2015 SUMMARY
Highlights of Farming Systems Research

"To promote and develop economic and environmentally sustainable agriculture through research, planning, monitoring and demonstrating best practice."
MINGENEW IRWIN GROUP CONTACT DETAILS 3
WELCOME NOTE 7
CHAIRMAN REPORT 9
THE SEASON THAT WAS 11
SEASONAL SURVEY RESPONSES 13
UNDERSTANDING TRIAL RESULTS 15
CEREALS 20
Wheat Variety Information 21
10MIG15 Wheat Variety Demonstration - Thomas 24
11MIG15 Wheat Variety Demonstration - Wasley 25
12MIG15 Wheat Variety Demonstration - Michael 26
13MIG15 Wheat Variety Demonstration - Morgan 27
14MIG15 Wheat Variety Demonstration - Dempster 28
15MIG15 Wheat Variety Trial - HLTS 30
16MIG15 Wheat National Variety Trial- MTS Prestons 32
Barley Variety information 36
20MIG15 Barley Variety Demonstration - Merkanooka 37
22MIG15 Barley National Variety Trial- MTS Prestons 38
2015GE36 Identifying robust cover crops for ameliorated soils - MTS Prestons 44
PULSES 48
Lupin Variety Information 50
51MIG15 Lupin Variety Demonstration- Broad 51
52MIG15 Lupin Variety Demonstration- Gillam 52
2015GE06 Lupin NVT - MTS Greaves 53
41MIG15 White Lupin vs Albus Lupin Trial - HLTS 54
49MIG15 White Lupin vs Albus Lupin Trial- MTS Greaves 56
55MIG15 Delayed Lupin Harvest Trial- MTS Greaves 57
2015GE03 NVT Field Pea- HLTS 58
Analysis of Field Pea Stubble 59
2015GE21 NVT Chickpea- HLTS 60
2015GE35 PBA Chickpea -HLTS 62
CANOLA 64
Canola Variety Information 66
30MIG15 RR Canola Variety Demonstration - Duane 67
31MIG15 RR- TT Canola Variety Demonstration - Rowe 68
32MIG15 RR Canola Variety Demonstration - Kelly 69
33MIG15 RR Canola Variety Trial - HLTS 70
34MIG15 TT Canola Variety Trial - HLTS 71
37MIG15 DuPont Pioneer Side by Side Canola Strike Trial – Bagley 72
38MIG15 Canola Variety Trial – GNRS 74
NUTRITION 76
03MIG15 Tactical Nitrogen using N-gauges and N-calculator- Summit - MTS Greaves 77
04MIG15 Tactical Nitrogen using N-gauges and N-calculator- Summit- HLTS 81
N15W2 Nitrogen rates for Wheat after different rotations- CSBP - MTS Prestons 83
15GE25 Tactical Wheat Agronomy 85
NPK15W1 Can nutrition be used to mitigate the effect of RLN on crop yield – CSBP 87
Lupin Foliar Nutrition Trial GNRS 89
01MIG15 Irwin River Lime Application and Incorporation Trial 90
05MIG15 Soil Management Strategies for Improving pH on Red Loam- Year 2 91
06MIG15 The effect of lime rates on Lupin Yield - Horwood 96
07GE17 Lupin yields increased, 9 years after soil inversion and lime incorporation implemented - Steve Davies 97

Can Subsoil Constraints be Combed Economically? Liebe Group, GRDC 100
Working Together to Deliver Multiple Benefit Messages to Growers Through a Whole Systems Approach to Soil Management Liebe Group, GRDC 105

WEEDS AND DISEASE 108
60MIG15 Pre-Emergent options in Wheat - MTS Preston 109
70MIG15 Soil Borne Disease Options in Wheat and Barley - MTS Prestons 112
2015GE38 Assessing herbicide damage of crops growing on ameliorated soils- MTS Prestons 114
2015GE24 Management option for Crown Rot control- Crop Rotation and Inter-row sowing- Irwin River Station 117
77MIG15 Control of Yellow Leaf Spot and Powdery Mildrew through soil and foliar fungicides in Calingiri Wheat- Bayer- MTS Greaves 119
36MIG15 RT Canola Herbicide Trial - Elders- MTS Greaves 124
62MIG15 Pre-Emergent options in Canola - MTS Greaves 126
63MIG15 Tolerance of Hyola RT Canola variety to Glyphosate mixtures.- MTS Greaves 127
64MIG15 Pre-Emergent options in Lupins - MTS Greaves 129
65MIG15 Post-Emergent grass control options in Lupins - MTS Greaves 131
Albus Lupin Fungicide Timing Trials 133
14CH38 Integrated Weed Management demonstrations to improve adoption of wild radish control practices at Mingenew 135
Pre-Emergent Knockdown Trial GNRS 138

PASTURE AND LIVESTOCK 140
92MIG15 Annuals in Perennials - Irwin 141

OTHER 142
02MIG15 Long Term fallow management trial – Irwin River Station 144
81MIG15 Soil Moisture Levels under different levels of fallow management - Morawa Ag College 145
101MIG15 Measuring, monitoring and understanding soil water holding properties to increase risk management, grower confidence and grain yield improvement, resulting in increased returns to grain growers. COGGO 149
103MIG15 Improving the Understanding of Nitrogen Use Efficiency and Soil Water Interactions. GRDC 158

APPENDIX 166
Appendix 1 Herbicide, fungicide and insecticide information 169
Appendix 2 Fertiliser information 171
Appendix 3 Grain Prices 2009 to 2015 172
Appendix 4 Segregation and Receival Standards 173
Appendix 5 IRS Fallow Accumulated Gross Margins 174
Useful Conversions 176
WHY DO THE TRIAL?

• Evaluate crown rot inoculum levels following different rotations (wheat or lupin or chemical fallow) and the effect of these inoculum levels on crown rot infection and grain yield of the following wheat crop (2015).

• Evaluate the effect of inter-row sowing on crown rot infection and grain yield.

KEY MESSAGES:

• Rotation with non-host crops such as lupin or chemical fallow can reduce soilborne crown rot inoculum compared to host crops such as wheat (Figure 1).

• Wheat sown on row had significantly greater incidence of crown rot following wheat than lupin (Table 1).

• Significantly lower levels of crown rot inoculum are present between rows than within rows (Figure 1).

• Environment plays a key part in the impact of the disease on yield.

Figure 1. Inoculum levels of crown rot (Fusarium pseudograminearum log (pg DNA/ g soil)) in soil samples collected in March 2015 from on and off the crop rows of 2014 wheat (varieties Mace and Emu Rock), lupin (variety Mandelup) and a chemical fallow (sown without seed). The inoculum level of soil collected in May 2014 from each plot is indicated by the horizontal line. Lines on bars are ± standard errors of the mean.
Table 1. Crown rot incidence and grain yield of wheat (Mace; 2015 crop) sown on and off the previous year’s row of wheat (Mace or Emu Rock), lupin (Mandelup) and a chemical fallow (sown without seed).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat (Mace)</td>
<td>On-row</td>
<td>53 c</td>
<td>2.8 b</td>
<td>0.05</td>
<td><0.001</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>Off-row</td>
<td>52 c</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheat (Emu Rock)</td>
<td>On-row</td>
<td>58 c</td>
<td>2.9 b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Off-row</td>
<td>31 ab</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lupin (Mandelup)</td>
<td>On-row</td>
<td>27 a</td>
<td>2.8 b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Off-row</td>
<td>39 abc</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical fallow</td>
<td>On-row</td>
<td>45 abc</td>
<td>2.3 a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Off-row</td>
<td>46 bc</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Treatments that do not share a common letter are significantly different according to the protected Fisher’s Least Significant Difference Test at P = 0.05.
2. Since only the 2014 treatment was significant and not the interaction, Fisher’s Least Significant Different Test is presented only for this treatment.

COMMENTS:
Both wheat varieties significantly increased the inoculum level of crown rot from the DNA level in 2014 compared to lupin and the chemical fallow (Figure 1). The 2014 pre-sow level is considered a low risk level (0.6 - 2.0 F. pseudograminearum log (pg DNA/ g soil)), but by seasons end both Mace and Emu Rock had increased inoculum levels to high risk (≥2.5 F. pseudograminearum log (pg DNA/ g soil)).

Incidence of crown rot infection in 2015 ranged from 27 to 58% with plots following both wheat varieties having a significant two-fold increase in infection compared to plots following lupin sown on the row (Table 1). The effect of chemical fallow was not significantly different when compared to wheat. The trial did have a small amount of grass weeds present in 2014 and this may have contributed to the increased crown rot infection in the fallow plots. Sowing off the row appeared to be variable in impact on disease incidence and this may have been due to the row spacing being too close for consistent inter-row sowing.

Overall, the severity of infection, how far the disease grew up the stem, was low ranging from 0.3 to 0.8 on a scale of 0 to 3 with 3 as the most severe level of disease. The low severity is reflected in the grain yields which do not show any response to the high levels of inoculum present at the start of 2015 or the relatively high incidence of crown rot infection. Only the fallow treatment had significantly lower yield, which is likely a response to changes in the moisture/nutrition components compared to the cropped areas of the trial.

Environment plays a key part in the infection, expression and impact of crown rot. Limiting soil moisture during flowering and into grain fill can exacerbate the severity of the disease and expression of white heads. These conditions were not experienced at the field trial in 2015.

ACKNOWLEDGEMENTS:
The grower for allowing us to have this 2-year trial in his paddock. Shahajahan Miyan for setting up the trial in 2014. Ciara Beard and Anne Smith for assessing the trial during the growing season. Technical support from Miriam Connor and Kris Gadja. DAFWA Research Support Unit in Geraldton seeded, managed and harvested trials. Funding from GRDC project DAN00175 “National crown rot epidemiology and management program.”