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Abstract

Recently the concept of uniform rotundity was generalized for real Banach spaces by using a type of
"area" devised for these spaces. This paper modifies the methods used for uniform rotundity and
applies them to weak rotundity in real and complex spaces. This leads to the definition of
A:-smoothness, A:-very smoothness and fc-strong smoothness. As an application, several sufficient
conditions for reflexivity are obtained.

1980 Mathematics subject classification (Amer. Math. Soc.): 46 B 20.

1. Introduction

Sullivan (1979) has generalized uniform rotundity by using the idea of "area"
given in Silverman (1951) and Geremia and Sullivan (1981). In this paper I will
also use this idea of "area" when generalizing weak rotundity for real and
complex Banach spaces. These same methods are then used to generalize ordinary
rotundity and smoothness. In order to do this the structure of higher duals must
be investigated: this leads to an extension of a theorem of Dixmier (1948; page
1070) concerning the shape of the unit sphere in these duals.

One of the reasons for studying smoothness in Banach spaces is that it can
often give some information about reflexivity. It is well known that if a real or
complex Banach space has a very smooth first dual, or if a real space has a dual
space with a Frechet differentiable norm, then the space must be reflexive. It is
shown here that the generalization of these concepts, k-very smoothness and
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fc-strong smoothness, also give sufficient conditions for reflexivity: A;-very smooth-
ness in the appropriate higher dual (Theorem 4.3) and A:-strong smoothness in the
first dual for all k > 1 (Theorem 5.1).

2. Preliminaries

Let E be a real or complex Banach space and £(") its nth dual, n > 0
(£<°> = E). E(1) and £(2) will usually be denoted by E* and E**, respectively.
The unit sphere of £(n) , the set {x e £<n): ||x|| = 1}, will be denoted by S(£(n)).
The set-valued mapping Dn: S(E(n)) -> S(E(n+1)) which associates each x e
S(E(n)) with the set { / e 5(£( n + 1 ) ) : f(x) = 1} is called the duality mapping.
Dn(S(Ew)) will be denoted by Dn(S), [D0(S) = D(S)].

Let Qn denote the natural embedding of £ ( n ) into E(n+2\ n > 0. QnE
(n) and

Qn(Qn-2E("~2)) will be denoted by E(n) and £~("-2>, respectively. The linear
isometry Q** maps £ ( n + 2 ) into E(n+4) with Q**(£<"+2>) n i ( " + 2 ) = £<">.

All definitions and proofs in this paper are expressed in terms of sequences.
Generally, the modifications needed in order to replace "sequence" by "net" are
minimal.

I would like to thank the referee for his suggestions, especially those which led
to Example 4.2.

3. A:-weak rotundity and ^-smoothness

Let / , g e S(E*). E is weakly rotund at, or with respect to, f in the g direction if
and only if for any pair of sequences {*„}, {yn} of elements of S{E) with
/(*„ + yn) -» 2. we have g(xn - yn) -» 0. [See Cudia (1964) and Yorke (1977).]
Geometrically, this means that if the lengths of the lines in R (or C) joining the
points g(xn) and g(yn) remain bounded away from zero, then the sequence
{(*„ + yn)/2) cannot approach the hyperplane/^l). As in Sullivan (1979) this
can be generalized as follows: Let/, glt g2,- • • ,gk s S(E*). E will be said to be
k-weakly rotund with respect to f in the gv..-,gk directions if and only if for any
k + 1 sequences {xj,}, {x2},...,{x*+1} of elements of S(E) with

f{x\ + xl+ •••+xk
n+

l)^k + l,

we have

A{x\,...,x^l;g1,...,gk) =

'
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as n -* oo. Here | • | is the usual determinant function and "abs" denotes the
absolute value function. In other words, £ is Ar-weakly rotund with respect to / in
the gx, g2,--- ,gk directions if and only if whenever the A>dimensional "area" of
each of the figures in R* (or C*) enclosed by the k + 1 points Pi =

=
(SI(*B + 1)»- • • >8k(xn+1)) *s bounded away from zero, then the sequence
{(xl + xl + • • • + x*+1)/(k + 1)} of elements of the unit ball of £ does not
approach the hyperplane/'^l). Clearly, E is A>weakly rotund with respect to / in
the gx, g2,..-,gk directions if and only if E is Ac-weakly rotund with respect to / in
the hx, h2>. . . ,hk directions, ht e S(E*) and 1 < i «s k, for any set
{h1,h2,...,hk} c sp{gv g2,...,gk}. Thus, in a sense, Ac-weak rotundity with
respect to a particular / e S(E*) describes a geometrical property of E with
respect to the set of fc-dimensional subspaces of E*.

Now let A and B be non-empty subsets of S(E*). E is k-weakly rotund with
respect to A in the B directions if and only if E is Ar-weakly rotund with respect t o /
in the gx, g2,---,gk directions for each / e A and each subset of k elements
{g1( g2,...,gk) c B. When E* is being considered the sets A and 5 will be
subsets of either S(E**) or S(E).

If £ is A:-weakly rotund uniformly with respect to S(E*) uniformly in the
S(E*) directions, then E is k-uniformly rotund (&-UR) [see Yorke (1977; pages
225-226)]. When E is A>weakly rotund with respect t o / e S(E*) uniformly in the
S(E*) directions, E will be said to be Ar-UR with respect tof. This property will be
investigated more fully in Section 5.

A Banach space E, either real or complex, is smooth at x e S(E) if and only if
whenever fx and f2 are in D(x), the set {/1? f2} is linearly dependent. Since
fx(x) = f2(x) = 1, the set {fv f2) is linearly dependent if and only if fr = / 2 ;
thus this definition of smoothness is equivalent to the usual one.

E will be said to be k-smooth at x e S(E) if and only if whenever/1; f2,... ,fk+x

are in D(x), the set {/1( / 2 , . . . ,fk+x} is linearly dependent. £ is k-smooth if £ is
)t-smooth at each x e S(E). If £** is A;-smooth at jc e S(£), then E will be said
to be k-very smooth at x e S(E). E is k-very smooth if £ is k-very smooth at each
x e 5(£).

Let xv x2,... ,xk+1 be arbitrary points of S(E). The Ar-dimensional "area" of
the figure enclosed by these k + 1 points in S(£), denoted by A(xx, x2,... ,xk+1),
is defined as

sup abs
1

A;!

1

A(*i)
:

1

AM

fk(
xi)

I
fl\Xk + l

fk\Xk + l

)

)
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[See Silverman (1951) and Sullivan (1979).] The following lemma appears in
Geremia and Sullivan (1981; page 233).

LEMMA 3.1. Let flt f2,...,fk+1 e D(x), x e S(E). The set {h, f 2 , . . . , f k + l ) is
linearly independent if and only ifA(fY, f2,... ,fk + l) > 0.

P R O O F . Since A(fu f2,. . . ,fk + l) > dist(/A: + 1, s p f / j , f2,. . . ,fk}) •
fv A»- • • ./*)> this m e a n s A(fv fi>- • • »/*+i) > ° if {/i> In- • • >/*+i) i s linearly

independent. If {fx, f2,... ,fk+i) is linearly dependent, thenfk+1 = L ^ a , ^ with
the scalars otj not all zero. However, fj(x) = 1 = fk+i(x), 1 < ; ' < fc, so £*_!<*; =
1. Now standard manipulation of the determinant function gives

THEOREM 3.1. 1. E is k-smooth at x e S(E) if and only if E* is k-weakly rotund
with respect to x in the S(E) directions.

2. E is k-very smooth at x e S(E) if and only if E* is k-weakly rotund with
respect to x in the S(E**) directions.

PROOF. 1. If £ is not /c-smooth at x e S(E), then there zrzfi,f2,-.-,fk+i e
D(x) such that the set {fi,f2,---,fk+i} is linearly independent. Hence, by
Lemma 3.1, A(fx, f2,. . . ,fk+i) > 0. This means there must be a set
{.Vi> y» • • • ,yk } c S(E) such that A(flt f2,... ,fk+x; y x , y 2 , . . . ,yk) > 0. Therefore
since ( / x + f2 + • • • + /jt+iX*) = k + 1, E* cannot be A:-weakly rotund with
respect to jc in the yl% y 2 , . . . ,yk directions.

Conversely, assume that E* is not k-weakly rotund with respect to x in the
S(E) directions. Then there is a set

{yi,y2,...,yk}cS(E)

and sequences {f*}, {/n
2},. . . , { / n * + 1 } of elements of S(E*) such that

Mfn> fn>-- • >fn+1> 9v 9i>"• >Pk) remains bounded away from zero for all n even
though (A1 +fn

2+ •••+ /n
fc+1X*) - k + 1 as n -+ oo. Let g l , g2,...,gk+l be

a(E*, E) cluster points of {ft},{ f n
2 } , . . .,{fn

k+1}, respectively. Since f'(x) -* 1,
each gj e D(x), 1 < i < k + 1; thus A{gx, g2,...,gk+1) > 0, so, by Lemma 3.1,
E is not A>smooth at x.

2. This is proved similarly.

THEOREM 3.2. The following are equivalent:
1. E* is k-smooth atf e S(E*);
2. E is k-weakly rotund with respect to fin the S(E*) directions;
3. E** is k-weakly rotund with respect to f in the S(E*) directions.
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PROOF. By Theorem 3.1.1 it is sufficient to show that (2) implies (3). Assume
that (3) does not hold. Then there is an e > 0, a set { gv g2,---,gk)

 c S(E*), and
k + 1 sequences {F*}, {Fn

2},... ,{Fn
k+l) of elements of S(E**) such that

k + l a s n ^ o o

and A(Fn\ Fn
2,...,Fn

k+1; glt g2,...,gk) > e for all n. For eachy, 1 < y < k + 1,

and each n let Vl be the o(E**, E*) neighbourhood of Fj determined by
/» Sv Si,--->£* m& l /« - Now use the "weak-*" density of S(E) in S(E**) to
construct k + 1 sequences {x],}, { x 2 } , . . . ,{x*+ 1) of elements of S ( £ ) with the
following properties: f(x\ + x2. + • • • + xk+1) -* k + 1 as « - > o o and
A(x],, x2,...,xk+1; gv g2,...,gk) remains bounded away from zero for all n.
Thus (2) fails to hold.

It is clear from the definitions that if E is /c-smooth, then E is {k + l)-smooth.
Thus, by Theorem 3.2, if E is it-weakly rotund, then E is (k + l)-weakly rotund
as well.

4. A>rotundity and reflexiviry

E is rotund, or 1-rotund, if and only if whenever x, y e S(E) and \\x + y\\ = 2,
then the set {x, y} is linearly dependent. As with smoothness, it is easy to show
that this definition is equivalent to the usual one. E will be said to be k-rotund if
and only if whenever xv x2,. •. ,-**+! ^ S(E) and \\x1 + x2 + • • • 4- x*+1|| = k
+ 1, then the set {xlt x2,...,xk+l) is linearly dependent. Certainly, if E is
A:-rotund, then E must be (k + l)-rotund.

THEOREM 4.1.1. If E* is k-smooth, then E is k-rotund.
2. If E* is k-rotund, then E is k-smooth.

This follows directly from the definitions.

EXAMPLE 4.1. Let E be lx with its usual norm and e, denote the vector
(0,... ,0,1,0...) with " 1 " in the j th position and zero elsewhere. For any fixed k,
the set {e,: 1 < j < k + 1} of unit vectors is linearly independent and ||ej + e2

+ • • • + ek+x\\ = k + 1. Thus lx is not jfc-rotund for any k, so, by Theorem 4.1,
l^ is not A>smooth for any k.

Now before proceeding any further, some properties of higher duals must be
investigated. First, choose an F from S(E**)\S(E) and consider the following
sequence [see Perrott (1979)]: Fx = F, F2 = Q%*F, F3 = Q^*F2( =
Q**Qo*F),--,Fk+i = Qtt-2Fk. For each j , l<j<k, FjS 5(£( 2»), while
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FJ+1 e S(Ei2J+2>)\S(E<-2J)). (This wiU be used in the proof of Lemma 4.1.)
Therefore the set {Fv F2,...,Fk+1), which can be considered to be embedded in
£(2k+2) u n ( | e r the natural embeddings, is a linearly independent set of vectors in
S(£(2*+2))foreachA:> 1.

Let {/„} be a sequence in S(E*) such that /"(/„) -» ||F|| = 1 as n -» oo. Using
the properties of the operators <2**_2> k> l,it is easy to show that Fj(fn) -> \\Fj\\
= 1 for eachj, 1 <./ < jfc + 1, and H^ + .F2 + • • • + Ffc+1|| = k + 1. This leads
to the following generalization of a theorem by Dixmier (1948; Theoreme 20)
which appears in Geremia and Sullivan (1981).

THEOREM 4.2. If E is a non-reflexive space, then E(2k+2) and E(2k+3) fail to be
k-rotund for each k > 1.

NOTATION. Let E* denote the natural embedding of E* in E^'^ and E**
denote the natural embedding of E** in E(2k\ k > 1.

THEOREM 4.3. If E* or E** is k-very smooth, then E is reflexive.

The proof of this result rests on the following lemma:

LEMMA 4.1. Let F <= S(E**) and Fr, F2,. . . ,Fk+1 be as above. If
{Fx, F2,...,Fk+l} is a linearly dependent set for some k > 1, then F = x for some
x e S(E).

PROOF. If {Flt F2,...,Fk+1} is a linearly dependent set, then Fk+1 e S(EW)
c S(E(2k+2)). But since Fk+1 = Q*2t-2Fk and Q*2t-2(E

i2k)) n ~E'ak\ Fk+l e
5(£(2fc"2)). Thus since Fk <= S(E(Vc~2)), Fk+l = Fk. Continuing in this way gives
F2 = F, with F e ^(E); that is, F = x for some s e S(E).

PROOF OF THE THEOREM. If E is assumed to be non-reflexive, then it is possible
to choose an/from S(E*)\D(S). Let F e D^f); obviously F <£ S(E). Since E~*
is k-very smooth, and F1 = F, F2 = Q%*F1,...,Fk+1 = Q**~2Fk are all in
D2k+i(f) c S(E(2k+2)), the set {F1? F2, . . . ,Fk) must be linearly dependent. But,
by Lemma 4.1, this means that F = x, therefore/must be in D(S). Since/was
chosen arbitrarily, D(S) = S(E*), hence E is reflexive. The proof for the case
when E** is A:-very smooth is identical.

EXAMPLE 4.2. A dual space E* is said to be weak-* uniformly rotund (W*UR) if
it is weakly rotund uniformly with respect to S(E) in the S(E) directions; that is,
if for any pair of sequences {/„},{ gn } of elements of S(E*) with \\fn + gn\\ -» 2,
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we have (/„ — gnX
x) ~* 0 f°r e a c n x G S(E) as n -* oo. Let / denote the James

space (James; 1951). J is quasi-reflexive of order one; that is, dim(/**//) = 1
[Civin and Yood (1957)]. J* is separable, hence / can be equivalently renormed so
that J** is H^UR [Zizler (1968; page 429)]. Since J is not reflexive, / ( 4 ) cannot be
rotund and /<3) cannot be smooth. The aim now is to show that /<4), so renormed,
is 2-rotund.

Let A?4) = Fi + a,x*x , i = 1,2,3, a, scalars, be any three elements of S(JW)
with \\Xj*> + XP\\ = \\XP + X<4)\\ = \\X™ + A-3

(4>|| = 2. (Here Jw = J** +

sp{x*±}.) Choose a sequence {J^} of elements of S(/<3)) such that (A\(4) +
*24)X-^i) -» ll*i(4) + *2(4)ll = 2, and an arbitrary element/from S(J*). For each
n construct the a(/<4>, /<3)) neighborhoods of X$4) and X^ determined by J^, / ,
and 1/H. The usual "weak-* density" argument now gives sequences {Gn} and
{#„} of elements of S(/**) such that ||Gn + Hn\\ -* 2, (X^ - Gn)(f) -» 0, and
(Xf> - Hn)U) -» 0 as « -» oo. But /** is W*UR, so (Gn - #„)( / ) -» 0; hence
XfXf) = XfXf). However, / was chosen arbitrarily so Xf> = XP for all
/ e S(J*); that is, F1 = F2. The same procedure applied to A^4) and A'j4' gives
F2 = F3. Thus the vectors Xf>, X?\ and Jf3

(4) are coUinear, so / ( 4 ) must be
2-rotund. Now applying Theorem 4.1 (1) gives that / ( 3 ) is 2-smooth.

5. ^-strong smoothness

Let £ be a real or complex space. E will be said to be k-strongly smooth at
x e S(E) if and only if E* is A>UR with respect to x; that is, if {f*},
{/n

2}>--->{/n*
+1} are k + 1 sequences of elements of S(E*) and (/n

x +/n
2 +

• • • + fn
k+1)(x) -> k + 1, then A(f*, /n

2,... ,fn
k+1) -» 0 as n -^ oo. Geometrically

this means that £* is A:-UR with respect to Jc (E is fc-strongly smooth at x) if and
only if whenever the jfc-dimensional "areas" of the figures in the unit ball of E*
enclosed by /„*, /n

2,... ,/n*
+1 remain bounded away from zero, then the sequence

(fn + fn + • • • + ff+1)/k + 1 of centroids of these figures does not approach
the hyperplane Jc"1 (1) as n -* oo. E is k-strongly smooth if E is A>strongly smooth
at JC for each x e S(E). When A; = 1, E will be said to be strongly smooth rather
than 1-strongly smooth.

If £ is a real space, then E is strongly smooth if and only if the norm of E is
Frechet differentiable at each x e S(E) [Yorke (1977; Proposition 5)]. Notice,
however, that /k-strong smoothness is defined for both real and complex spaces as
well as for k > 1.

LEMMA 5.1. E is k-strongly smooth at x e S(E) if and only if E** is k-strongly
smooth at x.
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PROOF. It is sufficient to show that if E* is k-UR with respect to Jc, then E{3) is
&-UR with respect to Jc (see Theorem 3.2). Assume otherwise. Then there is an
e > 0, and k + 1 sequences {J^1}, {S?2},...,{&n

k+l) of elements of S(£(3))
such that even though (•^ , 1+J^2+ • • • + J^/c+1)(x) -> k + 1 as n -> oo,
/ l ^ 1 , &n

2,... ,&n
k+l) > e for all n. This means that for each (fixed) n there are

sequences {F^n}, { # , , } , . . . , {FJJ+1} of elements of S(E**) with the property
that A{^,... ,&n

k+1; F*n,... ,Fk^) remains bounded away from zero for all m.
For eachjf, 1 <y < k + 1, let {FJ} denote the diagonal sequence (Fn"n) and Vj
the a(£(3)

T £(2)) neighbourhood of &„' determined by x, Fn\ Fn
2,...,Fn

k+1 and
l//i . The standard "weak-* density" argument now gives k + 1 sequences {/*},
{ fn }>•••>{/«*+1} o f elements of 5(£*) with// e K> for each n and each;. Thus
(fn+fn

2+ • • • + fk+lXx)-+k + 1 as n-»oo, but A(fn\ fn
2,... ,fk+1) >

A(ti,f?,...,fn
k+\ F*, F2,...,Fn

k+1) > 0 for all n. Therefore E* is not &-UR
with respect to Jc.

THEOREM 5.1. If E* or E** is k-strongly smooth for any k~^\, then E is
reflexive.

PROOF. If E* (E**) is A>strongly smooth for some k, then, by Lemma 5.1, so is
E* (£**). The result now folllows from Theorem 4.3.

Consequently, if £ is a real space, then E* (E**) is fc-strongly smooth for some
k > 1 if and only if E is isomorphic to a space whose dual has a Frechet
differentiable norm.
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