost almost
as much as the next 22.5 seconds, indicating a high cost of acceleration. This is the first quantification of the energy cost of acceleration reported.

Compared to man, the greyhound has a very high oxygen uptake during sprinting. Man's major deficiencies as a sprinter are a low maximal heart rate, small heart relative to body size and low PCV. Sprinting impedes respiration in man but aids it in the greyhound. Calculations indicate that when man runs at supramaximal speed, it costs more per metre than predicted by formulae derived at submaximal speeds and that the energy cost of acceleration is of the same order as in the greyhound although man attains a much lower peak speed.
First and foremost I would like to thank Professor Robert Dunlop, who offered me a Murdoch University Postgraduate Studentship and became my supervisor. This gave me an opportunity to indulge my interest in the physiological mechanisms involved in exercise. Having given me that opportunity Professor Dunlop allowed me to "do it my way" and came up with funds for a high speed treadmill. Professor Dunlop appreciated the problems of shifting into a new and vast field, where an enormous amount of background reading and understanding of widely diverse principles was essential. It was necessary at various times to consult with specialists in dozens of specialties ranging from the mathematics and physics of windtunnels, pumps, viscometers, acceleration etc through chemistry, biochemistry, physiology, zoology and clinical medicine to anatomy. I found this very enjoyable if occasionally frustrating but it also meant frequent changes of direction, interspersed with stops and starts. Throughout these years Professor Dunlop listened to my reasons, pruned severely, then let me move on with soundly based experiments. Most importantly he was adamant that slow progress, changes of direction and small amounts of data were normal for a project such as this. (During one period of eight months not one donated greyhound could be lured into a trot let alone a gallop).
In addition I would like to thank the following people: Peter Rae and his successor Steve Callaghan for generously allowing the use of physiological equipment and consumables under their control. John Atherton for assistance in the testing of donated greyhounds. Peter D'Etchen, Ian Jack and Ron Harris of Queen Elizabeth ll Medical Centre for help with equipment and some pretty good jokes. Hugo Dunlop, Sally Staaden, Colleen Henderson, Jenny Harbisher and Derek Mead-Hunter for help with the treadmill experiments. Derek's sense of humour during the long and tedious rituals was much appreciated, side - splitting laughter being a rarity during Ph.D experiments. Ross Young and Paul Miller for scrubbing up and helping with some of the surgery.

Dr. Michael McGrath of St. Vincent's Hospital Sydney for use of the low shear viscometer and Phil Davis of Sydney University Veterinary School for organising blood samples.

Jeff Gawthorne, Ray Johnson (now in Queensland), Ken Johnson and Nick Costa for careful consideration of numerous questions even when they had more pressing things to do.

Jo Jennings for computer processing reams of respiratory data through abominable formulae.

Jennifer Carlisle for coping with most of the typing and alterations and for introducing me to word processing (Jennifer is now cured of word processing for life).
Tom Edwards, my superior at Bentley Tech. for putting up with someone suffering from "thesis syndrome".

Professor Ray Wales who was lumbered with the task of supervising me when Professor Dunlop was appointed Dean of Minnesota Veterinary School. Professor Wales put much time and effort into reading the manuscript and suggesting ways in which it could be translated into readable English. His attention to details of content and layout through page after page showed stamina bordering on masochism, for which I am very grateful. To all these people and many others including the greyhound fraternity, many thanks. Last but not least to NT (the Nit), a greyhound whose motivation to chase a bit of rabbit flattened by a motor vehicle showed that it was all possible.

LIST OF TABLES

TABLE	PAGE No
2.1-1 REASON(S) GIVEN BY DONATING GREYHOUND OWNERS FOR NOT RACING THEIR GREYHOUND(S) | 9
2.1-2 GREYHOUNDS USED IN THIS STUDY | 12

CHAPTER 2

3.5-1 V_{O_2} DURING AND AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION | 35
3.5-2 V_{CO_2} DURING AND AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION | 36
3.5-3 VE DURING AND AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION | 37
3.5-4 R DURING AND AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION | 38
3.5-5 f_R DURING AND AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION | 39
3.5-6 V_T DURING AND AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION | 40
3.5-7 $V_{Eq.O_2}$ DURING AND AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION | 41
3.5-8 $V_{Eq.CO_2}$ DURING AND AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION | 42
3.6-1 MAXIMUM:REST RATIOS FOR RESPIRATORY PARAMETERS | 68
CHAPTER 4

4.2-1 COMPARISON OF CARDIOVASCULAR VARIABLES IN THE GREYHOUND AND MONGREL DOG.................................105

4.5-1 HEART RATE DURING AND AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION..116

4.5-2 JUGULAR VENOUS PCV BEFORE AND AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION..............................119

4.5-3 (A) dV/dT AND (B) PEAK VELOCITY OF AORTIC FLOW.................125

4.5-4 RELATIONSHIP OF CARDIAC OUTPUT TO EXERCISE...............128

4.5-5 RELATIONSHIP OF STROKE VOLUME TO EXERCISE.................129

4.5-6 RELATIVE CHANGES IN HR AND SV AND THEIR CONTRIBUTIONS TO CHANGES IN CARDIAC OUTPUT..........129

4.6-1 MAXIMAL HEART RATES RECORDED IN DOGS.........................132

4.6-2 PREDICTED MAXIMAL HEART RATES FOR VARIOUS MAMMALS..........132

4.6-3 HEART WT:BODY WT RATIOS FOR GREYHOUNDS AND MONGREL DOGS...136

4.6-4 COMPARISON OF DATA FOR CO AND SV IN GREYHOUNDS........142

4.6-5 COMPARISON OF MAXIMAL CARDIAC OUTPUT IN DOGS...............143

4.6-6 COMPARISON OF DATA FOR SV CHANGES WITH EXERCISE IN DOGS...144

4.5-7 RATIO OF HEART WT:SV IN MAN, MONGREL DOG AND GREYHOUND...145
CHAPTER 5

5.4-1 TOTAL RUNS AND CONTRIBUTIONS OF EACH GREYHOUND TO ACID-BASE AND BLOOD GAS DATA.........................152

5.5-1 JUGULAR VENOUS LACTATE AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION.................................153

5.5-2 JUGULAR VENOUS BASE EXCESS AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION..............................154

5.5-3 JUGULAR VENOUS pH AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION...155

5.5-4 JUGULAR VENOUS PCO₂ AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION..156

5.5-5 JUGULAR VENOUS PO₂ AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION.......................................157

5.5-6 TIME TAKEN FOR BLOOD LACTATE LEVELS TO PEAK AFTER SUPRAMAXIMAL RUNS OF VARIOUS DURATIONS.........166

CHAPTER 6

6.5-1 ALACTACID DEBT AND DURATION OF RUN.................................203

6.5-2 PROGRESSIVE TOTAL ENERGY COST OF RUNNING.........................203

6.5-3 RELATIVE CONTRIBUTIONS TO TOTAL COST OF RUNNING...........205

6.5-4 POWER RATING OF ENERGY SOURCES FOR EACH SEGMENT OF A RUN..206

6.5-5 RELATIVE CONTRIBUTIONS DURING EACH SEGMENT OF A RUN....208

6.5-6 MAXIMAL POWER OF ENERGY SOURCES.................................209

6.5-7 ENERGY COST PER KILOGRAM-METRE BY SEGMENT.................211
6.6-1 ENERGY COST COMPARED WITH PREDICTIONS OF VARIOUS PUBLISHED FORMULAE..........................215

6.6-2 COMPARISON OF LACTACID POWER...222

6.6-3 CONTRIBUTION OF EACH ANAEROBIC ENERGY SOURCE EXPRESSED AS DISTANCE OR TIME TRAVELLED..................226

6.6-4 ENERGY COST AND POWER RATING BY SEGMENTS OF A RUN IN MAN...229

CHAPTER 7

7.3-1 COMPARISON OF MAXIMAL HR, SV, PCV AND VO₂ IN MAN AND GREYHOUND..236
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1-1</td>
<td>FORM FOR OBTAINING PERFORMANCE HISTORY OF DONATED GREYHOUNDS</td>
</tr>
<tr>
<td>2.2-1</td>
<td>TREADMILL DESIGN AND DIMENSIONS</td>
</tr>
</tbody>
</table>

CHAPTER 2

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3-1</td>
<td>THE GAS COLLECTION MASK ON A GREYHOUND</td>
</tr>
<tr>
<td>3.3-2</td>
<td>CUTAWAY VIEW OF THE MASK</td>
</tr>
<tr>
<td>3.5-1</td>
<td>VO\textsubscript{2} DURING AND AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION</td>
</tr>
<tr>
<td>3.5-2</td>
<td>VCO\textsubscript{2} DURING AND AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION</td>
</tr>
<tr>
<td>3.5-3</td>
<td>VE DURING AND AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION</td>
</tr>
<tr>
<td>3.5-4</td>
<td>R DURING AND AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION</td>
</tr>
<tr>
<td>3.5-5</td>
<td>f\textsubscript{R} DURING AND AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION</td>
</tr>
<tr>
<td>3.5-6</td>
<td>V\textsubscript{T} DURING AND AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION</td>
</tr>
<tr>
<td>3.5-7</td>
<td>V.Eq.O\textsubscript{2} DURING AND AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION</td>
</tr>
</tbody>
</table>
3.5-8 V.Eq.CO₂ DURING AND AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION..50

3.5-9 OXYGEN UPTAKE AND HEART RATE DURING STEADY STATE RUNNING..55

CHAPTER 4

4.5-1 HEART RATE DURING AND AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION.................................117

4.5-2 JUGULAR VENOUS PCV BEFORE AND AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION......................119

4.5-3 CHANGES IN SENSITIVITY OF 2 EMF CUFFS WITH CHANGES IN PCV..121

4.5-4 BASELINE FLUCTUATIONS IN EMF CARDIAC OUTPUT READING WHEN THE GREYHOUND WAS SHOWN THE LURE...122

4.5-5 DECREASING DURATION OF EJECTION PHASE WITH INCREASING HEART RATE..................................123

4.5-6 DURATION OF EJECTION PHASE AS A PERCENTAGE CYCLE LENGTH WITH INCREASING HEART RATE........123

4.5-7 DURATION OF EJECTION PHASE AND CYCLE LENGTH WITH INCREASING HEART RATE..........................124

4.5-8 THERMODILUTION CALIBRATION RESULTS FROM A MODEL WITH A NON-LINEAR RELATIONSHIP OF METER READING AND VOLUME COLLECTED..126

4.5-8 THERMODILUTION CALIBRATION RESULTS FROM A MODEL WITH A LINEAR RELATIONSHIP OF METER READING AND VOLUME COLLECTED..127

vii
CHAPTER 5

5.5-1 JUGULAR VENOUS LACTATE AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION.................................158

5.5-2 JUGULAR VENOUS BASE EXCESS AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION..........................159

5.5-3 JUGULAR VENOUS pH AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION.................................160

5.5-4 JUGULAR VENOUS PCO₂ AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION...............................161

5.5-5 JUGULAR VENOUS PO₂ AFTER RUNS OF 15, 30 AND 45 SECONDS DURATION.................................162

5.5-6 COMPARISON OF ARTERIAL AND JUGULAR VENOUS LACTATE......163

5.5-7 COMPARISON OF ARTERIAL AND JUGULAR VENOUS BE..............164

5.5-8 COMPARISON OF ARTERIAL AND JUGULAR VENOUS pH..............164

5.5-9 COMPARISON OF ARTERIAL AND JUGULAR VENOUS PCO₂...............165

5.5-10 RELATIONSHIP OF LACTATE AND pH IN JUGULAR VENOUS BLOOD...165

5.5-11 RELATIONSHIP OF LACTATE AND BE IN JUGULAR VENOUS BLOOD..166

5.5-12 BLOOD LACTATE LEVELS AFTER RUNS OF VARIOUS DURATIONS...167

CHAPTER 6

6.5-1 PROGRESSIVE TOTAL ENERGY COST OF RUNNING...............204

6.5-2 RELATIVE CONTRIBUTIONS TO TOTAL COST OF RUNNING.........205
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATPS</td>
<td>Ambient temperature, pressure and saturation.</td>
</tr>
<tr>
<td>a-v O₂ diff</td>
<td>Difference in oxygen content of arterial and mixed venous blood.</td>
</tr>
<tr>
<td>BTPS</td>
<td>Body temperature and pressure, saturated.</td>
</tr>
<tr>
<td>BWt</td>
<td>Body weight.</td>
</tr>
<tr>
<td>CO</td>
<td>Cardiac output.</td>
</tr>
<tr>
<td>CP</td>
<td>Creatine phosphate.</td>
</tr>
<tr>
<td>d1</td>
<td>Decilitre (100ml).</td>
</tr>
<tr>
<td>E</td>
<td>Energy.</td>
</tr>
<tr>
<td>E<sub>metab</sub></td>
<td>Metabolic energy.</td>
</tr>
<tr>
<td>f<sub>R</sub></td>
<td>Respiration rate.</td>
</tr>
<tr>
<td>Hb</td>
<td>Haemoglobin.</td>
</tr>
<tr>
<td>HR</td>
<td>Heart rate.</td>
</tr>
<tr>
<td>KE</td>
<td>Kinetic energy.</td>
</tr>
<tr>
<td>l</td>
<td>litre.</td>
</tr>
<tr>
<td>m</td>
<td>metre.</td>
</tr>
<tr>
<td>M or M<sub>D</sub></td>
<td>Body mass.</td>
</tr>
<tr>
<td>PA</td>
<td>Ambient pressure i.e, atmospheric pressure at time of the exercise, at which volume of gas collected is measured.</td>
</tr>
<tr>
<td>PCO₂</td>
<td>Partial pressure of carbon dioxide in blood.</td>
</tr>
<tr>
<td>PCV</td>
<td>Packed cell volume, haematocrit.</td>
</tr>
<tr>
<td>PO₂</td>
<td>Partial pressure of oxygen in blood.</td>
</tr>
<tr>
<td>R</td>
<td>Respiratory exchange ratio.</td>
</tr>
<tr>
<td>R.Q.</td>
<td>Respiratory quotient.</td>
</tr>
<tr>
<td>STPD</td>
<td>Standard temperature and pressure, dry.</td>
</tr>
</tbody>
</table>
\(T_A \)
Ambient temperature i.e. temperature of collected gases at the time the volume was measured.

\(U_g \)
Velocity relative to the ground.

\(VCO_2 \)
Volume of carbon dioxide produced per minute.

\(V_D \)
Volume of dead space of the airways and lungs.

\(VE \)
Expired volume per minute at BTPS.

\(V.Eq.CO_2 \)
Ventilatory equivalent of carbon dioxide production, i.e. the ratio of VE to \(VCO_2 \).

\(V.Eq.O_2 \)
Ventilatory equivalent of oxygen uptake, i.e. the ratio of VE to \(VO_2 \).

\(VO_2 \)
Volume of oxygen uptake per minute.

\(VO_2\max \)
Maximal oxygen uptake per minute.
TABLE OF CONTENTS

CONTENTS

Abstract..i
Acknowledgements...iv
Publications...vii
List of Tables..viii
List of Figures..xii
Abbreviations and Symbols...xvi
Contents..xviii

CHAPTER 1: GENERAL INTRODUCTION

1.1 Objectives and justification...1
1.2 Chronology and constraints...2
1.3 Terminology for describing grades of exercise.....................................3
1.4 General literature review...5

CHAPTER 2: GENERAL MATERIALS & METHODS

2.1 Experimental animals
 2.1-1 Sources of greyhounds...7
 2.1-2 Housing...7
 2.1-3 Feeding...7
 2.1-4 Exercise...10
 2.1-5 Weighing...10
 2.1-6 Greyhounds used in this study..11

2.2 Treadmill
 2.2-1 Performance specifications...13
 2.2-2 Construction..15
 2.2-3 Performance..17
 2.2-4 Speedometer & odometer...17

2.3 Multichannel chart recorder...18
2.4 Experimental protocol.................................19
2.5 Design of experiments...............................20

CHAPTER 3: STUDIES OF THE RESPIRATORY SYSTEM

3.1 Introduction...23
3.2 Literature review.....................................24
3.3 Materials and methods...............................25
3.4 Experimental design...................................32
3.5 Results and statistics
 3.5-1 \(\text{VO}_2 \)..34
 3.5-2 \(\text{VCO}_2 \).......................................51
 3.5-3 \(\text{VE} \)..52
 3.5-4 \(R \)...52
 3.5-5 \(f_R \)..53
 3.5-6 \(V_T \)..53
 3.5-7 \(V_{\text{Eq.}O_2} \)..................................54
 3.5-8 \(V_{\text{Eq.CO}_2} \)................................54
 3.5-9 \(\text{VO}_2 \) steady state.........................54
3.6 Discussion
 3.6-1 \(\text{VO}_2 \)
 a) Effects of methodology.......................56
 b) Relation to other parameters..............58
 c) Limitations
 i) \(\text{VO}_{2\text{max}} \) concept.....................59
 ii) Criteria for \(\text{VO}_{2\text{max}} \)...............60
 iii) Limitations of \(\text{VO}_{2\text{max}} \).........62
 iv) Contribution of each parameter to \(\text{VO}_{2\text{max}} \)......68
 v) \(\text{VO}_2 \) steady state....................69
 d) Comparisons....................................70
 3.6-2 \(\text{VCO}_2 \)......................................78
 3.6-3 \(\text{VE} \)......................................80
3.6-4 \(R \) ...84
3.6-5 \(f_R \) ...89
3.6-6 \(V_T \) ...92
3.6-7 \(V_{\text{Eq.}O_2} \)95
3.6-8 \(V_{\text{Eq.CO}_2} \)97
3.7 ..100

CHAPTER 4: CARDIOVASCULAR SYSTEM STUDIES

4.1 Introduction ...103
4.2 Literature review ..104
4.3 Materials and methods
 4.3-1 Heart rate ...104
 4.3-2 PCV ..106
 4.3-3 Cardiac Output
 a) Electromagnetic flowmeter106
 b) Thermodilution110
 c) Quantitative angiography113
 d) Direct Fick114
 4.4 Experimental design114
4.5 Results and statistics
 4.5-1 Heart rate ...115
 4.5-2 PCV ..118
 4.5-3 Cardiac Output
 a) Electromagnetic flowmeter120
 b) Thermodilution125
 c) Quantitative angiography130
 d) Direct Fick130
4.6 Discussion
 4.6-1 Heart rate
 a) Sleeping heart rate130
 b) Maximal heart rate in dogs131
 c) Allometric comparisons of
maximal heart rate.................131
d) Comparison with man's heart rate.........................133

4.6-2 PCV

4.6-3 Cardiac Output
 a) Evaluation of methods.........................137
 b) Comparison with greyhounds & other dogs..................140
 c) Comparison with man..........................142

4.6-4 The greyhound heart.........................144

4.7 Summary.....................................146

CHAPTER 5: STUDIES OF ACID-BASE AND BLOOD GASES

5.1 Introduction....................................147

5.2 Literature review................................147

5.3 Materials and methods.............................149

5.4 Design of experiments..............................151

5.5 Results and statistics
 5.5-1 Lactic acid................................152
 5.5-2 Base excess................................154
 5.5-3 pH...154
 5.5-4 PCO₂...156
 5.5-5 PO₂..157
 5.5-6 Comparison of arterial and jugular venous blood.........163
 5.5-7 Correlation of lactate with BE and pH..................165
 5.5-8 Time taken for blood lactate level to peak...............166

5.6 Discussion

5.6-1 Correcting results to body temperature
 a) Temperature correction of pH.............168
 b) Temperature correction of PCO₂..........169
 c) Temperature correction of PO₂..........170
5.6-2 Usefulness of pH and BE as predictors of lactate levels............171
5.6-3 Severity of acid base disturbances...........172
5.6-4 Time course of recovery..................172
5.6-5 Relationship of acidity, heat and osmotic changes to post-race clinical disorders..................172
5.6-6 Time taken for blood lactate levels to peak..........................175
5.6-7 Usefulness of venous blood samples...........176
5.6-8 Comparison with man..................177
5.7 Summary..179

CHAPTER 6: ENERGETICS STUDIES

6.1 Introduction......................................180
6.2 Literature review
 6.2-1 O₂ consumption and O₂ debt...........180
 6.2-2 The alactacid component of the O₂ debt...........183
 6.2-3 The lactacid or residual component of O₂ debt187
 6.2-4 Measurement of the energy cost of running........192
6.3 Materials and methods
 6.3-1 Alactacid O₂ debt..........................194
 6.3-2 Caloric value of phosphagen O₂ debt..................201
6.4 Design of experiments..........................202
6.5 Results and statistics..........................202
 6.5-1 Alactacid oxygen debt...................202
 6.5-2 Total energy cost of running...............203
 6.5-3 Relative contributions of energy sources to the total cost..............204
 6.5-4 Power rating of energy sources by segments...........................205
 6.5-5 Relative contributions of energy sources by segments..................207
 6.5-6 Maximal power of energy sources.......209
6.5-7 Energy cost per kilogram-metre by segments..............................209

6.6 Discussion

6.6-1 Alactacid oxygen debt..........................211
6.6-2 Total energy cost of running.................213
6.6-3 Relative contributions of energy sources to total cost..................214
6.6-4 Power rating of energy sources by segments..........................214
6.6-5 Relative contributions of energy sources by segments..................219
6.6-6 Maximal power of energy sources............220
6.6-7 Energy cost per kilogram-metre by segments..........................221
6.6-8 Acceleration, deceleration and kinetic energy..........................224
6.6-9 Usefulness of energy sources..................225
6.6-10 Optimal distance..............................226
6.6-11 Comparison of greyhound with man
a) Energy cost of acceleration.......................227
b) Energy cost of sprint running....................228

6.7 Summary...230

CHAPTER 7: GENERAL DISCUSSION

7.1 Why the sprinting greyhound has a large heart...........................234
7.2 Matching of function and limitations (symmorphism)........................234
7.3 Comparison with man..................................235
7.4 Energy cost of acceleration................................237
7.5 The greyhound on a highspeed treadmill as a model for supramaximal exercise studies..........................237

BIBLIOGRAPHY..239