Parasites of Feral Cats and Native Fauna from Western Australia: The Application of Molecular Techniques for the Study of Parasitic Infections in Australian Wildlife

Peter John ADAMS

B. Sc. (Hons)

This thesis is presented for the degree of Doctor of Philosophy of Murdoch University, 2003.
I declare that this thesis is my own account of my research and contains as its main content work, which has not previously been submitted for a degree at any tertiary education institution.

......................................

Peter John ADAMS
Abstract

A survey of gastro-intestinal parasites was conducted on faecal samples collected from 379 feral cats and 851 native fauna from 16 locations throughout Western Australia. The prevalence of each parasite species detected varied depending upon the sampling location. Common helminth parasites detected in feral cats included *Ancylostoma* spp. (29.8%), *Oncicola pomatostomi* (25.6%), *Spirometra erinaceieuropaei* (14%), *Taenia taeniaeformis* (4.7%), *Physaloptera praeputialis* (3.7%) and *Toxocara cati* (2.6%). The most common protozoan parasites detected in feral cats were *Isospora rivolta* (16.9%) and *I. felis* (4.5%). The native mammals were predominately infected with unidentified nematodes of the order Strongylida (59.1%), with members of the orders Rhabditida, Spirurida and Oxyurida also common. Oxyuroid nematodes were most common in the rodents (47.9%) and western grey kangaroos (27.8%). Several species of *Eimeria* were detected in the marsupials whilst unidentified species of *Entamoeba* and coccidia were common in most of the native fauna.

Primers anchored in the first and second internal transcribed spacers (ITS1 and ITS2) of the ribosomal DNA (rDNA) were used to develop a polymerase chain reaction-linked restriction fragment length polymorphism (PCR-RFLP) technique to differentiate the species of *Ancylostoma* detected in feral cats. Amplification of the ITS+ region (ITS1, ITS2 and 5.8S gene) followed by digestion with the endonuclease *Rsa*I produced characteristic patterns for *A. tubaeforme*, *A. ceylanicum* and *A. caninum*, which were detected in 26.6%, 4.7% and 0% of feral cats respectively.

Giardia was detected in a cat, dingo, quenda and two native rodents. Sequence analysis at the small subunit rDNA gene (SSU-rDNA) identified the cat and dingo as harbouring
G. duodenalis infections belonging to the genetic assemblages A and D respectively. Subsequent analysis of the SSU-rDNA and elongation factor 1 alpha (*ef1α*) identified a novel species of *Giardia* occurring in the quenda. Attempts to genetically characterise the *Giardia* in the two native rodents were unsuccessful.

Serological detection of *Toxoplasma gondii* was compared to a one tube hemi-nested PCR protocol to evaluate its sensitivity. PCR was comparable to serology in detecting *T. gondii* infections, although PCR was a much more definitive and robust technique than serology for large numbers of samples. Amplification of *T. gondii* DNA detected infections in 4.9% of feral cats and 6.5% of native mammals. The distribution of *T. gondii* does not appear to be restricted by environmental factors, which implies that vertical transmission is important for the persistence of *T. gondii* infections in Western Australia.

These results demonstrate that cats carry a wide range of parasitic organisms, many of which may influence the survival and reproduction of native mammals. As such, the large-scale conservation and reintroduction of native fauna in Western Australia must not disregard the potential influence parasites can have on these populations.
Table of Contents

Title Page .. i
Declaration.. iii
Abstract.. v
Table of Contents .. vii
Publications and Presentations... xiii
List of Tables .. xv
List of Figures.. xvii
Acknowledgements... xviii

1.1 INTRODUCED ANIMALS IN AUSTRALIA ... 1

1.2 THE CAT ... 1

1.2.1 The Feline Advantage ... 3

1.2.2 Feline Social Structure.. 3

1.2.3 The Feral Cat Diet.. 4

1.3 DECLINE OF NATIVE SPECIES IN AUSTRALIA .. 5

1.4 PARASITES AND DISEASE ... 6

1.4.1 Pathogens and Food Webs .. 6

1.4.2 Impact of Parasites on Populations ... 8

1.4.3 Impact of Introduced Pathogens .. 9

1.4.4 Emergence of Disease .. 10

1.4.5 Pathogen Pollution and Apparent Competition... 12

1.4.6 Parasites in Small Populations ... 13

1.4.7 Conservation and Disease... 15

1.4.8 The Role of Disease in Australian Extinctions ... 17

1.4.9 Australia’s Historical Ecosystem Restructuring ... 18
2.4.2.1 Toxocara cati ... 48
2.4.2.2 Ancylostoma ... 49
2.4.2.3 Aelurostrongylus abstrusus 50
2.4.2.4 Cyathospirura dasyuridis and Cylicospirura felineus 51
2.4.2.5 Gnathostoma spinigerum ... 53
2.4.2.6 Physaloptera and Abbreviata 54
2.4.2.7 Ollulanus tricuspis ... 56

2.4.3 Cestode Parasites of Feral Cats .. 57
 2.4.3.1 Dipylidium caninum .. 57
 2.4.3.2 Anoplotaenia dasyuri ... 57
 2.4.3.3 Taenids ... 58
 2.4.3.4 Spirometra erinaceieuropaei 60

2.4.4 Acanthocephalan Parasites of Feral Cats 62
 2.4.4.1 Oncicola pomatostomi .. 62

2.4.5 Protozoan Parasites of Feral Cats ... 63
 2.4.5.1 Isospora felis and I. rivolta .. 64
 2.4.5.2 Sarcocystis ... 65
 2.4.5.3 Toxoplasma gondii .. 66
 2.4.5.4 Giardia ... 67
 2.4.5.5 Cryptosporidium ... 67
 2.4.5.6 Eimeria ... 67

2.4.6 Parasites of Native Fauna ... 68

2.4.7 Native Fauna Parasite Communities 69
 2.4.7.1 Dasyurus geoffroii ... 70
 2.4.7.2 Isoodon obesulus and Perameles bougainville 73
 2.4.7.3 Bettongia penicillata .. 76
 2.4.7.4 Trichosurus vulpecula ... 78
 2.4.7.5 Macropus fuliginosus and M. eugenii 80
 2.4.7.6 Notomys alexis, Pseudomys hermannsbergensis and Mus musculus 82

2.4.8 Parasite Transfer Between Feral Cats and Native Fauna 85

3.1 INTRODUCTION .. 87
3.1.1 Hookworm Infections ... 87
3.1.2 Hookworm Occurrence in Australia 89
3.1.3 Identifying Hookworm Species .. 92

3.2 MATERIALS AND METHODS .. 95
3.2.1 Screening for Hookworm Positive Samples 95
3.2.2 Purification and DNA Extraction ... 95
Publications and Presentations

Scientific Papers

Conference Abstracts (Oral Presentations)

Conference Abstracts (Poster Presentation)

List of Tables

Table 2.1 Regional and overall parasite occurrence and prevalence in feral cats throughout Western Australia based on the examination of 379 faecal samples and 23 gastro-intestinal tracts.................................42

Table 2.2 Prevalence of common helminth parasite groups in selected mammal species from Western Australia based on the examination of faecal samples...44

Table 2.3 Prevalence of common protozoan parasite groups in selected mammal species from Western Australia based on the examination of faecal samples...46

Table 3.1 Primers designed for the amplification of specific Ancylostoma species...96

Table 3.2 Hookworm prevalence in feral cats throughout Western Australia...........99

Table 3.3 Prevalence of hookworm infection in feral cats collected from Shark Bay from 1998 to 2000...100

Table 3.4 Prevalence of hookworm infection in feral cats collected from Mount Keith from 1998 to 2000...101

Table 3.5 PCR-RFLP identification of Ancylostoma species in 56 feral cats collected from Western Australia...103

Table 5.1 Primers used in one-tube hemi-nested PCR..153

Table 5.2 T. gondii one-tube hemi-nested PCR amplification results for different host species and tissue samples...158
Table 5.3 Comparison of four different serological tests and the one-tube hemi-nested PCR to detect *T. gondii* in feral cats from three different regions in Western Australia…………………………………………………………………….158

Table 5.4 Detection of *T. gondii* DNA by one-tube hemi-nested PCR in brain samples of 268 feral cats collected from eleven different regions throughout Western Australia……………………………………………………………………...159

Table 5.5 Detection of *T. gondii* DNA by one-tube hemi-nested PCR in brain samples of 200 native mammals collected from eight different regions throughout Western Australia……………………………………………………………………...159

Table 5.6 Summary of *T. gondii* surveys conducted on feral cats in Australia……………………………………………………………………………………………………….166
List of Figures

Figure 2.1 Location of sampling sites within Western Australia showing mammal species collected from each site……………………………………………...34

Figure 2.2 Map of Shark Bay region indicating location of Dirk Hartog Island and Faure Island relative to the Peron Peninsula………………………40

Figure 3.1 Number of feral cats per 100 km transect at Shark Bay from February 1998 to June 2000 based on track counts and trapping success…………100

Figure 3.2 PCR amplification of the ITS$^+$ region of *A. ceylanicum*, *A. tubaeforme* and *A. caninum*……………………………………………………………101

Figure 3.3 PCR-RFLP analysis of the ITS$^+$ region of *A. ceylanicum*, *A. tubaeforme* and *A. caninum* using Rsal………………………………………………102

Figure 4.1 Phylogenetic relationships of *Giardia* isolates inferred by distance-based analysis of SSU-rDNA sequences……………………………………124

Figure 4.2 Phylogenetic relationships of *Giardia* isolates inferred by distance-based analysis of *ef1a* sequences……………………………………………124

Figure 5.1 Transmission cycle of *T. gondii*…………………………………………136

Figure 5.2 Location of tissue sampling sites for *T. gondii* within Western Australia showing mammal species collected from each site………………150

Figure 5.3 Amplification of *T. gondii* B1 gene using both single-step and one-tube hemi-nested PCR techniques……………………………………….156
Acknowledgements

Firstly, I would like to thank my principal supervisor Professor R. C. Andrew Thompson for his support and encouragement throughout this project. Thanks also go to my co-supervisor Dr. Neil Burrows for his encouragement and advice, and without whose support this project would not have come to fruition.

I am extremely grateful to Aileen Elliot and Russ Hobbs for availing me with their parasitological expertise. For their tireless efforts in regards to processing samples, parasite identification and answering of questions I am deeply indebted. I also owe a great debt to Dr. Jennifer Rodger for her assistance in proofreading and formatting of this thesis.

I am extremely grateful to Dr. David “Marvin” Algar and John Angus from the Department of Conservation and Land Management, Woodvale, for their assistance in the collection of feral cat samples for this project. Thanks go also to Adrian Wayne and the Manjimup Crew; Ian “Wheels” Wheeler, Graham “Tub” Liddlelow, Bruce Ward, John Rooney and Colin Ward for their undying enthusiasm and assistance in the collection of native fauna samples for this project. Thanks also go to Dr. Colleen Sims, Mark Britza and Gary Desmond from Shark Bay for their contribution and assistance.

I would like to make mention of my office buddies whose combined insanity helped keep everything in perspective; Rebecca Traub, Jill Meinema, Joyce Eade and Cheeks. Special thanks to Olivier “The French Fighter Pilot” Chavand, whose friendship and support throughout this project has made it bearable.
Thanks also go to Dr. Paul Monis for his help with the phylogenetic analysis of Giardia, Rebecca Traub for designing the species-specific Ancylostoma primers and Frances Brigg for her assistance with sequencing.

Most importantly, I would like to thank my family, Ron, Delma, Matthew and Melinda for their support and sufferance over the years. My eternal gratitude goes to Abbie Fall for her support and love over the last four years, which has helped keep me positive and focussed on the job at hand.

Last but not least, to the Leave It Alone Tuggers indoor cricket team, thanks for nothing.

Angry