Effect of Diet on the Expression of Swine Dysentery in Experimentally Infected Pigs

by

Peter Max Siba

B.Sc., PostGrad.Dip.Sci. (Distinction)

School of Veterinary Studies
Murdoch University
Western Australia

This thesis is submitted to Murdoch University in fulfilment of the requirements for the degree of Doctor of Philosophy

1996
......Dedicated to my beloved Wife, Yalum; Daughter, Quintilla; and Sons, Valentine, Ruben and Jonathon......

"Your love, understanding and presence has been my strength"
DECLARATION

I hereby declare that the work presented in this thesis has been performed by me, except where otherwise clearly stated in the text, and that it has not been previously submitted for application for a degree at any University.

Signed ...

PETER MAX SIBA
ABSTRACT

Swine dysentery (SD) is a severe mucohaemorrhagic colitis resulting from infection with the anaerobic spirochaetal bacterium, *Serpulina hyodysenteriae*. The disease affects weaner and grower pigs throughout the world, and causes significant financial losses due to mortality, decreased rate of growth, poor feed conversion, and expense of chemotherapy. Previous studies have shown that despite the presence of *S. hyodysenteriae* in pigs on many farms, clinical signs of SD do not always occur. This study was aimed at investigating the effect of diet on the clinical expression of SD. The ultimate aim was to identify diets that could be used to prevent or control the disease.

One hundred and seventy-eight weaner pigs were purchased from specific-pathogen free farms and fed one of 16 diets based on: cooked rice-animal protein, cooked rice-dehulled lupin, wheat-lupin, wheat-animal protein, parboiled rice-dehulled lupin, parboiled rice-animal protein, and processed (hammer-milled or steam-flaked) cereal grains (barley, groats, maize, sorghum and wheat) supplemented with animal protein. Eighty four pigs on these diets were slaughtered after one month to measure the influence of the diets on parameters in the large intestine, including organ sizes, and pH, VFA concentrations and dry matter content of the digesta in the caecum, and proximal and distal colon. The cooked rice-animal protein diet caused low levels of microbial fermentation in the large intestine of pigs as indicated by higher pH values, lower VFAs, smaller intestinal organ sizes, and drier contents in the colon and rectum, compared to pigs on the other diets. A limited amount of fermentative substrates from the cooked rice-animal protein diet entered the large intestine, and this led to a low microbial fermentation activity. Pigs fed diets containing cereal grains, parboiled rice and or dehulled lupins had greater fermentative activity in the large intestine. Parboiled rice unexpectedly was not easily digestible. Of the processed cereal grain diets, steam-flaked grains resulted in significantly higher (P<0.05) intestinal pH values than hammer-milled grains. This suggested that steam-flaking process made the nutrients (most likely starch) more available for digestion in the small intestine than did the hammer-milling process.
Another 94 pigs fed on the various diets were orally challenged with broth cultures of *S. hyodysenteriae* and were monitored for faecal excretion of spirochaetes, and for the development of SD. Diseased pigs were slaughtered immediately, and healthy pigs were slaughtered after 4-6 weeks, and changes in the large intestine were recorded. None of 16 challenged pigs fed cooked rice-animal protein developed SD and it was assumed that the reduced fermentation with this diet inhibited colonisation by *S. hyodysenteriae*, and expression of SD. Disease occurred in varying numbers of pigs fed all the other diets, for example cooked rice-dehulled lupin (83.3%), wheat-dehulled lupin (62.5%) and wheat-animal protein (60%). The diseased pigs developed diarrhoea with blood and mucus, were depressed, lacked appetite and showed gross and microscopic evidence of severe mucohaemorrhagic colitis. When two pigs fed the protective cooked rice-animal protein diet were transferred to the wheat-dehulled lupin diet, one died of acute clostridial enterotoxaemia, whilst the other developed SD. This provided further evidence for the protective effect of the cooked rice-animal protein diet.

Of the processed cereal grain types, steam-flaked maize and steam-flaked sorghum diets containing animal protein protected all pigs against SD, although small numbers of animals were used. All cereal-based diets resulted in greater fermentation than the cooked rice-animal protein diets, but fermentation was relatively reduced with steam-flaked maize.

The protective rice-animal protein diet was fed to pigs on a commercial piggery with SD. It resulted in good growth rate and carcass composition, but unfortunately no disease occurred amongst the control pigs during the experiment, so its efficacy against SD in the field could not be assessed.

In conclusion, all protective diets were based on cooked cereal grains which had low levels of non-starch polysaccharides and resistant starch (cooked rice, steam-flaked maize and steam-flaked sorghum) and animal protein. It appears that reducing the availability of such fermentable substrate in the large intestine prevents colonisation by *S. hyodysenteriae*, and protects
pigs from developing SD. This is a major new paradigm for the control of this important disease.
ACKNOWLEDGEMENT

First of all, I would like to sincerely thank my principal supervisor Associate Professor D. J. Hampson for providing the opportunity for me to do this study. His constant encouragement, support and guidance during the four eventful years of this thesis will be treasured forever. His constructive criticism and guidance in the preparation of the thesis has been most invaluable. I am also very grateful to my associate supervisor Dr D. W. Pethick for his help, support and friendship during the length of this study. His advise in the nutritional aspects of this study and data analysis were invaluable.

My warmest thanks to Dr J. R. Pluske for his constructive assessment of the draft manuscripts of this thesis, help and advise. Additional thanks are due to the following technical staff for their help: Mr Harry Findlay (Necroscopy); Mr David Lines, Miss Camila Maltas and Miss Sophie Oxberry (Microbiology); Mrs Barbara Waldock and Mr Malcolm Boyce (Biochemistry). I would like to thank all my post-graduate colleagues, especially Dr Mohammad Feizabadi, Dr Bong Joo Lee, Dr Darren Trott, Dr Chi Young Chung, Mr Andrew McLaren, and Ms Roslyn Atyeo for their cooperation and friendship. Thanks also to the other members of the School of Veterinary Studies for friendship.

I was a recipient of an AusAid scholarship, for which I am indebted to the Australian Government and its citizens. The project work was supported by grants from the Australian Research Council and the Pig Research and Development Cooperation. Thanks to Dr Michael Alpers of the Papua New Guinea Institute of Medical Research for allowing me to take study leave and supporting me during the study.

Finally, I would like to thank my wife, Yalum, children, Quintilla, Valentine, Ruben and Jonathon, my family and my in-laws for being patient, cooperative and supportive throughout this study.
PUBLICATIONS AND CONFERENCE ABSTRACT TITLES

Journal Articles

Siba, P. M., Pethick, D. W. and Hampson, D. J. (1996). Pigs experimentally infected with *Serpulina hyodysenteriae* can be protected from developing swine dysentery by feeding them a highly digestible diet. Epidemiology and Infection. **116**: 207-216

Refereed Proceedings of National and International Conferences

Pluske, J. R., Siba, P. M., Pethick, D. W., Mullan, B. P. and Hampson, D. J. (1996) Reduced incidence of swine dysentery in pigs fed diets that were selected or processed to have reduced fermentation in the large intestine. Proceedings of the 14th International Pig Veterinary Congress. Bologna, Italy. p282.
TABLE OF CONTENTS

TITLE PAGE ... i
DEDICATION ... ii
DECLARATION ... iii
ABSTRACT ... iv
ACKNOWLEDGEMENT .. vii
PUBLICATIONS AND CONFERENCE ABSTRACT viii
TABLE OF CONTENTS .. ix
LIST OF PLATES .. xx
LIST OF FIGURES .. xxii
LIST OF TABLES .. xxiii

CHAPTER 1. LITERATURE REVIEW ... 1

1.1. GENERAL INTRODUCTION ... 1

1.1.1. Introduction ... 1
1.1.2. Background ... 1
1.1.3. Historical background ... 2

1.2. SERPULINA HYODYSENTERIAE ... 3

1.2.1. Classification .. 3
1.2.2. General morphology ... 4
1.2.3. Colonial morphology and reaction on blood agar 4
1.2.4. Motility of S. hyodysenteriae .. 6
1.2.5. Biochemical and molecular composition of S. hyodysenteriae 6
1.2.5.1. Biochemical properties .. 6
1.2.5.2. Cellular proteins ... 7
1.2.5.3. Cellular lipids ... 8
1.3. CULTIVATION AND ISOLATION OF S. HYODYSENTERIAE ... 8

1.3.1. Solid media .. 8
1.3.2. Liquid media ... 9
1.3.3. Influence of oxygen on growth ... 11
1.3.4. Transportation and maintenance of S. hyodysenteriae .. 12

1.4. CLINICAL SIGNS AND SYMPTOMS OF SWINE DYSENTERY ... 12

1.4.1. SD and the host .. 12
1.4.2. Sign and symptoms .. 13
1.4.3. Clinical stages of the disease ... 13

1.5. PATHOGENESIS OF SWINE DYSENTERY ... 14

1.5.1. Gross lesions ... 14
1.5.2. Microscopic lesions ... 15
1.5.3. Ultrastructural changes .. 16
1.5.4. Pathogenesis .. 17
1.5.4.1. Pathophysiological features ... 17
1.5.4.2. Virulence ... 18
1.5.4.2.1. Haemolysins ... 18
1.5.4.2.2. Lipopolysaccharides ... 20
1.5.5. Relationship between S. hyodysenteriae and the epithelium .. 21
1.5.6. Influence of other anaerobic bacteria on pathogenicity .. 22
1.5.7. Predominant bacteria of the large intestine of normal pigs and pigs with SD 23
1.6. IMMUNOLOGICAL STATUS OF THE HOST 24

1.6.1. Immune response during infection with
S. hyodysenteriae .. 24

1.6.2. Development of immunity .. 25

1.6.3. Other factors influencing resistance to SD 25

1.7. EPIDEMIOLOGY OF SWINE DYSENTERY 26

1.7.1. Prevalence of the disease .. 26

1.7.2. Survival of *S. hyodysenteriae* in the environment 26

1.7.3. Mode of transmission .. 27

1.7.4. Economical implications .. 28

1.8. DIAGNOSTIC TECHNIQUES FOR SWINE DYSENTERY 29

1.8.1. Isolating and identifying *S. hyodysenteriae* 29

1.8.2. Demonstration of circulating antibodies 29

1.9. TREATMENT AND CONTROL OF SWINE DYSENTERY 30

1.9.1. Use of antimicrobial agents .. 30

1.9.2. Antimicrobial resistance of *S. hyodysenteriae* 33

1.9.3. Medicated feed and water .. 33

1.9.4. Elimination and eradication of SD 34

1.10. PREVENTION OF SWINE DYSENTERY 35

1.10.1. Identification of carrier animals 35

1.10.2. Quarantine of new animals .. 36

1.10.3. Sanitation ... 37

1.10.4. Vaccination ... 37

1.10.5. Diet .. 39
1.11. DIETS FOR PIGS

1.11.1. Introduction

1.11.2. Grains used in pig diets

1.11.2.1. Wheat

1.11.2.2. Maize

1.11.2.3. Barley

1.11.2.4. Sorghum

1.11.2.5. Oats

1.11.2.6. Rice

1.11.3. Protein supplements

1.11.3.1. Animal protein

1.11.3.2. Use of whey as an animal feed

1.11.3.3. Vegetable protein

1.11.3.3.1. Lupin

1.11.3.3.2. Other vegetable proteins

1.12. FERMENTATION OF DIETARY FIBRE

1.12.1. Dietary fibre

1.12.2. Resistant starch

1.12.3. Breakdown of dietary fibre

1.12.4. Microflora of the pig's large intestine

1.12.5. Volatile Fatty Acids (VFA's)

1.12.6. Fibre utilisation by pigs

1.13. EFFECT OF DIETARY FIBRE ON SWINE DYSENTERY

1.14. AIMS AND HYPOTHESIS OF THIS STUDY
CHAPTER 2. MATERIALS AND METHODS64

2.1. EXPERIMENT ONE: Effects of cooked rice or ground wheat supplemented with either animal protein or dehulled lupin on the large intestine, and on the development of SD ...65

2.1.1. Introduction ..65
2.1.2. Diets ...65
2.1.3. Animals and housing ...67
2.1.4. Experimental design ...67

2.2. EXPERIMENT TWO: Effects of parboiled rice supplemented with either animal protein or dehulled lupin on the large intestine, and on the development of SD ...71

2.2.1. Introduction ..71
2.2.2. Diets ...71
2.2.3. Animals ...72
2.2.4. Experimental design ...72

2.3. EXPERIMENT THREE: Effect of hammer-milled and steam-flaked cereal grains supplemented with animal protein on fermentation in the large intestine, and on the development ...73

2.3.1. Introduction ..73
2.3.2. Diets ...73
2.3.3. Animals and housing ...74
2.3.4. Experimental design ...75
2.3.5. Measurement of resistant starch76
2.3.6. Measurement of non-starch polysaccharides (NSP) ... 77

2.4. EXPERIMENT FOUR: Examining the protective effect of the cooked rice and animal protein diet on a commercial piggery ... 77

2.4.1. Introduction .. 77
2.4.2. Diets .. 77
2.4.3. Animals ... 78
2.4.4. Experimental design .. 79

2.5. GENERAL CONDITIONS .. 80

2.5.1. Experimental induction of SD ... 80
2.5.1. Preparation of media and culture conditions used for isolating and growing S. hyodysenteriae ... 80
2.5.1.2. Liquid medium for propagating and harvesting spirochaetes .. 80
2.5.1.3. Solid medium for isolating spirochaetes ... 81
2.5.2. Experimental induction of SD ... 81
2.5.2.1. Bacterial strains .. 81
2.5.2.2. Propagation and harvesting of bacteria .. 82
2.5.2.3. Inoculation of pigs ... 83
2.5.3. Recovery of spirochaetes from faeces and intestinal content ... 83
2.5.4. Identification of spirochaetes ... 83
2.5.4.1. Haemolysis .. 83
2.5.4.2. Indole test .. 83
2.5.4.3. Slide agglutination assay .. 84
2.5.5. Technique for maximising opportunity for transmission of infection between pigs 84
2.5.6. Determination of serum antibody titres against S. hyodysenteriae .. 85
2.5.6.1. Collection of blood... 85
2.5.6.2. Production of lipopolysaccharide (LPS) antigen for use in ELISA... 86
2.5.6.3. Preparation of pig sera.. 87
2.5.6.4. Conjugate.. 87
2.5.6.5. Enzyme Linked Immunosorbent Assay (ELISA) 87

2.6. SLAUGHTER PROCEDURE... 88

2.6.1. Sampling of intestinal contents at Murdoch University... 89
2.6.2. Weight of intestinal organs.. 89
2.6.3. Macroscopic and microscopic observation... 89
2.6.4. Measurement of pH values of the large intestinal contents.. 90
2.6.5. Dry matter content of intestinal and faecal contents... 90
2.6.6. Estimation of volatile fatty acid (VFA) content.. 91
2.6.6.1. Preparation of samples for VFA assays... 91
2.6.6.2. Preparation of GLC standards... 91
2.6.6.3. Determination of VFA concentration.. 92

2.7. GROWTH RATES.. 92

2.8. STATISTICAL ANALYSIS OF DATA... 92

CHAPTER 3. RESULTS... 94

3.1. EXPERIMENT ONE: Effect of cooked rice or ground wheat supplemented with either animal protein or dehulled lupin on the large intestine, and on the development of SD............................. 94

3.1.1. Growth rate of the uninfected pigs... 94
3.1.1.2. Weights of the large intestine in the uninfected pigs .. 94
3.1.1.3. Dry matter content in the large intestine of uninfected pigs ... 95
3.1.1.4. pH values of the large intestinal contents of uninfected pigs .. 97
3.1.1.5. Production of VFAs in the hindgut of uninfected pigs in experiment one ... 98

3.1.2. PART B: Pigs infected with S. hyodysenteriae in experiment one ... 100

3.1.2.1. Growth rates .. 100
3.1.2.2. Weights of the large intestine in infected pigs ... 102
3.1.2.3. Dry matter content of the large intestinal content of infected pigs ... 102
3.1.2.4. pH values of the large intestinal contents ... 102
3.1.2.5. Production of VFAs .. 103
3.1.2.6. Incidence of SD in experimentally infected pigs in Part B of experiment one .. 105
3.1.2.7. Isolation and identification of S. hyodysenteriae ... 108
3.2.1.8. Pathological changes in the large intestines of infected pigs ... 110
3.1.2.9. ELISA antibodies against S. hyodysenteriae, serogroup A ... 114
3.1.3. Summary of results from Experiment One .. 115

3.2. EXPERIMENT TWO: Effect of par-boiled rice supplemented with either animal protein or dehulled lupin on the large intestine, and on the development of SD .. 118

3.2.1.1. Growth rate .. 118
3.2.1.2. Weight of the large intestine and its contents in uninfected pigs .. 118
3.2.1.3. Dry matter content of the large intestine of uninfected pigs ... 119
3.2.1.4. pH values of the contents in the large intestine 120
3.2.1.5. Production of VFAs ... 121

3.2.2. PART B: Results for pigs fed parboiled rice and infected with S. hyodysenteriae ... 122

3.2.2.1. Growth rate ... 122
3.2.2.2. Weights of the large intestine of infected pigs 122
3.2.2.3. Dry matter content of the large intestinal contents in infected pigs ... 123
3.2.2.4. pH values of the large intestinal contents 124
3.2.2.5. VFAs in the large intestinal contents of infected pigs ... 125
3.2.2.6. Incidence of SD ... 127
3.2.2.7. Isolation and identification of S. hyodysenteriae 128
3.2.2.8. Pathological changes in the large intestine 128
3.2.2.9. Antibody titres against S. hyodysenteriae 128
3.2.3. Summary of results of Experiment Two 130

3.3. EXPERIMENT THREE: The effect of hammer-milled and steam-flaked cereal grains supplemented with animal protein on fermentation in the large intestine, and on development of SD ... 132

3.3.1. PART A: Results for uninfected pigs ... 132

3.3.1.1. Growth rates ... 132
3.3.1.2. Weights of the large intestines of uninfected pigs 132
3.3.1.3. Dry matter content of the large intestinal contents of uninfected pigs ... 132
3.3.1.4. pH values of the large intestinal contents of uninfected pigs ... 134
3.3.1.5. Production of VFAs ... 134
3.3.1.6. RS and NSP contents of the grain diets............................... 137

3.3.2. PART B: Results for experimentally-infected pigs 138

3.3.2.1. Growth rates.. 138
3.3.2.2. Large intestinal weights of infected pigs.............................. 138
3.3.2.3. Dry matter content... 138
3.3.2.4. pH values of the large intestinal contents of infected pigs... 141
3.3.2.5. VFAs in the large intestinal contents of infected pigs... 141
3.3.2.6. Incidence of SD.. 143
3.3.2.7. Isolation and identification of S. hyodyssenteriae.................. 143
3.3.2.8. Group mean antibody titres against S. hyodyssenteriae................................. 147
3.3.2.8.1. Pigs fed hammer-milled ingredients.................................... 147
3.3.2.8.2. Pigs fed steam-flaked ingredients...................................... 147
3.3.3. Summary of results obtained in Experiment Three................................. 149

3.4. EXPERIMENT FOUR: Use of the protective cooked rice and animal protein diet under field conditions 150

3.4.1. Growth Rates... 150
3.4.2. Weight of the large intestines and the dressed carcass weight of subsets of pigs on the three treatments at slaughter... 150
3.4.3. pH values of the large intestinal contents................................. 151
3.4.4. Production of VFAs.. 152
3.4.5. Monitoring for swine dysentery.. 153
3.4.6. Serological results... 154
3.4.7. Culturing for spirochaetes... 156
3.4.8. Summary of the results of experiment four................................. 156

xix
CHAPTER 4. GENERAL DISCUSSION

4.1. INTRODUCTION

4.2. EXPERIMENT ONE: Effects of cooked rice or ground wheat supplemented with either animal protein or dehulled lupin on the large intestine, and on development of SD

4.2.1. Part A: Uninfected pigs

4.2.2. Part B: Infected pigs

4.2.3. Summary

4.3. EXPERIMENT TWO: Effects of parboiled rice supplemented with either animal protein or dehulled lupin on the large intestine, and on the development of SD

4.3.1. Part A: Uninfected

4.3.2. Part B: Infected pigs

4.3.3. Summary

4.4. EXPERIMENT THREE: Effects hammer-milled and steam-flaked cereal grains supplemented with animal protein on fermentation in the large intestine, and on the development of SD

4.4.1. Part A: Uninfected

4.4.2. Part B: Infected pigs

4.4.3. Summary

4.5. EXPERIMENT FOUR: Experimenting the protective effects of the cooked rice and animal protein diet on a commercial piggery

xx
4.6. CONCLUSION ... 184

REFERENCES ... 187

APPENDIX .. 237
LIST OF PLATES

Plate 1.1. Haemolytic reactions on blood agar (a) strong β-haemolysis characteristic of *S. hyodysenteriae* and (b) weak β-haemolysis characteristic of other *Serpulina* spp..5

Plate 2.1. Pigs housed in a pen divided into two by a removable wire-mesh wall ..69

Plate 3.1. Typical rectal contents from pigs fed (a) cooked rice-animal protein, (b) cooked rice-dehulled lupin, (c) wheat-animal protein and (d) wheat-dehulled lupin.96

Plate 3.2. Mucoid diarrhoea in a pig fed wheat-dehulled lupin which developed SD ..106

Plate 3.3. *S. hyodysenteriae* in a smear from the colon of a pig that developed SD..109

Plate 3.4. Large intestine of an uninfected healthy pig fed the cooked rice-animal protein diet. Note the relatively short length of the colon, and the normal appearance of the mucosa...110

Plate 3.5. Opened large intestine of an infected pig fed the ground wheat-dehulled lupin diet, showing gross lesions of swine dysentery. ..111

Plate 3.6. Microscopic appearance of severe erosion of the epithelium of the colon in a severe case of SD......................................112
LIST OF FIGURES

Figure 3.1. Mean ELISA antibody titres against *S. hyodysenteriae* serogroup A in experimentally-infected pigs fed the different diets in experiment one........... 114

Figure 3.2. Mean antibody titre against *S. hyodysenteriae* serogroup A in experimentally-infected pigs fed either parboiled rice-animal protein or parboiled rice-dehulled lupin ... 130

Figure 3.3. Mean antibody titre against *S. hyodysenteriae* serogroup A in experimentally-infected pigs fed hammer-milled diets... 148

Figure 3.4. Mean antibody titre against *S. hyodysenteriae* serogroup A in experimentally-infected pigs fed steam-flaked diets ... 148

Figure 3.5. Mean antibody titres against *S. hyodysenteriae* serogroup “B” in pigs on a commercial farm................................. 154

Figure 3.6. Mean antibody titres against *S. hyodysenteriae* serogroup “D” in pigs on a commercial farm................................. 156
LIST OF TABLES

Table 1.1. Development of media to isolate and propagate
S. hyodysenteriae ... 10

Table 1.2. Dosage level and duration of administration for
various drugs used for treatment and/or prevention of SD
as approved by the US Food and Drug Administration...... 31

Table 1.3 Average nutritional composition of cereal grain
types .. 43

Table 1.4. Major components of dietary fibre................................. 53

Table 1.5. Classification of starch .. 55

Table 2.1. Composition of rice and wheat diets 66

Table 2.2. Experimental design for experiment one......................... 70

Table 2.3. Composition of cereal grain diets 74

Table 2.4. Design for experiment three .. 75

Table 2.5. Diet treatments for pigs from the weaner to finisher
stage on the commercial piggery .. 78

Table 3.1. Effect of diet on the large intestinal organ size, dry
matter content and live weight of uninfected pigs in
experiment one .. 97

Table 3.2. Group mean pH values of the contents in the large
intestine of uninfected pigs in experiment one 98
Table 3.3. The mean total concentration and molar proportion of VFAs in the contents of the large intestine of the uninfected pigs in experiment one................................. 99

Table 3.4. Effect of diet on mean organ size and dry matter content in infected pigs in experiment one............................ 101

Table 3.5. Group mean pH values of the contents in the large intestine of infected pigs. ... 103

Table 3.6. The mean total concentration and molar proportion of VFAs in the contents of the large intestine of infected pigs in experiment one... 104

Table 3.7. Pooled results from three trials in Part B of experiment one, showing the incidence of disease in pigs fed different diets and challenged with *S. hydysenteriae*... 107

Table 3.8. Mean ELISA antibody titres against *S. hydysenteriae* of serogroup A over a six week period post-infection, in Part B of experiment one............. 113

Table 3.9. Effect of diets based on parboiled rice on the weight of the large intestine, dry matter content and live weight of pigs, and comparison with results of pigs fed on boiled rice in experiment one. 119

Table 3.10. Mean pH values of the intestinal contents of pigs fed parboiled rice, and comparison with those for pigs fed boiled rice in experiment one...................................... 120

Table 3.11. The mean total concentration and molar proportion of VFAs in the large intestinal contents of pigs fed parboiled rice, and comparison with those of pigs
fed on boiled rice in experiment one.. 121

Table 3.12. Effect of diet on mean organ size and dry matter content in infected pigs fed parboiled rice and comparison with the results of pigs fed cooked rice in experiment one. .. 123

Table 3.13. Mean pH values of the contents in the large intestine of infected pigs fed parboiled rice, and comparison with the results of pigs fed cooked rice in experiment 1.. 124

Table 3.14. The mean total concentration and molar proportion of VFAs in the contents of the large intestine of infected pigs fed parboiled rice, and comparison with the results of pigs fed cooked rice in experiment one.. 126

Table 3.15. Results showing the incidence of SD in pigs fed parboiled rice, and challenged with *S. hyodysenteriae* and comparison with the results of infected pigs fed cooked rice in experiment one.............. 127

Table 3.16. Mean antibody titres against *S. hyodysenteriae* serogroup A in pigs fed parboiled rice and either animal protein or lupin. ... 129

Table 3.17. Effect of diet on large intestinal size and dry matter content, and on live weight of pigs fed hammer milled and steam-flaked cereal grains.. 133

Table 3.18. Mean pH values of the contents in the large intestine of pigs fed different grain types, either hammer-milled or steam-flaked.. 135
Table 3.19. The total concentration and molar proportion of VFAs in the contents of the large intestine of pigs fed cereal grains processed in two different ways. 136

Table 3.20. Levels of soluble non-starch polysaccharides (S-NSP), insoluble non-starch polysaccharides (I-NSP), total non-starch polysaccharides (T-NSP) and resistant starch in the cereal grain diets. 137

Table 3.21. Effect of diet on mean organ size, dry matter content and weight gain of pigs fed hammer-milled and steam-flaked cereal grains and infected with S. hyodysenteriae. 139

Table 3.22. Mean pH values of the contents in the large intestine of pigs fed hammer-milled and steam-flaked cereal grains and infected with S. hyodysenteriae. 140

Table 3.23. The total concentration and molar proportion of VFAs in the contents of the large intestine of pigs fed cereal grains processed in different ways and infected with S. hyodysenteriae. 142

Table 3.24. Shedding of S. hyodysenteriae and incidence of SD in pigs on different cereal grain diets, experimentally infected with S. hyodysenteriae. 144

Table 3.25. Mean antibody titres against S. hyodysenteriae of serogroup A in pigs fed hammer-milled grains. 145

Table 3.26. Mean antibody titres against S. hyodysenteriae of serogroup A in pigs fed steam-flaked grains. 146

Table 3.27. Growth rates (grams per day) from weaner to
Table 3.28. Average slaughter weight and carcass composition of slaughter data for subset of pigs on a commercial piggery with SD. ... 151

Table 3.29. Mean pH values and VFA analysis of the large intestine of a subset of pigs... 152

Table 3.30. Mean antibody titres against *S. hyodysenteriae* serogroup B in pigs on a commercial farm................................. 153

Table 3.31. Mean antibody titres against *S. hyodysenteriae* D in pigs on a commercial farm... 155

Table 4.1. Comparision of the fermentation parameters in the large intestine of the four pigs fed parboiled rice and animal protein, and challenged with *S. hyodysenteriae*... 176