Studies on the diagnosis, epidemiology and control of
highly pathogenic H5N1 avian influenza

Tze Hoong CHUA, BVSc (Hons)

This thesis is presented for the degree of Doctor of Philosophy of
Murdoch University, 2009
DECLARATION

I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution.

..

Tze Hoong CHUA
Abstract

In late 2003 and early 2004, outbreaks of highly pathogenic avian influenza (HPAI) H5N1 occurred in domestic poultry across East Asia and Southeast Asia. Since May 2005, infection spread to wild birds and domestic poultry in Central and South Asia, Europe, Middle East and Africa. The rapid geographical spread of H5N1, the direct transmission of an avian virus to humans, the death and destruction of hundreds of millions of poultry with disease endemnicity in many areas, the perpetuation of virus in apparently healthy ducks and paradoxically, its unusual virulence for waterfowl and mammals, and the constant viral evolution, highlighted the challenges the global community faced. This thesis addresses issues related to the diagnosis, epidemiology and control of H5N1 through research evaluating tools for rapid virus detection, field epidemiology studies and improved methods of vaccination in ducks as a disease control option. In particular, Chapter Two evaluates rapid antigen tests for H5N1 HPAI diagnosis in the field; Chapter Three identifies H5N1 infection in healthy village poultry in Bali and the possible role played by village poultry traders on H5N1 virus transmission; Chapter Four identifies risks for spread of viruses from live poultry markets in Bali; Chapter Five analyses the phylogenetic relationship of H5N1 viruses circulating in the village study sites during the 2006-2007 study period in Bali; and Chapter Six evaluates a recombinant baculovirus-expressed H5 vaccine against virulent H5N1 HPAI virus challenge in ducks for purpose of disease control.

Chapter Two describes a laboratory evaluation of five influenza antigen detection tests to estimate their diagnostic sensitivity. The evaluation was performed using close to 300 H5N1 positive swab samples that had been collected from field cases in Hong Kong. The results showed that the overall sensitivities of these tests ranged from 36.3% to 51.4% (95% confidence interval ranging from 31.0% to 57.0%). Analysis of test sensitivity indicated that these antigen detection tests could be used for rapid and preliminary flock
investigations of H5N1 outbreaks in sick and dead birds but should not be used for surveillance testing of clinically healthy birds. These tests offer a valuable role in disease investigation for example in rural village communities without immediate access to reference facilities. For the surveillance studies in villages (Chapter 3) and markets (Chapter 4) in Bali the evaluation studies of the rapid tests showed they were not suitable for detection of H5N1 infections in non-outbreak situations and consequently were not used for this purpose.

Chapters Three and Four describe field studies that were carried out to investigate the epidemiology of H5N1 in poultry in Bali, Indonesia. The surveillance recovered H5N1 HPAI virus at a low isolation rate (0.09% in chickens and 0.13% in ducks) in apparently healthy village poultry. A case-control study of village household flocks was performed. Using logistic regression analysis, the study identified risk factors that could influence the occurrence of H5N1 HPAI: the sale of poultry to collectors (p<0.01), a poultry production system with access to backyard roaming birds (p<0.05) and purchase of live poultry (chickens) (p<0.1). To further investigate the H5N1 epidemiology, characteristics of live bird markets were studied through a questionnaire survey of market sellers. The survey found that live bird markets aggregate birds of different species, from different sources and locations, to be kept in close proximity, and this lack of biosecurity can contribute to H5N1 persistence and dissemination. Separately, molecular analysis of isolates from the surveillance showed the continuing evolution of H5N1 virus from 2004 till 2007. Isolates from the surveillance of apparently healthy birds shared close phylogenetic relationship with poultry viruses from outbreak cases (under subclade 2.1) and also contained the characteristic HPAI molecular pathotypes. Based on this finding, further research is needed to ascertain if asymptomatic chickens and ducks are H5N1 HPAI carriers and can become a transmission risk for poultry and humans.
Finally, as ducks were a source of H5N1 infection for other poultry in rural, endemic areas, Chapter Six describes a laboratory challenge study that was performed to investigate the efficacy of a recombinant baculovirus-expressed H5 vaccine. The study showed that the vaccine conferred protection from disease and mortality in ducks following challenge from an H5N1 HPAI virus. Vaccination in ducks resulted in elimination of respiratory virus shedding compared to unvaccinated control birds. The use of vaccines as a control strategy to break flock transmission and reduce the threat of ducks acting as a virus reservoir for other poultry is discussed. In addition, recombinant vaccine technologies offer a feasible method of production for affected developing countries without needing high biocontainment facilities or the expensive infrastructure required for producing vaccines via chicken embryos.
Publication

Acknowledgements

My journey with avian influenza research which begun three years ago has been a humbling experience and I owe this to the support from many wonderful people.

Foremost, I am grateful to Prof. John Edwards, Dean of the School of Veterinary and Biomedical Sciences for being pivotal in securing a precious opportunity for me to undertake PhD through the Endeavour IPRS and Australian-Biosecurity CRC scholarship and for steering me through challenges in the course of my candidature. I am also grateful to Dr. Chua Sin Bin and Dr Ngiam Tong Tau, senior management of Agri-Food and Veterinary Authority of Singapore (AVA) for permitting me to take leave from the organisation for this endeavour and for placing faith in me.

This research would not have become possible without my supervisors, Dr. Trevor Ellis, Assoc. Prof. Stan Fenwick and Assoc. Prof. Ian Robertson who have tremendously dedicated their time and energy in seeking research opportunities, providing advice and guidance, imparting their knowledge and experience, editing my writings, helping to broaden my perspective and steadfastly assisting me till completion. Words cannot describe my gratitude.

I am thankful to the Australian-Biosecurity Cooperative Research Centre (ABCRC) for supporting my field travels and my participation in its scientific meetings. My journey has also been made more meaningful by knowing Drs. Peta Edwards, Lisa Adams, Chris Hawkins, Tony Martin, Jenny-Ann Toribio, Assoc. Prof Joanne Meers, the late Prof. Aileen Plant at AB-CRC, and Assoc. Prof. Cassandra James at Murdoch University who offered help and advice.
The project on “Performance evaluation of five antigen detection tests” would not have been possible without our collaborators from various diagnostic test kit companies, Virology Laboratory at the Department of Agriculture and Food of Western Australia, and Tai Lung Veterinary Laboratory, Agriculture, Fisheries and Conservation Department (AFCD) of Hong Kong. Specific acknowledgements have been mentioned in a publication arising from this work. In particular, I thank Dr. Kitman Dyrting and Dr William Wong for access to AFCD facilities and supply of H5N1 samples, and staff at AFCD for excellent technical assistance.

The “Investigation of prevalence and epidemiology of H5N1 in village poultry and in live bird markets in Bali, Indonesia” study was made possible through the agreement from Dr. Soegiarto, Director of Disease Investigation Centre in Denpasar (DIC), and his predecessor Dr. A.A. Gde Putra. I thank the management and staff at DIC, and Bali Provincial Livestock and Health Services, particularly Drs. Ketut Santhia, Made Sukerni, Made Arya Putra, Made Arsani, A.A. Semara Putra, Dinar Hartawan, Rinci Marita, Eli Supartika, Nengah Wetta, Yuliani Antarariksa, A.A. Jayaningsih, and Nengah Sutami, Nyoman Purnatha, Nyoman Suarsana and Raka Wijayaguna for their excellent and dedicated field and laboratory support. I also acknowledge the staff at Tabanan, Bangli and Gianyar District Livestock Services, and the respective village and community leaders for their assistance. I thank the Food and Agriculture Organisation of the United Nations for funding and support of the project. I am grateful to Dr. Kim Halpin, Dr Frank Wong and other molecular virologists at the Australian Animal Health Laboratory in Geelong, Australia for the characterisation of virus isolates from the project. I also thank Dr Roberto Barrero from Murdoch University for his advice on bioinformatics. I reserved my final appreciation to Dr. Nyoman Dibia of DIC who not only assisted the studies in every possible way but also introduced me to his family and to the wonderful Balinese culture. To my friends in Bali, *Om Swastiastu* and *Suksma!*
For the project on “Efficacy of recombinant baculovirus-expressed vaccine in protecting ducks against a highly pathogenic H5N1 virus”, I am grateful to Prof. Malik Peiris who allowed the experiments to be carried out at the State Key Laboratory for Emerging Infectious Diseases, Hong Kong University (HKU) Microbiology Department. I thank Dr. Connie Leung, Issac Chow, Edward Ma, Iris Ng, Sia Sin Fun and staff at the Department for their excellent and dedicated laboratory support. I also acknowledge Dr Leo Poon for his role in biosafety during the course of experiments. Most of all, I thank Prof. Jimmy Kwang of Temasek Life Sciences Laboratory for allowing his research vaccine to be tested as part of my thesis work. Funding for the project was contributed by AVA in conjunction with HKU, for my travels by AVA and for freight costs for the ducks by Murdoch University. It is a wish fulfilled to work with one of the best influenza research institutes in the world and I thank Dr Chua Sin Bin and Dr Chew Siang Thai for their endorsement and support of this study.

My unforgettable stay in Perth was made pleasant by my landlord Uncle Jack, and Kyaw Naing Oo, Masa Tenaya, Pebi Suseno, Tum Sothyra and other fellow “biosecurity disease group” students in friendship and sharing difficulties being away from families. I thank the families of our supervisors for helping us feel at ease away from home. I also thank Ken Chong and Margaret Setter for helping to make administrative arrangements for my field trips.

Importantly, I am grateful to Drs Chew Siang Thai, Teng Moey Fah, Ng San Choy, Ng Fook Kheong, Ms Seah Huay Leng for support, and many other colleagues in AVA for support and relief of duties. I also thank Dr Lim Chee Wee and staff of Virology Branch at the Animal and Plant Health Laboratory of AVA for sharing knowledge on avian influenza diagnostics. There are many friends, colleagues and well-wishers whom I owe heartfelt gratitude to and I apologise if I am not able to list their names individually. I like to pay tribute to the scientists and researchers whose works have sustained my interests and
inspired me and to everyone, *everyone*, who has shown kindness and given encouragement on my journey.

Lastly, I am indebted to my beloved Family, my Father, Mother, wife and brother for their encouragement, care and support during this period. This thesis I hope can become an inspiration to Julia, Judy and Timothy.

xxxxxxx
Table of contents

Declaration i
Abstract ii
Publication v
Acknowledgements vi
Table of contents x
List of tables and figures xvi
Abbreviations xix

Chapter 1 Literature review 1
1.1 General introduction 1
 1.1.1 Avian influenza viruses 1
 1.1.2 Host range and transmission of avian influenza 4
 1.1.3 Clinical signs, pathology and pathogenesis 6
 1.1.4 Diagnosis of AI, especially H5N1 HPAI 9
 1.1.5 Host-pathogen relationship 12
 1.1.6 Evolution of avian influenza virus 15
 1.1.7 Mutation from LPAI to HPAI virus 18
 1.1.8 Avian influenza as zoonoses 20
 1.1.9 H5N1 human infection: risk factors and treatment 23
1.2 Spread of H5N1 in Asia and beyond 27
 1.2.1 Influenza epicentre 27
 1.2.2 H5N1 HPAI in Hong Kong, 1997 28
 1.2.3 Events in Hong Kong, post-1997 32
 1.2.4 Events in Asia, pre-2003 35
 1.2.5 H5N1 HPAI in Asia, 2003-2004 37
 1.2.6 Spread and transmission of H5N1 40
 1.2.7 H5N1 HPAI in Asia, post-2004 45
1.2.8 H5N1 HPAI: spread beyond Asia, 2005
1.2.9 H5N1 HPAI: Europe, Africa, Middle East, 2006
1.2.10 H5N1 HPAI: 2007 till current
1.3 Role of different species in ecology of avian influenza
1.3.1 Wild birds as reservoir hosts of avian influenza
1.3.2 Virus persistence in nature
1.3.3 Transfer of virus between wild birds and domestic poultry
1.3.4 H5N1 HPAI in wild birds
1.3.5 Role of domestic ducks
1.3.6 H5N1 HPAI in domestic ducks
1.3.7 Role of chickens, quails and other gallinaceous poultry
1.3.8 Pigs as “mixing vessel” for influenza viruses
1.3.9 H5N1 HPAI in mammals
1.4 Molecular determinants of host range and pathogenicity
1.4.1 Host receptor specificity
1.4.2 Cleavage site of the haemagglutinin
1.4.3 Neuraminidase
1.4.4 Polymerase complex
1.4.5 Non-structural protein
1.4.6 Drug resistance mutations
1.5 Vaccination as a component of disease control
1.5.1 Use of vaccination in control of LPAI
1.5.2 Vaccination to control HPAI including H5N1
1.5.3 Current and new approaches on HPAI (H5N1) vaccines
1.6 Aims of thesis

Chapter 2 Performance evaluation of five detection tests for avian influenza antigen with various avian samples
2.0 Abstract
2.1 Introduction
2.2 Materials and methods
5.4 Discussion

Chapter 6 Efficacy of a recombinant baculovirus-expressed vaccine in protecting ducks against a highly pathogenic H5N1 virus 225

6.1 Introduction 225

6.2 Materials and Methods 226
 6.2.1 Animal ethics and biosafety approvals 226
 6.2.2 Vaccines and virus 226
 6.2.3 Source of ducks 228
 6.2.4 Duck accommodation for vaccination and challenge studies 228
 6.2.5 Determination of duck challenge dose 229
 6.2.6 Vaccination and H5N1 challenge procedures 230
 6.2.7 Serology 232
 6.2.8 Virus isolation 232
 6.2.9 Histopathology of dead birds 233
 6.2.10 Statistical analysis 234

6.3 Results 235
 6.3.1 Disease and mortality, first experiment 235
 6.3.2 Virus isolation, first experiment 236
 6.3.3 Serology, first experiment 236
 6.3.4 Disease and mortality, second experiment 237
 6.3.5 Virus isolation, second experiment 238
 6.3.6 Serology, second experiment 238
 6.3.7 Gross and histopathology of dead birds 245

6.4 Discussion 247

Chapter 7 General discussion 257
Appendices

Appendix 1 Village communities in Bali where sampling surveillance were conducted, 2006-2007 264
Appendix 2 Map of Bali districts 269
Appendix 3 Sample of questionnaire used in Bali village household study 270
Appendix 4 Sample of questionnaire used in Bali market study 275

Bibliography 278
List of tables and figures

Tables

1.1 Major HPAI outbreaks, 1959-2008. 13
1.2 Countries reporting H5N1 HPAI in poultry and in humans since late 2003 to the World Animal Health and World Health Organisations. 38
2.1 Avian influenza H5N1 culture-positive samples examined and summary results of rapid antigen detection tests. 114
2.2 Sensitivities, measured as percent positive compared with virus culture for rapid immunoassays and antigen capture ELISAs with undiluted H5N1 samples, compared with total samples. 116
2.3 Comparison of antigen detection test sensitivity with different H5N1 specimens. 118
2.4 Effect of bird type (dead chickens compared with dead waterbirds) on the sensitivity of rapid immunoassays and antigen capture ELISA tests. 122
2.5 Comparison of the effect of H5N1 genotype on the sensitivities of the antigen detection tests. 124
2.6 Differences in sensitivities of the antigen detection tests for viruses of different H5N1 Z genotypes between early and late 2002. 126
2.7 Comparison of analytical sensitivity for tests 1, 2, and 4 for influenza A antigen detection with a low-pathogenicity avian influenza virus (A/Eurasian Coot/Perth/2727/83). 127
3.1 Results of virological surveillance in village households, November 2006 to July 2007 in the districts of Tabanan, Bangli and Gianyar of Bali. 152
3.2 H5 antibody profiles by HI tests of 34 unvaccinated chickens that showed presence of H5 antibody during the village surveillance. 154
3.3 Cross-tabulation of categorical household variables by poultry flock cases and results of the univariable analysis, using an original case classification for Model A. 157
3.4 Comparison of flock sizes of main poultry types between cases and control for Model A. 160
3.5 Summary of univariable analyses of household variables where $p \leq 0.25$, using a modified case classification for Model B. 160

3.6 Factors associated with poultry flock cases identified through logistic regression analyses, based on two different case classifications (Model A and Model B). 163

4.1 Results of virological surveillance (Avian Influenza and Newcastle Disease virus) on pooled cloacal and throat swabs in live bird markets in Bali, September 2007 and February 2008. 188

4.2 Sources of market birds in the Bali market study. 191

5.1 H5N1 viruses from Bali examined in the molecular study. 207

5.2 Comparison of HA cleavage sequence examples of major H5 clades 221

6.1 Summary of disease and mortality in ducks on days post-VN/1203/04 challenge. 240

6.2 Efficacy of recombinant H5 vaccine in ducks challenged with $10^{4.3} \text{EID}_{50}$s VN/1203/04 (first experiment). 241

6.3 Efficacy of recombinant H5 vaccine in ducks challenged with $10^{5.3} \text{EID}_{50}$s VN/1203/04, and compared with an inactivated H5N2 vaccine (second experiment). 243

Figures

2.1 Photographs of antigen detection test kits 110

3.1 Poultry population by districts. 143

3.2 H5 antibody responses in 33 communities that had practised vaccination. 153

3.3 Household flock sizes and distribution of poultry types in village households of 518 respondents. 155

3.4 Epidemic curve of HPAI (H5N1) outbreaks in Bali, 2003-7. 169

5.1 Amino acid sequence alignment of the HA genes from H5N1 isolates from Bali, Indonesia. 213

5.2 Amino acid sequence alignment of the NA genes from H5N1 isolates from Bali and from Gs/Gd/96. 215
5.3a Phylogenetic tree of HA genes of representative Indonesia viruses. 216
5.3b Phylogenetic tree of HA genes of representative H5N1 viruses. 217
6.1 Oropharyngeal virus re-isolation (first challenge experiment). 242
6.2 Oropharyngeal virus re-isolation (second challenge experiment). 244
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAHL</td>
<td>Australian Animal Health Laboratory</td>
</tr>
<tr>
<td>EID$_{50}$</td>
<td>50% embryo infectious dose</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>GMT</td>
<td>geometric mean titre</td>
</tr>
<tr>
<td>Gs/Gd/96</td>
<td>Goose/Guangdong/1/96 (H5N1)</td>
</tr>
<tr>
<td>HA</td>
<td>haemagglutinin</td>
</tr>
<tr>
<td>HI</td>
<td>haemagglutination inhibition</td>
</tr>
<tr>
<td>HPAI</td>
<td>highly pathogenic avian influenza virus</td>
</tr>
<tr>
<td>HRP</td>
<td>horseradish peroxidase</td>
</tr>
<tr>
<td>IVPI</td>
<td>intravenous pathogenicity index</td>
</tr>
<tr>
<td>LPAI</td>
<td>low pathogenic avian influenza virus</td>
</tr>
<tr>
<td>NA</td>
<td>neuraminidase</td>
</tr>
<tr>
<td>NASBA</td>
<td>nucleic acid sequence-based amplification</td>
</tr>
<tr>
<td>NIDVD</td>
<td>National Institute of Diagnostics and Vaccine Development in Infectious Disease</td>
</tr>
<tr>
<td>ND</td>
<td>Newcastle Disease</td>
</tr>
<tr>
<td>NP</td>
<td>nucleoprotein</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>OIE</td>
<td>Office Internationale des Epizooties</td>
</tr>
<tr>
<td>pers. comm.</td>
<td>personal communications</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>reverse transcription polymerase chain reaction</td>
</tr>
<tr>
<td>TCID$_{50}$</td>
<td>50% tissue culture infective dose</td>
</tr>
<tr>
<td>T+C</td>
<td>tracheal and cloacal</td>
</tr>
<tr>
<td>VTM</td>
<td>viral transport media</td>
</tr>
</tbody>
</table>