Investigations of the Temkin-Poet Model for Electron-Hydrogen Iso-Electronic Series Scattering

Presented in Application for Admission to the Degree of Doctor of Philosophy at Murdoch University

by

Anthony Edward Shackleton
Declaration

I declare that this thesis is my account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary educational institution.

Tony Shackleton
Crave wisdom of God, the sense to understand,
Else meddle not herewith, nor take it in hand.
For it will cost thee much wordly wealth;
But trust not to other, but do it thyself.
Learn, therefore, first to cleanse, purify and sublime,
To dissolve, congeal, distill and sometime
To conjoin and separate, and how to do all,
That when you think to rise, thou do not fall,
Trust to thyself and not to another;
I can say no more to thee if thou were my brother.

— Simon Forman, 1597
To Mum, Dad, Patricia, Michael, Stephen,

Terry, Robert and Candice
Acknowledgments

Jules Henri Poincaré (1854-1912) once made the remark, “The scientist does not study nature because it is useful to do so. He studies it because he takes pleasure in it, and he takes pleasure in it because it is beautiful”. For me this is only half the story as I know I have gained something that cannot be measured by the yardstick of science. Not only have I learned much in my chosen discipline, I have met some wonderful people along the way who have made my life all the richer for the experience. It is to these people and others whom I owe my sincere gratitude.

First I would like to convey my deepest appreciation to my supervisor Professor Andris Stelbovics for his continued guidance throughout the course of my research. It has been a long and arduous journey and I thank him for his encouragement at every stage. I would also like to acknowledge him for his much valued intellectual contribution to this thesis and for proof reading the many drafts I put before him.

Next it is with the greatest affection that I thank my mother for her unconditional love, wisdom and steadfast moral support over the years. Learning to have faith in oneself is a lesson she taught us at an early age and for that I am eternally grateful.

And finally I would like to extend a heartfelt thanks to fellow physicists Gerard (Eddy) Poinen and Nick Mondinos. Possessing an abundance of compassion and a wonderful sense of humour, I am indebted to them for their generosity and friendship.

Thank you all.
Abstract

An important model in the study of electron-atom collisions was developed by Temkin and Poet. Although the model has been used to test many theories and approximation methods, the novel method of solution used by Poet has not been developed further to any great extent. The Temkin-Poet model of electron scattering simplifies the three-body scattering problem by suppressing all angular dependence of the wavefunction. In this thesis we return to Poet’s method and apply it to a range of calculations for the hydrogen-isoelectronic series. Firstly it is demonstrated that the method provides high-precision solutions for elastic and inelastic scattering. These solutions will then be used to investigate various aspects of electron scattering including the ionisation of hydrogen in the near-threshold region, resonant states in helium, and the scaling of elastic cross sections for a number of hydrogen-like ions.
Table of Contents

Chapter

1 Introduction .. 1
 1.1 Motivation and Aim 1
 1.2 Scattering Theory .. 7
 1.2.1 Basic Principles 7
 1.2.2 Electron-Atom Collisions 8
 1.2.3 Properties of the S-Matrix 12
 1.3 Approximation Methods 14

2 The Temkin-Poet model 19
 2.1 Theory .. 20
 2.2 Separable Solutions 23
 2.2.1 Target States 25
 2.2.2 Projectile States 25
 2.3 Construction of Physical Solutions 26
 2.4 Renormalisation of the S-matrix 29
3 Numerical Method ... 30

3.1 Computational Aspects of the Method 31

3.2 Quadratures .. 32

3.2.1 Energy Grid ... 32

3.2.2 Configuration Space Grid 35

3.2.3 Coulomb Functions 36

3.2.4 Whittaker Functions 38

3.2.5 Hydrogenic Orbitals 40

3.3 Solution of the Integral Equations 43

3.4 Convergence of Solution 44

3.5 Computation of the S-Matrix Kernels $A_{ee'}^S$ 45

3.6 Summary .. 56

4 Electron-Hydrogen Scattering 57

4.1 Basis Parameters ... 57

4.2 Elastic Scattering .. 59

4.3 Inelastic Scattering 67

4.4 Resonances .. 83

4.5 Ionisation ... 85

4.5.1 Introduction ... 85

4.5.2 Principle Quantum Number Dependence of Discrete Inelastic Cross Sections 86
4.5.3 An Interpolated Ionisation Cross Section 88
4.6 Near-Threshold Behaviour .. 92
 4.6.1 Introduction .. 92
 4.6.2 Discrete Inelastic Scattering 94
 4.6.3 An Interpolated Ionisation Cross Section (Revisited) 101
 4.6.4 Threshold Laws .. 108
4.7 Single Differential Cross Section 112

5 Electron-Helium Ion Scattering 121
 5.1 Basis Parameters .. 121
 5.2 Elastic Scattering .. 123
 5.3 Resonances ... 127
 5.3.1 Introduction .. 127
 5.3.2 Multichannel Resonant Scattering 130
 5.4 Quantum Defects ... 142

6 Iso-electronic Series Scattering 147
 6.1 Basis Parameters .. 148
 6.2 Scaling of Resonances ... 149
 6.3 Scaling of Cross Sections 150

7 Conclusions ... 154

Appendix

A Coulomb wave functions .. 157
List of Tables

4.1 Singlet cross sections for e-H scattering at 12.109 eV and 30.0 eV . . 60
4.2 Singlet S-matrix for e-H scattering at 12.109 eV and 30.0 eV 60
4.3 Singlet and triplet phase shifts for e-H elastic scattering 61
4.4 Benchmark elastic cross sections for e-H s-wave scattering 64
4.5 Benchmark 1s-2s cross sections for e-H s-wave scattering 72
4.6 Benchmark 1s-3s cross sections for e-H s-wave scattering 75
4.7 Benchmark total cross sections for e-H s-wave scattering 78
4.8 Energies and widths of resonances for hydrogen 84
4.9 Partial widths of resonances for hydrogen 84
4.10 Benchmark ionisation cross sections for e-H s-wave scattering . . . 90
4.11 Gradients of In σ_n versus In n above threshold for singlet scattering . . 99
4.12 Gradients of In σ_n versus In n below threshold for singlet scattering . . 99
4.13 Gradients of In σ_n versus In n above threshold for triplet scattering . . 100
4.14 Gradients of In σ_n versus In n below threshold for triplet scattering . . 100
4.15 Percentage errors in excitation cross sections near threshold 106
4.16 Singlet S-matrix residuals computed at 13.66 eV 107
4.17 Basis parameters for residuals in Table 4.16 107
4.18 Estimates of γ and σ_0 in $\sigma = \sigma_0 \exp(-\gamma E^{-1/6})$.. 110
4.19 Real part of singlet S-matrix asymmetries computed at 54.42 eV ... 115
4.20 Real part of triplet S-matrix asymmetries computed at 54.42 eV ... 115
4.21 Singlet S-matrix asymmetries computed at 13.621 eV and 16.0 eV ... 118
4.22 Triplet S-matrix asymmetries computed at 13.621 eV and 16.0 eV ... 118
5.1 Energies and widths of the $(2sns)^1S_0$ resonances of s-wave helium. . 135
5.2 DHIF and SCTR $(2sns)^1S_0$ resonances of s-wave helium.................. 135
5.3 Energies and widths of the $(3sns)^1S_0$ resonances of s-wave helium. . 137
5.4 SCTR and DHIF $(3sns)^1S_0$ resonances of s-wave helium.................. 138
5.5 Energies and widths of the $(4sns)^1S_0$ resonances of s-wave helium. . 139
5.6 SCTR and DHIF results $(4sns)^1S_0$ resonances of s-wave helium. . 139
5.7 Energies and widths of the $(2sns)^3S_0$ resonances of s-wave helium. . 140
5.8 SCTR and DHIF results $(2sns)^3S_0$ resonances of s-wave helium. . 141
5.9 Energy and widths of the $(3s4s)^3S_0$ resonance of s-wave helium. . 141
5.10 Quantum defects for the 1s state of s-wave helium 143
5.11 Quantum Defects for $(2sns)^1S_0$ states of s-wave helium. 144
5.12 Quantum Defects for $(3sns)^1S_0$ states of s-wave helium. 145
5.13 Quantum Defects for $(4sns)^1S_0$ states of s-wave helium. 145
5.14 Quantum Defects for $(2sns)^3S_0$ and $(3sns)^3S_0$ states of s-wave helium. 146
6.1 Value of the radial grid parameter r_{max} for hydrogenic targets 148
6.2 Threshold ratios as a function of nuclear charge 150
List of Figures

3.1 Radial wavefunctions for atomic hydrogen 42
3.2 Small-r behaviour of R/r for atomic hydrogen 43
3.3 Real part of kernel in singlet channel for e-H scattering at 100 eV 46
3.4 Imaginary part of kernel in singlet channel for e-H scattering at 100 eV 46
3.5 Real part of kernel in triplet channel for e-H scattering at 100 eV 47
3.6 Imaginary part of kernel in triplet channel for e-H scattering at 100 eV 47
3.7 S^1S in singlet channel for electron-hydrogen scattering at 100 eV 48
3.8 SS^\dagger in singlet channel for electron-hydrogen scattering at 100 eV 48
3.9 S^1S in triplet channel for electron-hydrogen scattering at 100 eV 49
3.10 SS^\dagger in triplet channel for electron-hydrogen scattering at 100 eV 49
3.11 Variational integral weighting function .. 50
3.12 Damped 10s state of atomic hydrogen .. 51
3.13 Damped continuum state of atomic hydrogen 51
4.1 Singlet 1s-1s cross section for electron-hydrogen scattering 62
4.2 Triplet 1s-1s cross section for electron-hydrogen scattering 62

vii
4.3 Singlet 1s-1s cross section for electron-hydrogen scattering 63
4.4 Singlet 1s-2s cross section electron-hydrogen scattering (I) 68
4.5 Singlet 1s-2s cross section electron-hydrogen scattering (II) 68
4.6 Singlet 1s-3s cross section for electron-hydrogen scattering 69
4.7 Singlet 2s-3s cross section for electron-hydrogen scattering 69
4.8 Triplet 1s-2s cross sections for electron-hydrogen scattering 70
4.9 Triplet 1s-3s cross section for electron-hydrogen scattering 71
4.10 Triplet 2s-3s cross section for electron-hydrogen scattering 71
4.11 Total cross section for electron-hydrogen scattering 78
4.12 Ratio of singlet to triplet elastic cross section for e-H scattering . . . 82
4.13 Scaled excitation cross sections for electron-hydrogen scattering . . . 88
4.14 Total ionisation cross section for electron-hydrogen scattering. 89
4.15 n dependence of singlet inelastic cross sections below threshold. . . . 96
4.16 n dependence of singlet inelastic cross sections above threshold. . . . 96
4.17 n dependence of triplet inelastic cross sections below threshold. . . . 98
4.18 n dependence of triplet inelastic cross sections above threshold. . . . 98
4.19 Singlet ionisation cross section versus 1/N^3 102
4.20 Near-threshold singlet ionisation cross section based on Eq. (4.9). . . 102
4.21 Near-threshold singlet ionisation cross section using an N^{-α} law. . . 104
4.22 Singlet and triplet ionisation cross section near threshold 109
4.23 Singlet ionisation cross section (N=10 approximation) near threshold 111
4.24 Singlet ionisation cross section (N=15 approximation) near threshold 111