THE POPULATION GENETIC
STRUCTURE OF PORTUNUS PELAGICUS
IN AUSTRALIAN WATERS

Ertuğ Sezmiş

Bachelor of Science In Biology
Middle East Technical University
Turkey, 1998

This thesis is presented for the degree of
Doctor of Philosophy
at
Murdoch University

2004
DECLARATION

I declare that all sources are acknowledged and that this thesis is my own account of my research and contains as its main content work, which has not previously been submitted for a degree at any tertiary education institution. To the best of my knowledge and belief, the thesis contains no material previously written by another person except where due reference is made in the thesis itself.

Ertuğ Sezmiş
To my dad (babam), mum (annem), sister (bibçirik), aunt (teyzecik) and grandma (annaneciğim).
TABLE OF CONTENTS

ABSTRACT ... I
ACKNOWLEDGEMENTS ... IV

CHAPTER 1. GENERAL INTRODUCTION ... 1
1.1 STUDY SPECIES: PORTUNUS PELAGICUS ... 2
1.2 APPROACH ... 5
1.2.1 MOLECULAR METHODS ... 5
1.2.1.1 Microsatellites .. 5
1.2.1.2 Mitochondrial DNA (mtDNA) ... 6
1.2.2 ANALYTICAL METHODS ... 6
1.3 AIMS & THESIS RATIONALE .. 7
1.4 RELATIONSHIP OF THIS STUDY TO OTHER PORTUNUS PELAGICUS RESEARCH... 9

CHAPTER 2. GENERAL METHODS .. 11
2.1 SAMPLING DESIGN ... 11
2.2 DESCRIPTION OF STUDY SITES .. 16
2.2.1 WESTERN SEABOARD ... 16
2.2.1.1 Geographe Bay ... 16
2.2.1.2 Peel-Harvey Estuary ... 17
2.2.1.3 Cockburn Sound .. 18
2.2.1.4 Port Denison ... 20
2.2.1.5 Shark Bay ... 21
2.2.1.6 Exmouth Gulf ... 22
2.2.1.7 Broome .. 23
2.2.2 NORTH COAST .. 25
2.2.2.1 Darwin .. 25
2.2.3 EASTERN SEABOARD ... 25
2.2.3.1 Mackay .. 25
2.2.3.2 Hervey Bay .. 26
2.2.3.3 Moreton Bay .. 28
2.2.3.4 Wallis Lake ... 29
2.2.3.5 Port Stephens .. 30
2.2.4 SOUTH COAST .. 31
2.2.4.1 Gulf Saint Vincent ... 31
2.2.4.2 Spencer Gulf .. 32
2.2.4.3 West Coast Region .. 33
2.3 SAMPLE COLLECTION ... 34
2.4 MOLECULAR MARKERS ... 35
2.4.1 MICROARRAYS .. 35
2.4.1.1 Characteristics of microarray markers ... 35
2.4.1.2 DNA extractions .. 36
2.4.1.3 PCR amplifications .. 36
2.4.1.4 Resolution and scoring of alleles .. 37
2.4.2 Mitochondrial DNA ...37
2.4.2.1 Strategy for selection of appropriate mtDNA region37
2.4.2.1.1 Cytochrome Oxidase Subunit I (COI)38
2.4.2.1.2 12S rRNA gene ...39
2.4.2.1.3 Cytochrome b gene (Cyt. b) ...41
2.4.2.2 DNA extractions ...43
2.4.2.3 PCR amplifications ...43
2.4.2.4 Sequencing ..44

CHAPTER 3. POPULATION GENETIC STRUCTURE OF PORTUNUS PELAGICUS IN AUSTRALIAN WATERS, AS INFERRED FROM MICROSATellite DNA EVIDENCE ..45
3.1 INTRODUCTION ..45
3.2 MATERIALS AND METHODS ..48
3.2.1 SAMPLING REGIME ..48
3.2.2 GENETIC ASSAYS ...49
3.2.3 DATA ANALYSES ...49
3.2.3.1 Levels of polymorphism ...49
3.2.3.2 Hardy-Weinberg equilibrium ...50
3.2.3.3 Measures of population differentiation50
3.2.3.3.1 Single-locus variation ..50
3.2.3.3.2 Multi-locus variation ..51
3.2.3.3.2.1 FST ...51
3.2.3.3.2.2 Nei’s Genetic Distance ..52
3.2.3.3.3 AMOVA ...52
3.2.3.4 Other considerations ...53
3.3 RESULTS ..53
3.3.1 LEVELS OF POLYMORPHISM ...53
3.3.2 COMPARISON OF ‘REPLICATE’ SAMPLES55
3.3.4 GENETIC VARIATION AMONG ASSEMBLAGES OF PORTUNUS PELAGICUS IN AUSTRALIA ...65
3.3.4.1 Variation among geographic regions65
3.3.4.2 Variation within geographic regions71
3.3.4.2.1 Eastern seaboard ...71
3.3.4.2.2 South coast ...72
3.3.4.2.3 Western seaboard ...75
3.4 DISCUSSION ..78
3.4.1 METHODOLOGICAL CONSIDERATIONS78
3.4.2 DO ASSEMBLAGES OF PORTUNUS PELAGICUS COMPRISE A RANDOMLY MATING GROUP OF INDIVIDUALS? ...79
3.4.3 INTRINSIC DISPERSAL POTENTIAL81
3.4.4 GENETIC VARIATION AMONG ASSEMBLAGES OF PORTUNUS PELAGICUS IN AUSTRALIA ...82
3.4.4.1 Variation among geographic regions82
3.4.4.2 Variation within geographic regions84
3.4.4.2.1 Eastern seaboard ...84
3.4.4.2.2 South coast ...86
3.4.4.2.3 Western seaboard ...91
ABSTRACT

This thesis describes the results of an investigation into the population genetic structure of the blue swimmer crab, *Portunus pelagicus*, in Australian waters. *P. pelagicus* is an Indo-West Pacific species, with adults and juveniles that inhabit sheltered benthic coastal environments and a planktonic phase (of modest duration) in its life cycle.

The investigation was done by examining the patterns of variation at six microsatellite loci and in a 342 bp portion of the cytochrome oxidase subunit I (COI) gene in the mitochondrial DNA in samples of *Portunus pelagicus* from a total of 16 different assemblages/waterbodies. Overall, the samples were collected from throughout the geographical range of this species in Australian waters, *i.e.* from the western seaboard, from the eastern seaboard, from Darwin on the north coast and from South Australia on the south coast. The samples sizes ranged from 4 to 57 individuals, depending on the sample and the genetic assay. The population genetic structure of *P. pelagicus* was analysed from both a traditional population structure perspective and from a phylogeographical and historical demography perspective.

The traditional assessment of the population genetic structure of *Portunus pelagicus* indicates that this species exhibits a significant amount of genetic heterogeneity in Australian waters (*e.g.* F_{ST} for microsatellite data = 0.098; θ_{ST} for COI data = 0.375 and Φ_{ST} for COI data = 0.492). This assessment also indicates that *P. pelagicus* exhibits varying degrees of genetic heterogeneity within and between geographical regions in Australian waters, as follows. (1) The genetic compositions of the samples from the
different coastlines (i.e. north, south, east and west) invariably showed statistically significant differences for at least two microsatellite loci, although the differences between the samples from the eastern seaboard, Darwin and those from the western seaboard to the north of Port Denison were not as great as those within the western seaboard samples or within South Australian samples. (2) The genetic compositions of the samples from the assemblages on the eastern seaboard of Australia, which ranged from Mackay (21°06′S) to Port Stephens (32°40′S), were essentially homogeneous. (3) The samples from the assemblages on the western seaboard of Australia, which ranged from Broome (17°58′S) to Geographe Bay (33°35′S), exhibited significant levels of genetic heterogeneity. Furthermore, those from south of Port Denison formed a highly distinctive (but not invariant) group compared to those from elsewhere. (4) The samples from South Australia were also highly genetically distinctive compared to those from elsewhere, although they also showed significant heterogeneity amongst themselves. The above findings were more or less suggested by both the microsatellite and COI markers, although the former generally provided a higher resolution picture of the population structure of *P. pelagicus* than did the latter.

The main findings of the investigation into the phylogeography and recent demographic history of *Portunus pelagicus* in Australian waters were as follows. (1) A phylogeny constructed from COI sequence variation was shallow, with the lineages showing varied geographical distributions. (2) The results of a nested clade analysis of this variation indicate that range expansion has been a predominant influence on the historical demography of *P. pelagicus* in Australian waters. (3) The samples from the assemblages on the western seaboard to the south of Port Denison contained low levels of genetic diversity, a sub-set of the diversity present in the samples from lower latitude sites on the western seaboard, and microsatellite-based evidence of having coming from
assemblages that have undergone a bottleneck (or founder effect) followed by an expansion in size. (4) The samples from the assemblages in South Australia contained low levels of genetic diversity, phylogenetic affinities with samples from the eastern seaboard, and microsatellite-based evidence of having coming from assemblages that have undergone a bottleneck (or founder effect) followed by an expansion in size.

The two major interpretations to stem from the results of this investigation are as follows. (1) Overall, *Portunus pelagicus* has undergone a recent (in an evolutionary sense) range expansion, from a single source, within Australian waters. At a finer-scale, this species appears to have colonised south-western Australia from a lower latitude site(s) on the western seaboard and probably colonised South Australia from the southern margins of its range on the eastern seaboard. Regardless, there has been limited penetrance of genetic variation into temperate waters on the western seaboard and into South Australia, presumably due one or more of the barriers to gene flow listed below. (2) *P. pelagicus* experiences significant restrictions to gene flow within its present-day geographical range in Australian waters due to (i) geographic distance *per se*; (ii) discontinuities in the distribution of the sheltered coastal environments; (iii) hydrological barriers to dispersal and (iv) possibly low temperatures in the temperature margins of the range.
ACKNOWLEDGEMENTS

First and foremost I would like to express my deep appreciation to my two supervisors, Dr. Jennifer Chaplin and Professor Ian Potter, for their enormous support with my research project and professional career. My principle supervisor, Jenny, provided me with great supervision, encouragement, friendship, as well as financial, logistical, practical, and emotional support over the past five years. My associate supervisor, Ian, deserves special acknowledgements for providing me with enormous amount of financial support over the past one year. Ian was always very supportive throughout the project. I have been very privileged to work with both of them and I will always value our friendship forever.

Further thanks go to head of the school of biological sciences, Professor Max Cake, for being very generous and supportive towards my thesis completion. Professor Eric H. Harley kindly supplied me with his software, AGARst, which was greatly appreciated.

This project would never have been possible without the help of many fellow researchers and institutions for collecting crabs throughout Australia. I gratefully acknowledge the support of (i) Simon de Lestang, Centre for Fish and Fisheries Research, (ii) Wayne Sumpton, Southern Fisheries Centre, Queensland, (iii) Sue Murray-Jones, SARDI, and (iv) Mark Johnston, Fisheries WA, who provided most of the samples of Portunus pelagicus.
In the lab, many thanks go to Emilia Santos-Yap for introducing me to the world of molecular genetic techniques such as extracting DNA, running gels, preparing PCR reaction mixtures etc. I further acknowledge Emilia for providing me with her primer sequences for the amplification of microsatellite loci used in this project. Finally, I am indebted to her for providing me with her microsatellite data from the western seaboard samples of *Portunus pelagicus*.

I must express my immense gratitude to Murdoch University for supplying me with an International Postgraduate Research Scholarship (IPRS) and a Murdoch Studentship, which provided the financial assistance that made this study possible.

I am also grateful to various other members of the academic and administrative staff in the School of Biological Sciences and the State Agricultural and Biotechnology Centre (SABC) at Murdoch University, most notably Ms. Frances Brigg, for ably commanding the SABC’s ABI sequencer.

I am also indebted to various members of the Division of Research and Development at Murdoch University, most notably Karen Olkowski, for her untiring support and help with regards to the administrative aspects of my enrolment at Murdoch University. Thank you so much Karen for everything.

My best friends, Nick Evangelinos and Kemanthie Nandasena, deserve enormous amount of gratitude for their support, encouragement and for making my living in Australia an unforgettable one. Special thanks go to Nurşen Güreşin and Mehmet Çakır for all the support and advice given during my stay in Australia. I deeply appreciate my darling friends: Karen Paton, Yvonne Cheng, Sorcha Gillen, Alek Nikoloski, Jamie
Coote, Jolanta Damas, Navid Moheimani, Jeff Cosgrove, Mark Allen, Kim Smith, Alex Hesp, Derrick Hor, Beau Fenner, Jason Terpolilli, Juliana Hamzah, Tobias Schoep, Michael Cuomo, Anaisabel Vivas-Marfisi, Louis Elias, Mathew Roberts and Jane Joyce for always being there for me and listening to endless accounts of my problems and news. My sincere thanks also go to all past and present colleagues of the Centre for Fish and Fisheries Research and Centre for Rhizobium Studies. Thank you for all the good moments, coffees, and jokes during the last five years. All of you were more than helpful to me and made my time in Australia most enjoyable.

I would also like to thank my high school teacher, Leyla Çizakça Özalan. If it wasn’t for your endless support and encouragement throughout the years, I wouldn’t be here. Thank you so much Leyla abla.

Finally, I could not forget to mention the emotional and financial support I received from my parents, sister, aunt and grandmother while away from home pursuing a Ph.D. In spite of the distance, they were always with me, understanding all the limitations associated with my graduate career. Thank you all so much for every support, you provided. I love you all so much and this thesis is dedicated to you all.