In vitro studies of Brachyspira pilosicoli pathogenesis

Ram Naresh
BVSc & AH, MVSc (Medicine)

Division of Health Sciences
School of Veterinary Biology and Biomedical Sciences
Murdoch University, Perth 6150
Western Australia

This thesis is presented for the degree of
Doctor of Philosophy
Veterinary Microbiology
Murdoch University
2010
This thesis is dedicated to

My Late Father (Appa)
A Man of Moral Values

You proved that an illiterate father
and farmer can educate his son very well
You were always reluctant to send me away from home
But you never stopped me and I kept on crossing seas
You were my best teacher to introduce me in this world
You taught me at the very beginning to be respectful and kind
I am still living very happily on your philosophies
You were a man of big heart, no one ever saw you in tears or crying
Sorry I was not around at the last day of your life
Though you are immortal father

My Late Mother (Amma)
Great Animal Lover

You were the best animal lover I could ever see in my life,
I still remember those broken leg dogs you used to bring home
You treated them as an ancient veterinarian
You fought several people for animal cruelties
You were skilled to communicate with animals
I always feel that I became a veterinarian to represent
your traditional skills through university education
You were more than a mum for many children in the community
Perhaps you knew my future and asked me to learn cooking
I laughed at you. I learned cooking during my Australian PhD!
You were not a quitter in any situation

My lovely daughters
Chelsi (Anvesha) and Khushi (Aduesha)
Little puppies you were my rare emotional
strength in Australia during this PhD
You both sacrificed in many ways
Love You Both
Declaration

I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution.

Ram Naresh
Abstract

Brachyspira pilosicoli is an intestinal spirochaete that colonizes the large intestine of a variety of species of birds and animals, including human beings. Colonization can lead to local inflammation and to diarrhoea in a condition known as “intestinal spirochaetosis”. This infection has been described in many countries throughout the world. In the colonization process the bacterium must cross the thick mucus blanket overlaying the colonic epithelium. Characteristically, *B. pilosicoli* then attaches by one cell end to the underlying epithelium, forming a dense “false brush border”. The mechanisms involved in moving through the mucus layer, attaching to enterocytes and inducing local cellular damage are poorly understood. The lack of *in vitro* models to study these events has been a major constraint to understanding the pathogenesis of *B. pilosicoli* infections.

The work described in this thesis deals with i) the development of an *in vitro* model of spirochaete attachment by using cells in suspension (erythrocytes) and cell monolayers (Caco-2), ii) the attraction of *B. pilosicoli* to mucin, and iii) the effects of norepinephrine exposure on expression of virulence traits by *B. pilosicoli*.

Attachment assays conducted with erythrocytes from different species at different ratios and time intervals identified one human isolate (WesB) that
adhered to goose and chicken erythrocyte at a 1:1000 ratio. This same strain, and an isolate from a pig (95/1000) also attached to Caco-2 cells. Transmission and scanning electron microscopy confirmed that the attachment resembled the in vivo situation. Exposure of the Caco-2 cells to B. pilosicoli resulted in actin rearrangements, damaged cell junctions and apoptosis. Caco-2 cells that were colonized with B. pilosicoli also demonstrated a significant up-regulation of interleukin-1β (IL-1β) and IL-8 expression, helping to confirm that the spirochaetes were inducing pathological changes in the cultured cells. Treatment of the monolayers with B. pilosicoli sonicates caused significant up-regulation of IL-1β, TNF-α, and IL-6, but culture supernatants and non-pathogenic Brachyspira innocens did not altered cytokine expression. Hence IL-8 expression was specifically associated with exposure to live B. pilosicoli cells.

For mucin attraction, 15 B. pilosicoli strains isolated from humans, pigs, chickens and dogs, and a control strain of Brachyspira hyodysenteriae, were analysed for their ability to enter solutions of hog gastric mucin in an in vitro capillary tube assay. Attraction started in a 2 % mucin solution, and then increased with increasing concentrations to peak at around 6 - 8 % mucin. Attraction varied from strain to strain. B. pilosicoli strain 95/1000 and B. hyodysenteriae strain B204 also were attracted to viscous solutions of polyvinylpyrillodone (PVP), in a manner mirroring the response to mucin. This suggested that as well as chemotaxis to mucin components, “viscotaxis” is involved in the attraction to mucin.
Finally, exposure of *B. pilosicoli* to norepinephrine enhanced the attachment to Caco-2 cells, chemotactic response to mucin, and spirochaete growth. Taken together, these *in vitro* studies have shed new light onto the pathogenic processes that are involved in intestinal spirochaetosis caused by *B. pilosicoli*.
Acknowledgements

This thesis work was completed in more than 4 years with the help of many people. I truly apologise for those who are left unacknowledged due to my poor memory. Please forgive me.

It gives me a sense of happiness to mention that I could notice an enormous appetite for research in my supervisor Prof. David Hampson. This work would have been impossible without your continuous and unconditional scientific, financial and moral support. Your timely initiatives and reminders on most of the research chapters enhanced the quality of this thesis. You always tried to enrich my knowledge and scientific understanding by providing books and literature. I have a great deal of respect for your true feedback, though it was frustrating sometime but was certainly fruitful at last. I always benefitted from your in-depth understanding in the area of microbiology and intestinal spirochaetes. Yes, I had problems but they were fixed amicably when and where arisen. I am deeply indebted for your all personal help on many other issues. To me it has been the most meaningful supervision I ever had. I still feel a lot more left to learn from you. It was wonderful to spent time with you as a student. Thanks!

I was the recipient of Endeavour International Postgraduate Research Scholarship and Murdoch University Research Studentship. I thank Murdoch University and the Graduate Centre staff for providing a scholarship for more than 4 years, and also for funding my Istanbul travel to attend an international conference in 2008. Big thanks to my supervisor for sponsoring part of the travel to Istanbul Conference.

I am delighted to acknowledge the help of Dr Yong Song, Post Doctorate Fellow, Brachyspira group for all his help with the Q-RT PCR assays to measuring cytokine specific gene expressions. A large part of my work was based on scanning and transmission electron microscopy, and this was supported by Mr Peter Fallon. Thanks Peter. Dr Kirsty Townsend, Technologist
in Microbiology was another person who helped me out with a smile, all the time. Thanks for your all help Kirsty Ji. Half of the work of my thesis was based on cell culture and Linda Davies made me learn about it. Thanks Linda. I am thankful to Gordon Thompson, Ms Judy Robertson and Mr Ken Chong for valuable support.

Among the people of the Brachyspira group I must thank Dr Nyree Phillips for providing several frozen *Brachyspira* isolates and also for her help in culturing these bacteria. Special thank to Dr Tom La for all his genuine support and technical guidance. I sincerely thank Sheila, Reza Movahedi, Maswati, Erin and Belinda for their continuous support during the completion of this work. I thank Dr Alvaro Hidalgo, a Spanish visitor to the Brachyspira group for his help in editing my figures for my PLoS ONE research paper.

I would like to thank the scientific community and other staff of the Division of Medicine, Indian Veterinary Institute Izatnagar and Mukteswar campuses for their support which assisted by to travel for Australia to study for my PhD.

I am wordless to say anything for my late parents. I had the best childhood with both of you. You both were my best social teachers, motivators and carers. You both were strong believers of Karma and truth. You both gave me the best philosophies to live and also to take care of others. I will prefer worshiping you both than any god. I always feel sorry for being away from both of you after the age of 18.

If I could get anything precious out of my marriage, they are my 2 lovely daughters Anvesha and Aduesha. Both of you were the source of my real emotional strength during this work. Love you angels. I am thankful to my brothers, sisters, nieces and nephews for their support during my thesis work.
Awards and publications from thesis work

Awards

1. **Dean’s Prize, Best Overall Poster Award.** “Development of *in vitro* attachment model for *Brachyspira pilosicoli*”, Research Poster Day 2006, School of Veterinary and Biomedical Sciences, Murdoch University – 2006. Sponsored by School’s Dean.

2. **Best Poster Award. Pathogens and Parasite.** Attraction of *Brachyspira pilosicoli* chemotaxis to mucin. Research Poster Day 2009, School of Veterinary and Biomedical Sciences, Murdoch University – 2009. Sponsored by Gene Works Pty Ltd.

Publications

1. **Ram Naresh** and David J. Hampson. 2010. Attraction of *Brachyspira pilosicoli* to mucin. *Microbiology (SGM)* 156:191-197

Presentations

2. Ram Naresh and David Hampson. 2009. Brachyspira pilosicoli chemotaxis to mucin. 5th International Conference on Colonic Spirochetal Infections in Animals and Humans, 8th-10th June, Leon, Spian.

Table of Contents

Title Page i
Dedication ii
Thesis Declaration iii
Abstract iv
Acknowledgements vii
Awards and publications from thesis work ix
Presentations from thesis work x
Table of contents xi
List of Tables xvi
List of Figures xvii

Chapter 1: Literature Review 1

1.1 General Introduction 1
1.2 Intestinal Spirochaetes 3
1.3 Ecology and disease potential of *Brachyspira* species 5
 1.3.1 Early observations on intestinal spirochaetes 5
 1.3.2 Disease potential for animals 6
 1.3.3 *Brachyspira pilosicoli* 7
 1.3.3.1 Distribution of *B. pilosicoli* in animals 7
 1.3.3.2 Distribution of *B. pilosicoli* in humans 8
 1.3.3.3 Predisposing factors for *B. pilosicoli* infections 10
 1.3.3.4 Molecular and cellular basis of *B. pilosicoli* virulence 12
 1.4 *In vitro* attachments assays 15
 1.4.1 Red blood cells 15
1.4.2 Attachment of intestinal spirochaetes to cell lines ------------------------ 16
1.4.3 In vitro attachment assays for other pathogenic bacteria using Caco-2 cells .. 17
1.5 Cellular changes caused by other bacteria ------------------------------- 20
1.5.1 Zonula Occludens (ZO) --- 20
1.5.2 Actin cytoskeleton --- 22
1.5.3 Apoptosis --- 24
1.5.4 Cytokines --- 25
1.6 Mucus, motility and chemotaxis -- 28
1.7 Effects of norepinephrine on bacterial pathogens ------------------------ 31
1.8 Aims and objectives -- 33

Chapter 2: General materials and methods ---------------------------------- 35
2.1 Brachyspira pilosicoli and Brachyspira hyodysenteriae strains ----------- 35
2.2 Growth of spirochaetes on solid medium ---------------------------------- 35
2.3 Growth of spirochaetes in liquid medium ----------------------------------- 36
2.3.1 Preparation of broth medium -- 36
2.3.2 Transfer of spirochaetes from solid medium to liquid medium ------- 36
2.4 Counting spirochaetes -- 37

Chapter 3: Attachment assays with red blood cells -------------------------- 38
3.1 Introduction --- 38
3.2 Materials and Methods --- 39
3.2.1 B. pilosicoli strains and culture conditions ----------------------------- 39
3.2.2 Source of blood and processing -- 39
3.2.3 Attachment assays

3.3 Results

3.4 Discussion

Chapter 4: Attachment assays with Caco-2 cell monolayers

4.1. Introduction

4.2 Materials and methods

4.2.1 Spirochaete strains and growth

4.2.2 Culture supernatants and sonicates

4.2.3 Cell cultures

4.2.4 Attachment assays

4.2.5 Electron microscopy

4.2.6 Preparation of Caco-2 monolayers for staining

4.2.7 ZO-1 and Hoechst fluorescent staining

4.2.8 Staining of filamentous actin

4.2.9 Cytokine expression assays

4.3 Results

4.3.1 Attachment to Caco-2 monolayers

4.3.2 ZO-1 distribution

4.3.3 Hoechst staining of Caco-2 cell nuclei

4.3.4 Actin rearrangements

4.3.5 Cytokine expression

4.4 Discussion
Chapter 5: Attraction of *B. pilosicoli* to mucin and other substrates —— 83

5.1 Introduction ———————————————————————————————————— 83
5.2 Materials and Methods ———————————————————————————————————— 83
5.2.1 Animal ethics ———————————————————————————————————— 83
5.2.2 Spirochaete strains and culture conditions ———————————————————— 83
5.2.3 Capillary tube assays ———————————————————————————————————— 86
5.2.4 Viscosity measurements ———————————————————————————————————— 87
5.2.5 Statistical analysis ———————————————————————————————————— 88
5.3 Results ———————————————————————————————————— 88
5.3.1 Optimizing test conditions ———————————————————————————————————— 88
5.3.2 Ratt values of different spirochaete strains with mucin ———— 91
5.3.3 Ratt values of 95/1000 with D-serine ———————————————————— 94
5.3.4 Ratt values of 95/1000 and B204 in relation to viscosity ———— 94
5.3.5 Viscosity of caecal and colonic mucus ———————————————————— 95
5.4 Discussion ———————————————————————————————————— 97

Chapter 6: Effects of norepinephrine on *B. pilosicoli* ———— 104

6.1 Introduction ———————————————————————————————————— 104
6.2 Materials and Methods ———————————————————————————————————— 104
6.2.1 Preparation of norepinephrine (NE) stock solution ———— 104
6.2.2 Effect of NE on the growth of *B. pilosicoli* 95/1000 ———— 104
6.2.3 Effect of NE on *B. pilosicoli* attraction to mucin ———— 105
6.2.3.1 NE added to the broth culture ———— 105
6.2.3.2 NE added to chemotaxis buffer ———— 106
List of Tables

Table 1.1 *Brachyspira* species and their disease potential ------------------- 5

Table 1.2 Names and activities of the nine cytokines investigated in the current thesis --- 27

Table 4.1 Forward and reverse primers used for cytokine amplification by quantitative real-time PCR ----------------------------------- 55

Table 4.2 Density of attachment of *B. pilosicoli* cells to Caco-2 cells after 2, 4 and 6 hours incubation ---------------------------------- 57

Table 4.3 Changes in cytokine expression in Caco-2 cell monolayers exposed for 12 hours to sterile broth, supplemented DMEM, *B. pilosicoli* strain 95/1000 culture supernatant and sonicates, live *B. pilosicoli* 95/1000, and live non-pathogenic *B. innocens* B256T. The results are mean ± standard deviation of fold difference in gene expression measured by RT-qPCR -- 75

Table 5.1 Strains of *B. pilosicoli* used in the attraction assays ----------- 84

Table 5.2 Mean and standard deviation of relative attraction index (Ratt) at seven different concentrations of porcine gastric mucin, and the number of spirochaete cells in chemotaxis buffer tubes, for 15 strains of *Brachyspira pilosicoli* after 90 minutes incubation. Cells with significant attraction to mucin (Ratt > 2) are outlined --- 92

Table 5.3 Viscosities of the dilutions of mucin and polyvinylpyrroldone (PVP) used in the attraction assays ------------------------------- 95

Table 6.1 Some suggested mechanisms by which NE may affect the growth of different bacterial species ----------------------------------- 118
List of Figures

Figure 1.1: End-on attachment of *B. pilosicoli* to underlying enterocytes to form false brush borders --- 8

Figure 3.1: Cells of *B. pilosicoli* WesB (human isolate) attached to individual erythrocyte of goose (original magnification x 100) -------------------------- 42

Figure 3.2: Cells of *B. pilosicoli* WesB associated with the surface of nucleated goose erythrocytes, agglutinating them. Phase contrast microscopy (original magnification x 100) --- 42

Figure 3.3: Invaginated end-on attachment of a single cell of WesB to the surface of a goose erythrocyte. Scanning electron microscopy (original magnification x 10360) --- 43

Figure 3.4: Large numbers of cells of WesB attached to a goose erythrocyte. Scanning electron microscopy (original magnification x 4828) --------------------- 43

Figure 3.5: Non-invaginated and flat end-on attachment of WesB to a goose erythrocyte. Scanning electron microscopy (original magnification x 11343) --- 44

Figure 3.6: End-on attachment of a cell of WesB to a goose erythrocyte. Transmission electron microscopy (original magnification x 66000) -------- 45

Figure 3.7: Flat side of a cell of WesB attached to a goose erythrocyte. Transmission electron microscopy (original magnification x 9700) ----------- 45

Figure 4.1: Caco-2 cells exposed for six hours with sterile broth medium. The non-infected cells show intact tight junctions with clear boundaries. SEM, original magnification X 2100 --- 58
Figure 4.2: Caco-2 cells exposed with *B. pilosicoli* culture for two hours. The *B. pilosicoli* 95/1000 mainly colonizes the cell boundaries. SEM, original magnification x 2100

Figure 4.3: Caco-2 cells exposed for four hours. *B. pilosicoli* 95/1000 attachment is denser at the junctions. SEM, original magnification x 2100

Figure 4.4: Most of the Caco-2 cells surface is covered by *B. pilosicoli* 95/1000 after six hours exposure. SEM, original magnification x 2100

Figure 4.5: Cells of WesB can be seen penetrating the outer membrane of the Caco-2 cells (arrows). SEM, original magnification x 9800

Figure 4.6: Cross-sections and tangential-sections (arrows) of *B. pilosicoli* can be seen at the cell junctions of Caco-2 cells. TEM, original magnification x 5,800

Figure 4.7: Cross-sections and tangential-sections (arrows) of *B. pilosicoli* under the Caco-2 cells membrane. TEM, original magnification x 7,900

Figure 4.8: Intact spirochaete cells invaginating into a pit-like structure (arrows) in the Caco-2 cell membrane. TEM, original magnification x 24,500

Figure 4.9: Accumulations of electron dense material around the site of attachment (arrows). TEM, original magnification x 33,800

Figure 4.10: Nuclei of non-infected Caco-2 cell with unique and regular distribution of chromosome all over the nuclei. TEM, original magnification x 5800
Figure 4.11: Nuclei of an infected Caco-2 cells with chromatin condensation and fragmentation (arrows), consistent with apoptosis. TEM, original magnification x 5800 -- 63

Figure 4.12: Control, epifluorescent micrograph illustrating ZO-1 integrity in Caco-2 cell monolayers exposed to sterile autoclaved broth for six hours. No junctional damage can be seen. Original magnification x 100 --------------- 65

Figure 4.13: Epifluorescent micrograph illustrating ZO-1 integrity in Caco-2 cell monolayers exposed to *B. pilosicoli* 95/1000 broth-culture for two hours. ZO1 is not as regular on the junctions as it was in control. The junctions are uneven and occasionally broken, and in some places the ZO-1 is punctuated and has moved towards the cytoplasm (arrows). Original magnification x 100 -- 65

Figure 4.14: Epifluorescent micrograph illustrating ZO-1 integrity in Caco-2 cell monolayers exposed to *B. pilosicoli* 95/1000 broth-culture for six hours. The junctions are badly damaged and ZO-1 has migrated towards the cells’ cytoplasm (arrows). Original magnification x 100 ----------------------------- 66

Fig 4.15: Epifluorescent micrograph illustrating ZO-1 integrity in Caco-2 cell monolayers exposed to sterile autoclaved broth for 6 hours. Original magnification x 100 -- 66

Figure 4.16: Epifluorescent micrograph showing Hoechst staining of DNA in Caco-2 cells exposed to sterile broth for six hours. Nuclei are normal with regular chromatin distribution. Original magnification x 100 --------------------- 67
Figure 4.17: Epifluorescent micrograph showing exposure to 95/1000 for six hours resulted in many nuclei appearing condensed, and some showing clear chromatin fragmentation, consistent with apoptosis (arrows). Original magnification x 100

Figure 4.18: Epifluorescent micrographs showing actin staining in Caco-2 monolayers exposed to sterile broth for six hours (control). There is regular distribution of FITC (phalloidin) all over the monolayers, including the junctions

Figure 4.19: Epifluorescent micrographs showing actin staining in Caco-2 monolayers after two hours incubation with B. pilosicoli. There are a few spots of localized actin (arrows)

Figure 4.20: Epifluorescent micrographs showing actin staining in Caco-2 monolayers after six hours incubation with B. pilosicoli. The actin filaments are clearly mobilized on the junction of Caco2 cells where the bacteria attached. The actin rearrangement can be seen as round bodies distributed over the junctions (arrows)

Figure 4.21: Epifluorescent micrographs showing actin staining in Caco-2 monolayers after six hours incubation with broth. The actin distribution is regular all over Caco-2 cells and junction

Figure 4.22: Example of quantitation data for cycling A.FAM/Sybr for the β-actin gene
Figure 4.23: Example of melt data for Melt A.FAM/Sybr with the β-actin gene

Figure 4.24: The quantitative expression of IL1-β by Caco-2 cells at different time intervals after *B. pilosicoli* and *B. innocens* exposure. The expression remained unaltered in the case of *B. innocens* but increased significantly (*P* < 0.05) in the case of *B. pilosicoli* after 8 and 12 hours, and were significantly (*P* < 0.05) higher than *B. innocens*

Figure 4.25: The quantitative expression of IL8 by Caco-2 cells at different time intervals after *B. pilosicoli* and *B. innocens* exposure. The expression did not differ in the case of *B. innocens* but changed significantly (*P* < 0.05) in case of *B. pilosicoli* after 12 hours, and was significantly (*P* < 0.05) higher than *B. innocens*

Figure 4.26: The quantitative expression of IL6 by Caco-2 cells at different time intervals after *B. pilosicoli* and *B. innocens* exposure. The expression did not differ significantly

Figure 4.27: The quantitative expression of TNF by Caco-2 cells at different time intervals after *B. pilosicoli* and *B. innocens* exposure. The expression did not differ significantly

Figure 5.1: Means and standard deviations of *Ratt* values for *B. pilosicoli* strain 95/1000 (filled circles) and *B. hyodysenteriae* strain B204 (open circles) incubated for 90 minutes in different concentrations of porcine gastric mucin in chemotaxis buffer
Figure 5.2: Means and standard deviations of $Ratt$ values for $B. pilosicoli$
strain 95/1000 incubated for 15, 30, 60, 90 and 120 minutes in 4% mucin - 90

Figure 5.3: $Ratt$ values obtained for $B. pilosicoli$ 95/1000 (filled circles) and
$B. hyodysenteriae$ B204 (open circles) in dilutions of PVC plotted against
measured viscosities -- 96

Figure 5.4: $Ratt$ values obtained for $B. pilosicoli$ 95/1000 (filled circles) and
$B. hyodysenteriae$ B204 (open circles) in dilutions of mucin plotted against
measured viscosities -- 96

Figure 6.1: Effect of Norepinephrine on the growth of $B. pilosicoli$ 95/1000
in liquid medium -- 108

Figure 6.2: Effect of NE addition on the attraction of $B. pilosicoli$ to 4%
mucin -- 109

Figure 6.3: $B. pilosicoli$ attraction to different NE concentrations in 4%
mucin -- 110

Figure 6.4: Effect of NE on $B. pilosicoli$ numbers in chemotaxis buffer -- 111

Figure 6.5: $B. pilosicoli$ 95/1000, not exposed to NE, after two hours
(control). Relatively low numbers of bacteria were attached -- 112

Figure 6.6: $B. pilosicoli$ 95/1000, exposed to NE, after two hours. More
spirochaetes are attached than with the control -- 112

Figure 6.7: Control $B. pilosicoli$ 95/1000, not exposed to NE, after four
hours. Relatively fewer bacteria were attached than with the NE-exposed
culture -- 113
Figure 6.8: *B. pilosicoli* 95/1000, exposed to NE, after four hours. More spirochaetes are attached than with the control (the layer of spirochaete is thicker)-- 113

Figure 6.9: Control *B. pilosicoli* 95/1000 culture, not been exposed to NE, after six hours. Good attachment to Caco-2 cells. Original magnification x 4000 --- 114

Figure 6.10: *B. pilosicoli* 95/1000, exposed to NE, after six hours. More spirochaetes are attached than with the control. Original magnification x 4000 --- 114

Figure 6.11: Extensive attachment with clumping and tangling of *B. pilosicoli* following exposure to NE for 6 hours (original magnification x 10500) --- 115

Figure 6.12: *B. pilosicoli* grown with 0.1 mM NE for 2 days, showing extensive colonization of the Caco-2 cells after six hours. Original magnification x 1000 --- 116

Figure 6.13: *B. pilosicoli* grown without NE for two days, showing less attachment than the NE-grown culture after six hours (some cell surfaces are still visible). Original magnification x 1000 -- 116