Catalog Home Page

Implementation of an optimal stomatal conductance scheme in the Australian Community Climate Earth Systems Simulator (ACCESS1.3b)

Kala, J., De Kauwe, M.G., Pitman, A.J., Lorenz, R., Medlyn, B.E., Wang, Y-P, Lin, Y-S and Abramowitz, G. (2015) Implementation of an optimal stomatal conductance scheme in the Australian Community Climate Earth Systems Simulator (ACCESS1.3b). Geoscientific Model Development, 8 (12). pp. 3877-3889.

[img]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (5MB)
Free to read: http://dx.doi.org/10.5194/gmd-8-3877-2015
*No subscription required

Abstract

We implement a new stomatal conductance scheme, based on the optimality approach, within the Community Atmosphere Biosphere Land Exchange (CABLEv2.0.1) land surface model. Coupled land-atmosphere simulations are then performed using CABLEv2.0.1 within the Australian Community Climate and Earth Systems Simulator (ACCESSv1.3b) with prescribed sea surface temperatures. As in most land surface models, the default stomatal conductance scheme only accounts for differences in model parameters in relation to the photosynthetic pathway but not in relation to plant functional types. The new scheme allows model parameters to vary by plant functional type, based on a global synthesis of observations of stomatal conductance under different climate regimes over a wide range of species. We show that the new scheme reduces the latent heat flux from the land surface over the boreal forests during the Northern Hemisphere summer by 0.5-1.0 mm dayg'1. This leads to warmer daily maximum and minimum temperatures by up to 1.0 °C and warmer extreme maximum temperatures by up to 1.5 °C. These changes generally improve the climate model's climatology of warm extremes and improve existing biases by 10-20 %. The bias in minimum temperatures is however degraded but, overall, this is outweighed by the improvement in maximum temperatures as there is a net improvement in the diurnal temperature range in this region. In other regions such as parts of South and North America where ACCESSv1.3b has known large positive biases in both maximum and minimum temperatures (∼ 5 to 10 °C), the new scheme degrades this bias by up to 1 °C. We conclude that, although several large biases remain in ACCESSv1.3b for temperature extremes, the improvements in the global climate model over large parts of the boreal forests during the Northern Hemisphere summer which result from the new stomatal scheme, constrained by a global synthesis of experimental data, provide a valuable advance in the long-term development of the ACCESS modelling system.

Publication Type: Journal Article
Murdoch Affiliation: School of Veterinary and Life Sciences
Publisher: European Geosciences Union
Copyright: © Author(s) 2015
URI: http://researchrepository.murdoch.edu.au/id/eprint/29381
Item Control Page Item Control Page

Downloads

Downloads per month over past year