
Copyright: © Springer International Publishing AG 2015.
It is posted here for your personal use. No further distribution is permitted.
Motivation

- Climate change is prolonging dry periods in intermittent rivers and wetlands in many regions across the world, increasing the potential for desiccation stress in the fauna. Invertebrates comprise the greatest proportion of biodiversity in these systems, but there are no recent reviews on the response of invertebrates to desiccation in the context of climate change.
- This review elaborates on the idea that the degree of desiccation that fauna experience is likely to be critical for survival as climates dry because this idea has not previously been considered in the literature. Most research talks of wet or dry, but does not deal with degree of drying or moisture content, which are probably associated with assemblage composition (Stubbington & Datry 2013, see empirical data supporting this in Strachan et al., 2014).
- This review uses pre-electronic era literature which often includes detailed observations of species behavioural responses to drying, but which has often been ignored in more recent studies. Also, it brings together this pre-electronic era literature with contemporary ideas of species traits and how they affect ecology.
- Confusion in the terminology used to describe species’ responses to desiccation is currently a barrier to coherent synthesis and understanding. This review provides, for the first time, a diagrammatic key to enable researchers to identify the correct term to use to describe the response to desiccation by a particular species.
ABSTRACT

In many regions, climate change is prolonging dry periods in rivers and wetlands, exposing freshwater invertebrates to increased periods of desiccation. Invertebrates show a range of strategies for surviving desiccation, but the effects of the degree of exposure to desiccation on the expression of particular traits is unknown. This review synthesizes existing information on the desiccation-responses of freshwater invertebrates to examine the flexibility of these survival strategies and the relationship between strategies and the degree of desiccation to which individuals are exposed. It focuses on desiccation at the small spatial scales experienced by individuals and clarifies the terminology of resting stages present during desiccation. We provide a key to terminology used for different forms of dormancy so that appropriate terms may be used. All invertebrate groups showed a range of strategies for surviving desiccation. Sometimes, different traits were expressed among different populations of a species however it is unclear how many species show multiple desiccation-response strategies. Many crustacean taxa showed physiological dormancy responses to desiccation that enabled survival for long periods (years). Insects often rely on emigration from drying waterbodies as flying adults, or on larvae occupying damp refuges on the benthos. Altered water regimes may alter the phenology of desiccation responses, potentially increasing local extinctions, even in species capable of prolonged dormancy because of constraints on life cycles. However, there is limited empirical evidence demonstrating the flexibility of, or limitations to, expression of these survival strategies and their potential fitness costs.

Key words: Climate change, Diapause, Dormancy, Drought, Intermittency, Rivers, Traits, Wetlands
Introduction

It is predicted that by 2090, the proportion of the global land surface in extreme drought will increase tenfold from current levels (Kundzewicz et al. 2008) leading to decreased hydroperiods in affected wetlands. The areas affected by climatic drying include large areas of southern Australia, north-eastern Brazil, Mexico, the Mediterranean and southern Africa. Many of these areas already contain temporary waterbodies, but climatic drying has the potential to change water regimes from perennial to temporary and for existing temporary waters, hydroperiods are likely to further decrease. Temporary waters are diverse in form and geography; they include small depressions, large lakes, riparian wetlands and ephemeral streams that dry to pools and are found in tropical, arid, semi-arid, temperate and mediterranean climate regions (Williams 1996; Schwartz and Jenkins 2000). Many wetland processes are interrelated and will have cumulative or synergistic effects, for example changes in air temperature will affect the biota directly, as well as indirectly via changes in evaporation rates and rainfall patterns, and will influence wetland hydrology, stratigraphy and hydrochemistry (Semeniuk and Semeniuk 2012). Altered sediment dynamics can have a large effect on the survival of buried eggs (the egg bank, Hairston 1996). Furthermore, decreased hydroperiods combined with changes in phenology (arising from increased temperatures) will shift the geographical distribution of many species (Grimm et al. 1997). For example, an increase in the mean temperature of 3°C is predicted to result in a loss of 10-25% of the mean species richness in upland streams in the United Kingdom (Durance and Ormerod 2007). In south-western Australia, Sim et al. (2013) have documented change in wetland hydroperiods from perennial to seasonal and from seasonal to ephemeral (or terrestrial) arising from the previous 50 years of drying climate in that region. Although many of the plants and animals living in temporary waters possess traits that enable them to survive dry periods, little is known of the flexibility of these traits and whether they will enable populations to withstand prolonged or more frequent dry periods (Robson et al. 2011). Conceptually, this scenario is one of an increasingly harsh habitat templet (sensu Southwood 1977) interacting with species life histories to determine site occupancy by species (Robson et al. 2011). As drying alters the templet, there is an increased risk of species not possessing the traits required for survival in the new water regime. For some taxa, probably those that are good dispersers, existing survival strategies will enable them to withstand prolonged drying (e.g. Sim et al. 2013). For other species, their survival may depend on whether the traits within each population are sufficiently flexible to allow their persistence under the new water regimes. Existing research shows that many species possess multiple strategies for surviving drying and these may be used by different life history stages (Robson et al. 2011). Thus, the interaction between species survival strategies and aquatic habitat as waterbodies dry out for
longer (or fail to fill at all) is likely to be a major driver of reductions in species geographic range. Thus, a
review of the existing terminology and knowledge of the strategies available to taxa inhabiting intermittent
waterbodies is timely to provide a foundation for hypotheses of change in response to climatic drying.

During summer drying, aquatic animals are exposed to high levels of ultraviolet light, high temperature, large
fluctuations in salinity, pH and oxygen, and the rapid disappearance of water (Alekseev et al. 2007). The timing
and intensity of this combination of conditions determine the species that survive to reproduce or recolonize
during the wet phase. The composition of the fauna emerging from dry basins may change dramatically
depending on the time of year that inundation occurs (Dietz-Brantley et al. 2002; Beche and Resh 2007; Kneitel
2014) and the volume of precipitation that determines habitat area (Beche and Resh 2007; Vanschoenwinkel et
al. 2009). This dependence on timing is important because changing climates may show increasingly
unpredictable timing and frequency of rainfall events and thereby no longer meet the needs of some species.

Some changes may benefit species dependent on hatching propagules. For example, species that are able to
survive harsh periods in dormancy may profit from habitat instability, as the temporarily unsuitable habitat can
exclude all competitors (Altermatt et al. 2009). However, other species will suffer disadvantage due to hatching
at inopportune times when they cannot complete their life cycle. With respect to climate change impacts, much
emphasis has been placed on species’ changes in phenology driven by changes in temperature, but for aquatic
animals, changes in the timing of hydroregime may be of equal significance. Furthermore, in the scenario of
warmer, drier conditions, water temperatures will be warmer and waterbodies shallower, so the effects of
decreased hydroperiod and increased temperatures are likely to be synergistic (Davies 2010). Increased
temperatures influence the duration of egg incubation periods, hatching success, duration of hatching and the
induction and termination of resting stages (Oliver 1971; Alekseev et al. 2007), minimum size at pupation, sex
of insects, and increased rate of metabolic function (Terblanche et al. 2005). However, increased temperatures
may also exceed physiological tolerances and lead to local extinction (Portner and Knust 2007, Davies 2010).
Water quality will also be altered by increased temperatures, influencing oxygen and carbon dioxide levels,
salinity and eutrophication in aquatic ecosystems (Portner and Farrell 2008, Davies 2010). Although these
multiple stressors caused by climate change will all affect aquatic assemblages, loss of water is among the most
deleterious despite many species possessing traits enabling them to survive dry periods (Robson et al. 2011).
Observations of invertebrates surviving harsh conditions have been made for centuries. Leeuwenhoek (1702 cited in Hand et al. 2007) studied animals that survived loss of all cellular water for prolonged periods. Baker, (1764 cited in Hall 1992) revived nematodes after they had been dried for 27 years. Observations of anostracans and notostracans emerging from desiccation resistant eggs date back to the early 18th century (Fryer 1996). Straus (1819-1820) recognized that ephippia on *Daphnia* were used to withstand the northern winter, and this was the first genuine report of diapause (Fryer 1996). Dormancy in invertebrates is not a single trait but rather a large group of individual strategies and physiological states (Caceres 1997); and it is only one of the options that species may use to cope with desiccation. The effect of desiccation is different for each life-cycle stage of a species, especially under different environmental conditions (Danks 2000). This variation may provide opportunities for species to adjust to changed water regimes. For example, copepods that can enter a resting stage as an egg, juvenile or adult, can survive desiccation at any life stage. In contrast, some aquatic taxa sensitive to desiccation die within a few hours of the sediment drying if they cannot find an aquatic refuge (Datry et al. 2012). Even though these processes and mechanisms have been studied for a long time, knowledge-gaps exist, especially the variation in strategies among related species and the flexibility of these strategies under different environmental conditions. Until relatively recently, dry sediments in temporary aquatic habitats were often considered to be biologically inactive (Stanley et al. 1997; Steward et al. 2012).

It is important to correctly identify each desiccation response to make predictions about the effects of increased frequency, duration or intensity of drying upon populations. Similarly, understanding the effects of levels of exposure to desiccation upon the expression of traits increases the ability to predict the consequences of changing climatic regimes for freshwater invertebrates. Therefore, this review aims to synthesize existing information on the desiccation responses of freshwater invertebrates, to examine the flexibility of these strategies and the relationship between survival strategies and the degree of desiccation to which individuals are exposed. That is, responses to desiccation at the small spatial scales experienced by individual invertebrate animals. To do this, we have clarified the definitions of the types of resting stages that occur during desiccation and made an effort to include the older (pre-electronic) literature which often included detailed observations of invertebrate behaviour.

What is desiccation?

Desiccation from drought is a major factor in mortalities of insects in temporary pools (Renshaw et al. 1993; Jeffries 1994), but not all drying leads to complete desiccation. Desiccation arises from different mechanisms...
leading to the loss of water. In high latitudes, desiccation occurs in systems that freeze in the winter and there is no free water for invertebrates; in lower latitudes, desiccation is associated with long periods of drought. In arid and semi-arid areas where invertebrates are exposed to desiccation for most of the year they have adapted to cope with a very short period of inundation, and in Mediterranean climate ecosystems, drying is usually an annual occurrence (Hershkovitz and Gasith 2013). Desiccation tolerance is defined as the ability to dry to equilibrium with air (<0.1 g H₂Og⁻¹) that is moderate to extremely dry and then to regain normal function after rehydration (Alpert 2005; Rebecchi et al. 2007). The highest post-desiccation survival rates occur after slow drying that gives individuals sufficient time to adjust their metabolism (Ricci and Pagani 1997).

While many terms describe individual responses to drying, drying itself is often vaguely defined. A ‘dry’ riverbed or wetland that has no free surface water can have a gradient of sediment moisture levels ranging from totally dry through to saturated, and this gradient will affect the response of individual invertebrates exposed to it. Where groundwater lies below (sometimes metres below) the exposed surface of wetland or riverbeds, but the interstitial spaces are filled with water through wicking, an intermediate degree of drying is created, that we term ‘damp’. At the wetter end of the gradient, ‘saturated’ conditions occur when the water table is level with the sediment surface. Neither damp nor saturated sediment conditions are necessarily desiccating for invertebrates (although they may also present other environmental challenges, such as low dissolved oxygen), and they may contain subsurface microhabitats accessible to invertebrates (Strachan et al. 2014).

There is also an important distinction to be made between an organism being desiccated and an environment being desiccated. The absence of surface water does not mean that habitat is desiccated, and especially does not mean that the invertebrates in it are also desiccated (Strachan et al. 2014). A much greater amount of information is necessary about habitat conditions at the scale at which individual animals are exposed to them, to interpret information on strategies such as dormancy (Brendonck 1996). From afar (as in satellite images), a wetland may appear dry and potentially desiccated, but it may contain damp or inundated microhabitats occupied by invertebrate that do not possess physiological adaptations to desiccation (Strachan et al. 2014). Microhabitats such as cracks in sediments or crayfish burrows that lead to the groundwater table may allow invertebrates to survive periods without surface water and prevent them from becoming desiccated (e.g. Johnston and Robson 2009).
How do individuals respond to desiccation?

Individual animals survive adverse conditions by using physiological adaptations and/or behavioural responses. Some invertebrate groups have profound physiological adaptations to drying, such the desiccation resistant eggs produced by many micro-crustaceans (Robson et al. 2011). These physiological responses include strategies that have been defined as resistance traits or strategies because they allow individuals to resist the drying of waterbodies (Robertson et al. 1995; Lake 2003) and have been included as forms of refuge from disturbance (Chester and Robson 2011; Robson et al. 2013). Resistance strategies may also include the use of refuge (micro) habitats within the benthos. Other groups, such as adult Coleoptera, have behavioural responses like flying away from drying habitat to more permanent water. Winged stages allow recolonization of habitats that have experienced localized extinction due to drought and serve as an important source of colonizers (Bunn and Hughes 1997). These have been termed resilience traits because they permit recovery of populations following loss of individuals during disturbances (Robertson et al. 1995; Lake 2003; Chester and Robson 2011). These strategies may be stimulated by the degree of desiccation to which individuals are exposed, however, in some cases behaviour such as flying away from drying habitat may also be triggered by other processes including life history stage or other forms of disturbance. Similarly, some other traits such as a rapid growth rate or early age at reproduction, which may lead to a population being able to respond to the drying of a waterbody through rapid reproduction, is a response that may be triggered by processes other than drying. In the case of rapid reproduction, several traits (and potentially various combinations of traits) from across two trait domains (reproduction and development sensu Verberk et al. 2008) are involved in producing the observed response. To describe this complexity clearly, Verberk et al. (2008) described suites of co-evolved species traits that combine to make adaptations permitting species to deal with a range of ecological problems as ‘life-history strategies’.

Consequently, because some responses are specific to drying (e.g. aestivation) and others are not (e.g. rapid growth), and because some are combinations of traits rather than single traits, we describe them as ‘responses’ to desiccation or as ‘drought survival strategies’.

To maintain life processes, rather than suspending them, many aquatic invertebrates survive dry periods in refuges comprising microhabitats with high humidity; including beneath algal mats (Strandine 1941), in cracks in the sediment (Strachan et al. 2014), damp areas beneath woody debris or stones (e.g. Chester and Robson 2011; Stubbington 2012) and inside crayfish burrows (e.g. Johnston and Robson 2009). Shallow groundwater such as the hyporheic zone present beneath some streams may also provide refuge for species able
to access it (Stubbington 2012). The potential for hyporheic refuges from drying is variable and depends on the
presence of saturated interstitial spaces, determined by stream gradient and local geology (Stubbington 2012). If
the bottom of a waterbody is concave then resting stages and surviving life stages may move down slope as the
water recedes and gather in the deeper zones (‘the coffee ground effect’), which are both the last and first place
inundated (Stubbington and Datry 2013). Small scale conditions, especially heterogeneity, on the benthos are
therefore likely to be important for the survival of invertebrates that seek refuge in the water that remains during
the dry period.

The terminology of dormancy responses

Textbook definitions and dictionary meanings of the terminology used to describe resting stages differ markedly
(Table 1). For example abiosis and anabiosis are terms used in the literature to describe a state resembling death
but their definitions are broad and imprecise. Similarly, Bishop (1967a) stated “students of Crustacea have used
the word ‘diapause’ loosely and did not distinguish between diapause and quiescence”. Quiescence is simply the
appearance of inactivity, regardless of physical or metabolic state, where as diapause emphasizes a more
profound difference between the active and inactive forms; it might require a physiological change to a specific
life stage (Fig. 1). A ‘Web of Knowledge’ search showed some broadly defined words being commonly used
while more specific words were used rarely (Table 1).

It is important that researchers use the correct terminology to describe species responses to drying, because these
terms may describe physiological mechanisms and thereby indicate how much is known about the particular
physiological process used (Fig. 1). We have constructed a key to assist researchers to identify the correct term
for a species under study, reflecting what is known of its response to drying (Fig. 1). Use of precise terminology
also enables more accurate prediction of the outcome of environmental change for species. Usually the
appropriate term can be determined by the degree of knowledge of the physiological processes involved in
producing the observed state, such as by following the key to terms shown in Figure 1. Often, authors do not
know which process or mechanism is occurring and wrongly use a precise term such as ‘diapause’ where they
should be using the term ‘dormancy’ instead.
Desiccation resistance among freshwater invertebrates

Most taxonomic groups have several strategies for surviving drought (Table 2), so although individual species might only use one method, ancestral genotypes contained the potential for multiple survival strategies. Some taxa have extraordinary abilities to resist desiccation in situ.

Anhydrobiosis

Although many taxa have desiccation resistant eggs, some also have desiccation resistant larvae and adults capable of entering anhydrobiosis (dehydrated state). Nematodes, for example, may produce a resistant third stage juvenile known as “daver larvae” which have a modified cuticle to withstand drying (Wharfton 1986 cited in Caceres 1997) and may survive extended dry periods (longer than 200 days) in a state of anhydrobiosis (Guidetti and Jonsson 2002; Larned et al. 2007). Rotifers also use anhydrobiosis, and some (Mnibbila sp.) can survive nine years in a desiccated state (Guidetti and Jonsson 2002). Some leeches are also capable of anhydrobiosis (Kenk 1949, Table 2); for example, a leech survived drying at 13°C for 17 days (Hall 1992). However, the physiological mechanism and fitness cost of anhydrobiosis in most species is unknown. For example, it is not known whether animals can enter and emerge from anhydrobiosis repeatedly. Consequently, while anhydrobiosis is a strategy specific to surviving desiccation and appears to be suitable for long periods without surface water, it is not clear whether it is a flexible or costly strategy for individuals.

Diapause

Diapause is present in life cycles of the majority of crustaceans (Table 2), usually only one form of diapause is specific to order (but exceptions are not rare; Alekseev et al. 2007). Diapause may be used to survive drying, but also freezing, or may occur as part of the life cycle in the absence of disturbance. Copepods have diapausing eggs, juveniles (Conover 1988) and adults (Naess and Nilssen 1991), late copepodites (Sarvala 1979) and adults may encyst (Yaron 1964), and the eggs of some species are very resistant to desiccation (Williams 1980). It has even been reported that some copepods were “desiccation” resistant for 200 years or more (Hairston et al. 1995 cited in Bilton et al. 2001). Although copepods are probably very desiccation resistant, the mechanisms that allow prolonged diapause are unknown and therefore the likely effects of drier water regimes on populations cannot be predicted. This is true for other taxa that use diapause to resist drying, such as some stonefly species that have early instars capable of diapause.

Alternative life cycle
For some taxa, the life cycle changes profoundly at the onset of a disturbance such as drying. This type of response to declining water levels comprises reproductive flexibility and the capacity to alter development; it thus combines traits from two domains (i.e. Verberk et al. 2008). Male Cladocera (water fleas, Crustacea) occur in populations only at the onset of unfavourable conditions; usually populations are entirely made up of females reproducing parthenogenetically. Following fertilization, females produce a resting egg (ephippium) by thickening a section of the carapace which forms the ephippium (after her death, Williams 1980). Ephippia have been successfully hatched from dry pond sediments after 200 years (Gooderham and Tsyrlin 2002) and they can withstand both freezing and desiccation (Mellors 1975), suggesting that they would be a robust response to prolonged drying. However, in floodplain sediments, Jenkins and Boulton (2007), found that “cladoceran production fell by more than an order of magnitude as the duration of drying increased from 6 to 20 years”, showing that effects of prolonged drying can be detected in wild populations, and indicating that climate change may affect the viability of ephippia.

Resistant eggs and cysts

There are a wide range of other taxa that produce forms of resistant eggs or cysts, some of which must experience a period of dormancy (either quiescence or diapause) prior to hatching. The physiological processes leading to the formation of eggs and cysts differ markedly and eggs may be formed parthenogenetically or through meiosis and sexual reproduction. Even the details of the parthenogenetic process differ among species. In most cases, little is known of the processes by which eggs or cysts develop in response to drying or the triggers that commence these processes. Many Crustacea, such as anostracans (brine shrimp) and copepods, produce desiccation resistant eggs. Anostracan eggs can survive 15-20 years of desiccation (Clegg 1967; Steiert 1995 cited in Belk 1998), and may persist in the sediment over many hydrological cycles. Hildrew (1985) used an experiment where 28 day wet/dry periods were oscillated nine times over a 504 day period and observed anostracans hatching during every wet phase. This shows that egg banks can supply hatchlings over repeated cycles of wetting and drying without new egg production contributing to the egg bank. Some genera (e.g. Branchinella), require the desiccation of eggs as part of their life history (Williams 1980). Notostraca (tadpole shrimp) are one of the few invertebrate groups found only in temporary waters and their desiccation resistant eggs last for long periods; in at least one species eggs require desiccation for further development (Fox 1949; Williams 1980). Conchostracan (clam shrimp) eggs are also desiccation resistant although the free swimming
stages are killed by drying (Bishop 1967b). Anostracans and notostracans are likely to be taxa that adapt well to prolonged dry periods.

Other taxa have resting stages that may last for shorter periods, but still up to around two years, representing a form of quiescence. Turbellarians (flatworms, Platyhelminthes) have dormant eggs lasting up to two years (Young 1974) and may also form resistant cysts enclosing young, adults or fragments of animals; they also may survive in permanent pools (Castle 1928, Table 2). Oligochaetes (Annelida) also have resistant cysts enclosing young and can also survive as adults or fragments of adults or dormant eggs (Kenk 1949). The rotifer Bdelloidea sp. secretes a cyst with a layer of protective gel (Williams 2006; Alekseev et al. 2007), which is thick shelled and only hatches after a dormant period (Williams 1980).

Insects, including many dipterans and some coleopterans, may produce desiccation resistant eggs. For example, the chironomid midge Polypedilum vanderplanki produces desiccation resistant eggs capable of surviving drying for 17 years (Adams 1985 cited in Rebecchi et al. 2007). Simuliidae (black flies) and Culicidae (mosquitoes) have drought resistant eggs which hatch once the water returns (Hawley 1988 cited in Alto and Juliano 2001; Robson et al. 2011). Aedes aegypti and A. albipictus eggs become resistant to desiccation approximately 24-48 hours after deposition (Christophers 1960 cited in Sota and Mogi 1992). Eurosta solidaginis (Diptera: Tephritida) found in North America, withstand exceptionally dry conditions for 6-8 months; among the driest reported for any insect (Ramlow and Lee 2000). Some species of Plecoptera (stoneflies) have eggs that pass through dormancy periods (Table 2); while other species show delayed hatching (e.g. members of the Perlidae, Perlodidae and Pteronacyidae) (Marten and Zwick 1989). These are forms of quiescence and diapause, respectively.

Aestivation

Some taxa rely on shorter term resistance to drying by constructing special resistant structures in which to aestivate or hibernate (Fig. 1). Some species of Hirudinea are able to survive the summer and autumn period buried in the ground and some surround themselves in a secreted layer of slime in small cavities in the dry mud, forming an aestivation chamber (Herter 1937 cited in Kenk 1949; Davies 1991; Hall 1992). Enchytraeids (oligochaetes) use two survival strategies to survive drying: migration to deeper and moister microhabitats (only for periods of days) or a desiccation tolerant cocoon stage (Maraldo et al. 2009). Burial in deeper, moister sediments is also a strategy used by some bivalve molluscs (Table 2). Hyriidae (freshwater mussels) are able to tolerate prolonged dry spells by burying themselves in the mud and sealing their shell (quiescence). Sphaeriidae
may survive drying for short periods (Davis and Christidis 1999), by closing their shells. Many sphaerids are endemic to ephemeral waters where they survive drying for many months (McMahon 1991).

Aestivation has not been recorded for amphipods and has only been observed in isopods in two studies: Chester and Robson (2011) observed adult Synamphisopus doegi (erroneously named Paraphreatoicus relictus) aestivating in damp sediment beneath stones in dry stream beds; Mackie et al. (2012) found two species of isopod (Heterias sp. and S. doegi) aestivating under boulders in damp places in intermittent streams; both studies were in the Victoria Range, western Victoria, Australia. Aquatic amphipods and isopods therefore probably have a reliance on permanent water sources (e.g. Murphy et al. 2010). Under climate change these refuges may be more difficult to access. If the ability to aestivate is rare among amphipods and isopods, this could place them at significant risk of local extinction during climatic drying.

Similarly, freshwater crayfish may construct aestivation chambers (Chester and Robson 2011), burrow down to the water table (Williams 1980; Fig. 2), or enter the burrows of other crayfish species (Johnston and Robson 2009). Some are able to survive several years of drought in burrows connected to the water table and some species seal the burrow entrance with a mound of excavated earth to further reduce drying (Riek 1969), another form of aestivation. Responses to prolonged drying and water regime change arising from climatic drying will probably vary widely among freshwater crayfish species. Aestivation is rarer among insects than crustaceans but has been recorded for some caddisfly (Leptoceridae, Wickson et al. 2012) and dragonfly larvae (Telephlebiidae, Chester and Robson 2011). The caddisflies seal their cases up with silk and the dragonfly larvae burrow beneath stones on the streambed. For all the taxa that aestivate, the construction of aestivation chambers probably entails fitness costs.

False start events may occur where an intense rainfall event causes the partial filling of a dry waterbody, which then dries out again before aquatic invertebrates can complete their life cycles. Mortality will occur in some species, and other species may encounter a fitness cost such as having to repeatedly construct (and emerge from) aestivation chambers. An experiment with caddisfly larvae showed that drier sediment conditions reduced the success of aestivation (Wickson et al. 2012), so aestivation will have limits to its viability that may be exceeded for some species and some locations as a result of climatic drying.

Resistance by use of moist microhabitat refuges within a waterbody
Where invertebrates survive drying within moist sites within a waterbody they are resisting desiccation in that waterbody. However, there are other survival strategies that involve invertebrates leaving the waterbody to seek out moist or wet habitats elsewhere and these are resilience strategies (discussed below).

Some species exploit damp microrefuges on the benthos (Fig. 2). For example, the adults of some cladoceran and gastropod species can survive and remain active in damp sediment. Other freshwater gastropods, both adults and young, survive drying in patches of moist air and sediment beneath dried algal mats (Strandine 1941; Facon et al. 2004). The production of an epiphragm or operculum to seal the shell aperture and retain moisture prolongs the time that they can remain in these microrefuges. However, juvenile gastropods are more susceptible to drying than adults (Facon et al. 2004), so if a false start occurs and they hatch out, the whole cohort may be killed. These types of microrefuge are likely to become smaller and occur less frequently under drier climates.

Amphipods and isopods have been commonly found in temporary ponds where they take advantage of the pholeteros (burrow water; Lake 1977); but they are also found in waterbodies without crayfish burrows (Harris et al. 2002), so they exploit refuges such as the groundwater table, which they access by burrowing (Fig. 2, Williams and Hynes 1976), or perennial springs associated with temporary waters (Murphy et al. 2010). Shallow groundwater can be a refuge and corridor for dispersal for these crustaceans (Harris et al. 2002), and cracks in the substrate may give access to ground water, as observed for *Paramphisopus palustris* (Strachan et al. 2014). If groundwater tables decline with climatic drying, these refuges are likely to become unavailable in some places, leading to local extinction of species like these that have few alternatives (Table 2).

Desiccation resilience among freshwater invertebrates

Cohort splitting

Cohort splitting occurs when a single generation divides because of differing duration of a dormant stage (Bunn 1988; Robson et al. 2011). This mechanism occurs together with diapause, where individuals remain viable for longer than their usual life cycle and may occur in the absence of disturbances as well as in response to disturbances, including drying (Bunn 1988). Unlike the strategies listed above, it occurs at the population level. For example, Hildrew (1985) found that during inundation in a Kenyan rain pool, only about 3% of the fairy shrimp population hatched and this reproductive population produced offspring equalling 7 times the population, showing the productive potential of egg banks. Female conchostracans also use cohort splitting.
where they deposit very large numbers of eggs at times of favourable conditions so that they can persist for the
next few years even if the conditions become unfavourable (Dobrynina 2011). Cohort splitting probably occurs
in many groups of invertebrates as a means of resisting desiccation but goes unnoticed, being difficult to detect
unless studied directly. It may become more important as climate change progresses and warrants further
research to determine the limits to its flexibility. A few studies of the egg bank and aestivation are beginning to
address these questions (e.g. Jenkins and Boulton 2007; Wickson et al. 2012; Stubbington and Datry 2013).

Dependence on perennial waters

Lastly, some species rely on perennial waters, such as permanent pools that exist amongst temporary wetlands
or streams (e.g. Fig. 7.19 in Boulton et al. 2014; Rayner et al. 2009; Murphy et al. 2010; Chester and Robson
2011). Those insect larvae unable to accelerate their growth or enter a dormant state to avoid desiccation may
rely entirely on perennial waters. They include some species of mayfly (Ephemeroptera), water pennies
(Psephenidae: Coleoptera), as well as some Crustacea such as decapod shrimps, some isopod and amphipod
species and some freshwater crayfish (Boulton et al. 2014).

Rapid Growth

Rapid growth during periods of inundation in temporary waters is a strategy used to complete the aquatic stage
of a life cycle seen in several invertebrate groups, particularly insects (Table 2). This strategy is not confined to
drought but is potentially beneficial for a range of circumstances. Furthermore, under warmer conditions, many
invertebrates are likely to increase their growth rate. For example, mosquitoes take advantage of small
temporary waters to reproduce and rapidly complete their life cycle as an aerial adult. Odonates may respond to
drying by developing faster, reducing their size at metamorphosis (Murdoch 1971). However, final instar size
may be directly related to fecundity in females (Rowe and Ludwig 1991; De Block et al. 2008), so this may
entail a fitness cost.

Ostracods that live in temporary waters may grow rapidly and are short lived, potentially having multiple
generations in one season, permitting cohort splitting (Marmonier et al. 1994) and showing how resistance and
resilience traits can combine to create highly effective strategies for surviving desiccation. Hatching has been
observed in sediment during damp periods but most hatching occurs after refilling (Aguilar-Alberola and
Mesquita-Jones 2011, Strachan et al. 2014) suggesting quiescence. With immature stages already in the dry soil,
ostracods may have a developmental head start when the water returns and an advantage over other species of
invertebrates, given that they are already well developed (Horne 1993). It also appears likely that the amount of
time juvenile ostracods take to become active once re-immersed is proportional to the duration of desiccation
(Horne 1993; Aguilar-Alberola and Mesquita-Jones 2011). Strachan et al. (2014) observed two strategies for
surviving drying among six species of ostracods (Cyprididae) in one intermittent wetland: one group (4 species)
closed their carapace and aestivated and the other group (2 species) relied on the hatching of desiccation
resistant eggs.

Emigration by flying adults

Emigration is a drought-avoidance strategy seen in many insects but also in most species of Acarina (water
mites). They have larvae that attach to migrating insect hosts and leave the water (phoresis), remaining attached
to their host throughout its stay in permanent water and returning to temporary waterbodies with the host when
water returns (Wiggins et al. 1980). Insects generally have a separate aquatic larval stage and an aerial adult
stage with varying degrees of dependence on water, so this form of resilience strategy is common (Table 2).
Therefore, once hatched, insects may have to complete their aquatic life stage before surface water disappears,
although the ability of most species to accelerate their growth, and any associated fitness costs, are unknown
(except for some odonates e.g. De Block et al. 2008).

Aquatic coleopterans (beetles) show a range of traits to resist drying including recolonizing adults (Table 2,
Jackson 1956 cited in Williams 2006). Aquatic Hemiptera (true bugs) do not appear to have life stages tolerant
to drying, instead relying on recolonizing adults (Macan 1939 cited in Williams 2006) but like beetles they are
able to efficiently exploit temporary water bodies. Adult beetles are usually capable of flying away and
effectively avoid drought through rapid colonization of more permanent waters via flight (Wissinger 1995 cited
in Smith and Golladay 2011). Many predatory adult water beetles and bugs are able to survive in harsh aquatic
environments such as drying pools where levels of dissolved oxygen are low (Anderson 1976), because they are
air-breathers, in order to prey or scavenge upon trapped animals.

Although short-lived, Ephemeroptera (mayflies) have mobile adult stages that may fly to permanent water
(Lehmkuhl 1973; Williams 1980) as do the Plecoptera (stoneflies). Wing length is important in flight dispersers;
rare species frequently have relatively shorter wings while common species have long wings and are therefore
better dispersers (Malmqvist 2000). Ephemeroptera are susceptible to drying and while a few species have
desiccation resistant eggs (Williams 1980; Robson et al. 2011), most species survive in permanent water and
repopulate temporary waters via oviposition. Most Plecoptera have a mobile adult stage that migrates by flight
to survive the summer around permanent water (Harper and Hynes 1970; Boulton et al. 2014). Some species are
very selective in their choice of oviposition sites, for example, ovipositing almost exclusively on substrata that
protrude above the water surface (Lancaster et al. 2010), which may provide a humid environment that keeps
eggs moist.

**Life history strategies that combine desiccation resistance and resilience traits may show the greatest
flexibility, despite their complexity**

Odonata (dragonflies and damselflies) and Trichoptera (caddisflies) have some of the most complex
combinations of drought survival strategies, including: diapausing eggs within desiccation resistant gelatinous
egg masses and terrestrial pupae (Trichoptera); desiccation resistant nymphs (odonates) and recolonizing adults.
Most species that inhabit temporary waterbodies show rapid growth (Wiggins 1973; Watson et al. 1991; De
Block and Stoks 2005) and some species of caddisfly have larvae that can burrow and survive deep in substrata
(Wiggins 1973); and probably undergo quiescence. Larvae of the dragonflies *Telephlebia* and *Antipodophlebia*
can be found quiescent in damp leaf litter; Petaluridae larvae are semi-aquatic burrowers while Archipetalidae
and Austropetalidae larvae are semi-terrestrial and can be found under damp logs (Daborn 1971; Gooderham
and Tsyrlin 2002). Some damselfly species in wetlands deposit eggs endophytically (within the stems of
vegetation) (Silsby 2001) where they undergo quiescence until the habitat refloods. When nymphs of the
dragonfly *Anax* sp. reach their last instar, they either metamorphose or enter mesopause (Fig. 1) depending on
the photoperiod; in long photoperiods the dragonfly will metamorphose within a couple of days but if the
photoperiod is shorter it will enter mesopause, where it will stay for at least 105 days (Corbet 1956).

Those trichopterans having cases built from silk, twigs, leaves or stones probably experience some protection
from drying. Some species deposit their eggs in a terrestrial location which is thought to reduce the risk of
autumn rain providing a ‘false start’ (Wissinger et al. 2003). Leptoceridae and Limnephilidae may enter
dormancy as eggs (Wiggins 1973), a form of hibernation; the eggs are also capable of diapause and the aquatic
larvae of aestivation (Colburn 1984; Wickson et al. 2012). Diapause (Colburn 1984) has also been shown in
larvae of the Glossosomatidae (Anderson and Bourne 1974), Sericostomatidae (Elliott 1969) and
Calamoceratidae (Anderson and Cummins 1979). Life histories for Trichoptera can differ considerably from one
location to another within the same species (Elliott 1968) suggesting that the use of these survival traits might
vary among populations. For example, the suspension-feeding caddisfly *Smicrophylax australis*
(Hydropsychidae) showed autumn-winter hatching, followed by rapid growth in spring and adult emergence in
late summer in a warm shallow perennial stream. In contrast, in a nearby cooler and deeper stream, larval
growth rates of *S. australis* were slower: larvae hatched in autumn-winter failed to emerge the following
summer and instead emerged the following year over a shorter period during spring and early summer (Bunn
1988). Both populations showed cohort-splitting (Bunn 1988) but the pattern differed between streams,
presumably because the warmer stream facilitated faster growth but perhaps also provided a cue (warm shallow
conditions) to larvae to accelerate growth to avoid potential stream drying, because these larvae lack a
desiccation resistance mechanism. Other caddisfly strategies can include migration from intermittent habitats
shortly before drying (e.g. some species of the genus *Ironquia* sp. (Limnephiloidea)); *I. plattenis* migrate as a
fifth instar and aestivate for 4 months before pupating (Flint 1958; Whiles et al. 1999). Although some caddis
larvae aestivate by sealing their cases with silk (e.g. Wickson et al. 2012), it is unclear whether they can
repeatedly emerge from and re-enter this state, as would be required with increased occurrence of false start
events during dry periods. However, even if they can repeatedly aestivate, emerge and aestivate again, there is
likely to be an eventual fitness cost for adults.

The capacity for survival strategies to differ between populations in some species permits adaptation to local
conditions, a form of flexibility that will assist species to adapt to climatic drying. For example, the bivalve
Pisidium moitessieranum in southern Finland produces only one cohort per year, eggs are laid in the summer and
shelled larvae emerge the following spring. But in the Upper Rhone (France) the same species produces two
cohorts per year and the first cohort are incubated in the mother’s shell for three months and then released
(Marmonier et al. 1994). Similar examples have been reported for other invertebrate species, but more research
is required into the flexibility of life history traits related to surviving desiccation and whether there is a
possibility of species being able to switch from one strategy (combination of traits) to another and maybe
‘hedging their bets’ with multiple strategies among populations.

Invertebrate life cycles and their interaction with drying climates

There are many advantages for species that can persist *in situ* despite desiccation. Aestivation allows species to
exploit habitats not available to other taxa and potentially to dominate temporary waterbodies through early
emergence (Strachan et al. 2014), as does the ability to hatch and develop in damp sediment (Horne 1993;
Robson et al. 2011; Wickson et al. 2012). However, life cycle lengths for aquatic invertebrates differ under
different temperatures and among species (e.g. Nilsson-Ortman et al. 2013). This is important because where
hydroperiods decrease, species with shorter life cycles may be more likely to survive than species with longer
life spans, depending on which life stage is affected. However, if species able to survive desiccation as an egg experience hydroperiods too short for hatchlings to reach either emergence or reproductive age, the population risks localized extinction unless cohort-splitting prevents all the eggs from hatching. So far, studies suggest that delayed hatching occurs in many, perhaps most, species that rely on desiccation-resistant eggs but further research is needed to determine how hatching cues will respond to drier water regimes.

The biggest difference in traits related to desiccation is between crustaceans and insects. Many crustacean taxa have physiological adaptations to survive desiccation; although most amphipods, isopods and decapod shrimp are exceptions. Crustaceans can also survive for longer periods of time in resting states compared to insects. Insects mainly rely on either emigration as adults to permanent waterbodies or as larvae dwelling in either damp microrefuges or inundated refuge habitat to survive. However, we do not know whether survival in microrefuges occurs because individuals are simply in the right spot at the right time when drying occurs or whether individuals are capable of seeking out and moving into suitable microrefuges (Robson et al. 2013), although there is increasing evidence of deliberate movement into refuges by some species (e.g. Lytle et al. 2008; Johnston and Robson 2009; Strachan et al. 2014). Overall, crustaceans are more likely to emerge in large numbers from refuges on the bed when surface water becomes available, provided that fine sediments are present to harbour them (Stubbington and Datry 2013). Thus, it appears likely that crustaceans will be more resistant to climatic drying than insects, although because of other climatic changes that accompany drying, species with resilience traits may ultimately adapt more successfully (Chester and Robson 2011).

The altered timing of seasonal floods that may accompany climatic drying could limit distributions of more desiccation resistant species by disrupting matches between life stages and resource availability (Sponseller et al. 2010). For example, emergence following dormancy may coincide with an abundance of food, but with altered flood timing there may be more missed opportunities where emergence and the abundant food source no longer coincide. These effects may be transmitted to all trophic levels, with ecological and environmental consequences (Winder and Schindler 2004). Although this review demonstrates knowledge of a range of desiccation resistance and resilience traits, less is known about the phenology of these traits, their flexibility or the potential fitness costs entailed by climate change. This comprises a large knowledge gap in our ability to predict the consequences of climate change on ecosystems.

Some desiccation survival traits are better developed to survive higher temperatures and longer dry periods than others, but all traits have limits. Aerial adults may be the most successful way for insects to survive drying as
they are able to disperse to find permanent water, however, drier landscapes with little vegetation may also limit
adult movement (Collier and Smith 2000). However, we know from genetic studies that many aquatic insects
are surprisingly poor dispersers (Hughes et al. 2013). Insect larvae need to have a hydroperiod duration
sufficient to reach their final larval instar and then, depending upon their dispersal ability, (or the availability of
‘stepping stones’), the length of the adult life stage will determine whether they reach suitable habitat. A few
long term studies of the impact of drought and increasingly intermittent flow regimes now show that some taxa
will be ‘filtered out’ by prolonged drying, reducing biodiversity and leading to lasting change in community
composition (Sponseller et al. 2010; Bogan & Lytle 2011). The most successful strategies for surviving
prolonged drying and higher temperatures are shown by crustaceans with eggs that are viable for long periods
and capable of cohort splitting and by insects with strongly dispersing flying adults and rapidly growing larval
stages. More research is required into invertebrate physiology so we can predict the mechanisms involved in
survival of desiccation and the environmental limits of these mechanisms. Furthermore, studies are now
showing that even congeneric species can show remarkably different trait functions (e.g. Nilsson-Ortman et al.
2013), meaning that more species-level investigations are needed to understand the diversity of responses to
environmental change.

This review has highlighted the need for further research into life history traits and strategies, their flexibility
and the physiological processes used in resisting desiccation. One difficulty for research is that traits for
surviving dry periods are species or life-stage specific, even different populations of the same species may
display different survival strategies. However, initial responses to climate change in ecological communities will
be by individuals, and thus will be reflected in the population dynamics of individual species. Groups of species,
whether functional or taxonomic will not respond as a single unit (Steffen et al. 2009) so species responses must
be investigated to predict the outcomes of climate change.

One of the questions we posed at the beginning of this article was: does the degree of exposure to desiccation
affect the expression of life history strategies for surviving desiccation? Unfortunately, the knowledge we have
about species responses to desiccation does not yet enable us to answer this question. More field and laboratory
studies are needed to investigate the tolerances of species, the flexibility of their life history traits and the effects
of water regime change on individual and population fitness. Specifically, how much moisture is retained in
different habitats as they dry and the effect of this on species responses is a key knowledge gap that limits our
ability to predict the consequences of changes in water regime in both running and standing waters. Those few
studies that have examined different degrees of drying (Stubbington and Datry 2013, Strachan et al. 2014) suggest that moisture content will be a key variable in invertebrate persistence in freshwater ecosystems.

Acknowledgements

Murdoch University funded this research and provided a PhD scholarship to SRS.

References

Barbosa FS, Barbosa I (1959) Observations on the ability of the snail *Australorbis nigricans* to survive out of water in the laboratory. J Parasitol, 45:627-630.

Figure captions

Figure 1. Key to terminology of the types of dormancy shown by freshwater invertebrates. Using literature listed in the Table 1, this key was constructed to assist researchers to identify the correct terminology for dormant states. Begin on the left hand side and proceed according to the level of knowledge about the physiology and traits of a particular species.

Figure 2. Refuges that aquatic animals use to survive dry periods in wetlands. Image: South Lake, Perth.
Table 1. Terminology and definitions for the ‘dormant stages’ shown by invertebrates in response to habitat drying.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description of meaning</th>
<th>Web of science usage*</th>
<th>Our definition</th>
<th>Taxa shown to use strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resting stages</td>
<td>A broad collective term for the different types of dormancy and diapause; should be used when more specific processes is not understood.</td>
<td>1739</td>
<td>A broad collective term for the different types of dormancy and diapause; should be used when more specific processes is not understood.</td>
<td></td>
</tr>
<tr>
<td>Resistant stages</td>
<td>A broad collective term for the different types of dormancy and diapause; should be used when more specific processes is not understood.</td>
<td>2394</td>
<td>A broad collective term for the different types of dormancy and diapause; should be used when more specific processes is not understood.</td>
<td></td>
</tr>
<tr>
<td>Suspension of life</td>
<td>A broad collective term for the different types of dormancy and diapause; should be used when more specific processes is not understood.</td>
<td>536</td>
<td>A broad collective term for the different types of dormancy and diapause; should be used when more specific processes is not understood.</td>
<td></td>
</tr>
<tr>
<td>Dormancy</td>
<td>“Is a suspension of the vital functions in an organism for a certain, sometimes very long, period of time to overcome harsh environmental conditions; with long term cessation of development, growth and breeding. In insects it may occur in embryonic, immature or adult stages”</td>
<td>2956</td>
<td>The slowing of metabolism to overcome a harsh environment</td>
<td></td>
</tr>
<tr>
<td>Hypobiosis</td>
<td>“dormancy” (Allaby, 2009)</td>
<td>16</td>
<td>Another term for dormancy</td>
<td></td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
<td>Example</td>
<td>Organisms</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Diapause</td>
<td>“Is a type of dormancy; it is determined by a predictive mechanism combining environmental signals and an internal biological clock, driven by hormones and induced by both signal and vital factors (e.g. a larval damselfly or ephippial eggs). Development is not resumed, even if the conditions become favourable, until diapause is broken. It is regarded as adaptive and increases the probability of survival during environmentally unfavourable conditions” (Gordh & Headrick, 2001; Brendonck & DeMeester, 2003; Alekseev et al., 2007)</td>
<td>4772</td>
<td>Is the slowing of the metabolism cued by seasonal cues and biological clock, driven by hormones and will not end when favourable conditions return but rather when diapause is broken</td>
<td>Nematoda, Turbellaria, Oligochaeta, Bivalves, Gastropods, Acarina, Cladocera, Copepoda, Conchostracha, Ostracoda, Anostraca, Notostraca, Chironomidae, Diptera, Culicidae, Ephemeroptera, Odonata, Plecoptera, Trichoptera, Rotifers</td>
</tr>
<tr>
<td>Quiescence</td>
<td>“Quiescence is an immediate response to a limiting factor, and metabolism and development is resumed as soon as conditions permit” (Gordh & Headrick, 2001; Brendonck & DeMeester, 2003; Alekseev et al., 2007).</td>
<td>1389</td>
<td>Is a period of slowed metabolism to survive a period of limiting factor and is resumed as soon as conditions become favourable</td>
<td>Bivalves, Gastropods, Acarina, Cladocera, Copepoda, Conchostracha, Ostracoda, Plecoptera, Trichoptera</td>
</tr>
<tr>
<td>Aestivation</td>
<td>“Is a physical state in which an organism is metabolically inactive or physically dormant during summer or during periods of continued high temperatures in temperate areas or during a dry season in tropical areas” (Gordh & Headrick, 2001).</td>
<td>543</td>
<td>Is a time of slowed metabolism usually during summer to survive a hot and dry period</td>
<td>Nematodes, Hirudinea, Amphipoda/Isopoda, Decapoda, Odonata</td>
</tr>
<tr>
<td>Hibernation</td>
<td>“winter dormancy, a period of suspended development in organisms that occurs during seasonally low temperatures” (Gordh & Headrick, 2001).</td>
<td>2515</td>
<td>Is a time of slowed metabolism usually during winter to survive a cold period</td>
<td>Acarina, Cladocera, Ostracoda, Trichoptera</td>
</tr>
<tr>
<td>Athermopause</td>
<td>“Is a physiological condition or expression of dormancy that is influenced by one or more non-thermal factors” (Gordh & Headrick, 2001).</td>
<td>0</td>
<td>Is a period of slowed metabolism influenced by a non-thermal factor (e.g. food shortage)</td>
<td></td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
<td>Articles</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>----------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Abiosis</td>
<td>“Is suspension of life, a mode of living, vitality” (Gordh & Headrick, 2001).</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anabiosis</td>
<td>“A condition of apparent death or suspended animation where productive metabolic process in which biochemical reactions within the animal body produces proteins, fats and carbohydrates from food material” (Lawrence et al. 1998; Gordh & Headrick, 2001)</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superpause</td>
<td>“Is diapause for more than 1 year” (Gordh & Headrick, 2001)</td>
<td>0</td>
<td>Diapause for a period of more than a year</td>
<td></td>
</tr>
<tr>
<td>Mesopause</td>
<td>“Is diapause for between 3-12 months” (Gordh & Headrick, 2001)</td>
<td>12</td>
<td>Diapause for a period of 3-12 months</td>
<td></td>
</tr>
<tr>
<td>Oligopause</td>
<td>“Is diapause for less than 3 months”(Gordh & Headrick, 2001)</td>
<td>13</td>
<td>Diapause for a period of less than 3 months</td>
<td></td>
</tr>
<tr>
<td>Cryptobiosis</td>
<td>“Is a hidden life, continuing at a low metabolic level, without obvious signs of activity” (Anderson, 2001) (e.g. Collembola).</td>
<td>118</td>
<td>Is a physiological adaption where the animal is camouflaged and period of low metabolic function</td>
<td></td>
</tr>
<tr>
<td>Anhydrobiosis</td>
<td>“Is the maintenance of life in the absence of water induced by low humidity or by desiccation” (Anderson, 2001; Gordh & Headrick, 2001)</td>
<td>305</td>
<td>Is a physiological adaption of being able to dehydrate and then rehydrate and survive Nematodes, Turbellaria, Hirudinea, Trichoptera, Rotifers</td>
<td></td>
</tr>
<tr>
<td>Cyclomorphosis</td>
<td>“Seasonal changes in body shape found in rotifers and in cladocerans. In cladocerans the changes in shape involve the head, which is rounded from midsummer to spring and then progressively becomes helmet shaped from spring to summer reverting to the rounded shape by midsummer. The process is poorly understood and may be a result of genetic factors interacting with external conditions (e.g. temperature)” (Allaby, 1994; Williams, 2006).</td>
<td>143</td>
<td>Is a physiological adaption of change in body shape over the summer period, only observed in rotifers and cladocerans Rotifers, Cladocera</td>
<td></td>
</tr>
</tbody>
</table>

*Web of science search conducted on 6/11/12; related search included web of science categories: anatomy morphology, biodiversity conservation, biology, cell biology, developmental biology, ecology, entomology, environmental sciences, environmental science ecology, evolution biology, fisheries, limnology, marine freshwater biology, microbiology, physiology, reproductive biology and zoology. Usage: numbers are numbers of articles identified in the search as using a particular term.
Table 2. Drought survival strategies across life stages in freshwater invertebrate taxa and their known duration of dormancy (where applicable). Strategies and life stages in bold are specific responses to desiccation, others are used for other types of disturbance.

<table>
<thead>
<tr>
<th>Group</th>
<th>Survival strategy</th>
<th>Life stage capable</th>
<th>Refuge</th>
<th>Survival time dormant state</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nematoda</td>
<td>X X X X</td>
<td>X X X X X X X X X</td>
<td>X</td>
<td>X 10 years</td>
<td>Boulton et al. (2014); Baker (1764) cited in Hall (1992); Caceres (1997); Gooderham & Tsyrlyn (2002); Guidetti & Jonsson (2002); Larned et al. (2007); Poinar (1991); Wharfton (1986) cited in Caceres, (1997)</td>
</tr>
<tr>
<td>Turbellaria</td>
<td>X X X X</td>
<td>X X X X X X X X X</td>
<td>X</td>
<td>X 17 days</td>
<td>Boulton et al. (2014); Castle (1928); Davis & Christidis (1999); Young (1974)</td>
</tr>
<tr>
<td>Hirudinea</td>
<td>X X X X</td>
<td>X X X X X X X X X</td>
<td>X</td>
<td>X 17 days</td>
<td>Davies (1991); Hall (1992); Herter (1937) cited in Kenk (1949); Kenk (1949)</td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>X X X X X X X X X</td>
<td>Months</td>
<td></td>
<td></td>
<td>Kenk (1949); Maraldo et al. (2009)</td>
</tr>
<tr>
<td>Bivalves</td>
<td>X X X X</td>
<td>X X X X X X X X X</td>
<td>X</td>
<td>X Many months</td>
<td>Byrne & McMahon (1994); Davis & Christidis (1999); Way et al. (1980); McMahon (1991)</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>X X X X</td>
<td>X X X X X X X X X</td>
<td>X</td>
<td>X Extremely long time</td>
<td>Barbosa & Barbosa (1959); Davis & Christidis (1999); Eckbald (1973); Falcon et al. (2004); Gooderham & Tsyrlyn (2002); Pilsky (1896) cited in Strandine (1941); Strandine (1941)</td>
</tr>
<tr>
<td>Acrina</td>
<td>X X X X</td>
<td>X X X X X X X X X</td>
<td>X</td>
<td>X</td>
<td>Belozerov (2008); So & Takafuji (1991); Wiggins et al. (1980);</td>
</tr>
<tr>
<td>Rotifers</td>
<td>X X X X</td>
<td>X X X X X X X X X</td>
<td>X</td>
<td>X 9 years</td>
<td>Alekseev et al. (2007); Guidetti & Jonsson (2002); Williams (1988); Williams (2006)</td>
</tr>
<tr>
<td>Cladocera</td>
<td>X X X X</td>
<td>X X X X X X X X X</td>
<td>X</td>
<td>X 200 years</td>
<td>Alekseev et al. (2007); Gooderham & Tsyrlyn (2002); Jenkins & Boulton (2007); Mellors (1975); Williams (1988)</td>
</tr>
<tr>
<td>Copepoda</td>
<td>X X X X</td>
<td>X X X X X X X X X</td>
<td>X</td>
<td>X 200 years</td>
<td>Conover (1988); Hairston et al. (1995) cited in Bilton et al. (2001); Larned et al. (2007); Naess & Nilssen (1991); Sarvala,(1979); Williams (1988); Yaron (1964)</td>
</tr>
<tr>
<td>Group</td>
<td>Survival strategy</td>
<td>Life stage capable</td>
<td>Refuge</td>
<td>Survival time dormant state</td>
<td>References</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>--------------------------------</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Conchostrachia</td>
<td>X X X X</td>
<td>X</td>
<td>X</td>
<td>Long periods</td>
<td>Bishop (1967a); Bishop (1967b); Davis & Christidis (1999); Dobrynina (2011); Gooderham & Tsyrlin (2002); Rzoska (1961); Williams (1985); Williams (1988)</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>X X X X</td>
<td>X X X X</td>
<td>X</td>
<td>Years</td>
<td>Aguilar-Alberola & Mesquita-Jones (2011); Davis & Christidis (1999); Delorme (1991); Gooderham & Tsyrlin (2002); Horne (1993); Larned et al. (2007); Marmonier et al. (1994); Williams (1988)</td>
</tr>
<tr>
<td>Amphipoda/Isopoda</td>
<td>X</td>
<td>X X X X</td>
<td>X</td>
<td>Chester & Robson (2011); Harris et al. (2002); Lake (1977); Mackie & Devine & Horne (2012); Marsden (1991); Swanson (1984); Williams & Hynes (1976); Williams (1988); Wilson (2008)</td>
<td></td>
</tr>
<tr>
<td>Decapoda</td>
<td>X</td>
<td>X X X X</td>
<td>X</td>
<td>3 years</td>
<td>Johnston & Robson (2009); Riek (1969); Williams (1988)</td>
</tr>
<tr>
<td>Notostraca</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Long periods</td>
<td>Fox (1987); Hildrew (1985); Williams (1988)</td>
</tr>
<tr>
<td>Collembola</td>
<td>X</td>
<td>X X X X X</td>
<td>X</td>
<td>4 months</td>
<td>Alvarez et al. (1999); Bahrdorff et al. (2006); Bayley & Holmstrup (1999); Butcher et al. (1971); Davidson (1932); Gooderham & Tsyrlin (2002); Greenslade (1981) cited in Alvarez et al. (1999); Wallace (1968); Williams (1988)</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>X</td>
<td>X X X X</td>
<td>X</td>
<td>Anderson (1976); Jackson (1956) cited in Williams (2006); Lake et al. (1989) cited in Smith & Golladay (2011); Smith & Golladay 2011; Verberk et al. (2008); Wissinger (1995) cited in Smith & Golladay (2011)</td>
<td></td>
</tr>
<tr>
<td>Chironomidae</td>
<td>X</td>
<td>X X X X</td>
<td>X</td>
<td>17 years</td>
<td>Adams (1985) cited in Rebecchi et al. (2007); Bishop (1974); Danks (1971); Jones (1975); Larned et al. (2007); Horstfall (1955) cited in Williams & Hynes (1976)</td>
</tr>
<tr>
<td>Diptera</td>
<td>X</td>
<td>X X X X</td>
<td>X</td>
<td>6-8 months</td>
<td>Ramlov & Lee (2000); Robson et al. (2011)</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>X</td>
<td>X X X X</td>
<td>X</td>
<td>Lehmkuhl (1973); Malmqvist (2000); Robson et al. (2011); Williams (1988)</td>
<td></td>
</tr>
<tr>
<td>Group</td>
<td>Survival strategy</td>
<td>Life stage capable</td>
<td>Refuge</td>
<td>Survival time dormant state</td>
<td>References</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Odonata</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Corbet (1956); Daborn (1971); Gooderham & Tsyrlin (2002); Murdoch (1971); Raebel et al. (2010); Ludwig & Rowe (1990); Silsby (2001); Watson et al. (1991)</td>
</tr>
<tr>
<td>Plecoptera</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Boulton et al. (2014); Harper & Hynes (1970); Lancaster et al. (2010); Marten & Zwick (1989)</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>4 months</td>
</tr>
</tbody>
</table>
Figure 1

- Dormancy
- Resistant stages
- Resting stages
- Suspension of life
- Hypobiosis

Broad

- Quiescence
 - What is the limiting factor?
 - Temperature of surrounding environment?
 - Hot
 - Cold

- Metabolic processes
- Death like state
 - None apparent

Specific

- Abiosis
- Anabiosis

Physiological adaptations:
- Cryptobiosis
- Anhydrobiosis

Ends when suitable conditions return?

- Yes
 - Quiescence
 - Metabolic processes
 - Temperature

- No
 - Diapause
 - Dormancy

Dose this occur in summer?

- Yes
 - Summer Diapause
 - How long does this period last?
 - >12 months
 - Superpause
 - 3-12 months
 - Mesopause
 - <3 months
 - Oligopause

- No
 - Athermopause

- None apparent

- Physiological adaptations:
Figure 2

- Bark and rotting wood
- Hyporheic Zone
- Moist microhabitat in litter
- Pholeteros
- Aestivation in vegetation
- Sediment cracks
- Remaining pools
- Resting stages in sediments
- Aerial Adults