
http://researchrepository.murdoch.edu.au/28816/
Greenhouse Gas Implications of Novel and Conventional Rice Production Technologies in the Eastern–Gangetic Plains

Md. Khairul Alam, Wahidul K. Biswas, Richard W. Bell

PII: S0959-6526(15)01298-6
DOI: 10.1016/j.jclepro.2015.09.071
Reference: JCLP 6160

To appear in: Journal of Cleaner Production

Received Date: 10 March 2015
Revised Date: 9 September 2015
Accepted Date: 17 September 2015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Title: Greenhouse Gas Implications of Novel and Conventional Rice Production Technologies in the Eastern–Gangetic Plains

Authors: Md. Khairul Alama; Wahidul K. Biswasb; Richard W. Bella

Corresponding Author: Md. Khairul Alam

Corresponding Author's affiliation: Land Management Group, School of Veterinary and Life Sciences, Murdoch University, WA 6150, Australia; e-mail: khairul.krishi@gmail.com

First Author’s name and address: Md. Khairul Alam, Land Management Group, School of Veterinary and Life Sciences, Murdoch University, WA 6150, Australia; e-mail: khairul.krishi@gmail.com

aLand Management Group, School of Veterinary and Life Sciences, Murdoch University, WA 6150, Australia; e-mail: khairul.krishi@gmail.com

bSustainable Engineering Group, School of Civil and Mechanical Engineering, Curtin University, Bentley, Western Australia 6845, Australia; e-mail. W.Biswas@curtin.edu.au
Greenhouse Gas Implications of Novel and Conventional Rice Production Technologies in the Eastern–Gangetic Plains

Abstract
Wetland rice (Oryza sativa L.) production contributes 55% of agricultural greenhouse gas (GHG) emissions in the world. Hence any new technology with the potential to reduce the GHG emissions of wetland rice could make a significant contribution to total global warming mitigation by agriculture. We applied a streamlined life cycle assessment to the effect of a novel unpuddled transplanting of rice and of increased crop residue retention on GHG emissions from rice fields in the Eastern Gangetic Plains. We compared them with the conventional puddling of soils and current residue retention for transplanting. The GHG emissions from one tonne of rice production for the following four cropping practices were studied: a) conventional puddled transplanting with low residue retention (CTLR); b) conventional puddled transplanting with high residue retention (CTHR); c) unpuddled transplanting following strip tillage with low residue retention (UTLR) and; d) unpuddled transplanting with high residue retention (UTHR). The emissions recorded on–farm and emissions related to pre–farm activities were converted to CO₂-eq using Global Warming Potential (GWP) values of GHGs for 20-, 100- and 500-year time horizons. The GHG emissions of 1 tonne of rice varied from 1.11 to 1.57 tonne CO₂-eq in the 100-year horizon. For all four treatments, soil methane (CH₄) was the predominant GHG emitted (comprising 60–67% of the total) followed by emission from on–farm machinery use. The UTRLR was the most effective GHG mitigation option (it avoided 29%, 16% and 6% of the total GHG emissions in comparison with CTHR, CTLR and UTHR, respectively) in wetland rice production. The novel minimum tillage establishment approach for rice involving strip tillage followed by UT has potential to increase global warming mitigation of wetland rice in the Eastern Gangetic Plains, but further research is needed to assess the role of increased residue retention.

Key words: Barind area, global warming mitigation potential, labour requirement, life cycle assessment, puddling, rice based cropping systems, unpuddled transplanting

Correspondence: Md. Khairul Alam; khairul.krishi@gmail.com; +6170114336/+8801815029112
Abbreviations:

1. ACIAR–Australian Centre for International Agricultural Research
2. ADB–Asian Development Bank
3. BARC–Bangladesh Agricultural Research Council
4. BBS–Bangladesh Bureau of Statistics
5. BDT–Bangladeshi taka
6. CA–Conservation agriculture
7. C–Carbon
8. CH4–Methane
9. CO2–Carbon dioxide
10. CO2eq–Carbon dioxide equivalent
11. DECC–Department of Energy and Climate Change
12. DEFRA–Department for Environment, Food and Rural Affairs
13. FPMU–Food Planning and Monitoring Unit
14. GC–Gas chromatograph
15. GHG–Greenhouse gas
16. GoB–Government of Bangladesh
17. GWP–Global Warming Potential
18. IEA–International Energy Agency
19. IFA–International Fertilizers Association
20. IG–Indo–Gangetic Plains
21. IPCC–Inter–Governmental Panel on Climate Change
22. ISO–International Organization of Standardization
23. LCA–Life Cycle Assessment
24. LCI–Life Cycle Inventory
25. LSD–Least significant difference
26. MoP–Muriate of potash
27. N2O–Nitrous Oxide
28. NO3–Nitrate ion
29. NO–Nitric Oxide
30. NPP–Net primary production
31. OM–Organic matter
32. Rh–Redox potential
33. SPSS–Statistical Package for the Social Sciences
34. SRI–System of Rice Intensification
35. TPR–Puddled transplanted rice
36. UN–FCCC–United Nations Framework Convention on Climate Change
37. UT–Unpuddled transplanting of rice
38. US$–United States Dollar
39. USA–United States of America

1. Introduction

Wetland rice (Oryza sativa L.) production is a major contributor to the worldwide budget of GHGs from agriculture (IPCC, 2013). Many of the factors controlling gas exchange between
rice paddies and the atmosphere are different from those in upland agriculture because rice fields are flooded during most of their cultivation period (Saito et al., 2005; Miyata et al., 2000). Novel establishment technologies are being developed for rice mostly to cope with the decreased availability of labour and water (Islam et al., 2010 and 2013). A novel solution to these constraints for rice production is unpuddled transplanting (UT), a technique of transplanting rice seedlings after minimal soil disturbance in contrast to the conventional practice that puddles soil following several wet tillage operations (Malik et al., 2009). Beside reduced labour and fuel costs and improved timeliness in crop establishment, initial research suggests that UT reduces water requirements for rice establishment. However, it remains unclear how UT of rice cultivation alters CO$_2$, CH$_4$ and N$_2$O emissions and overall global warming potential (GWP).

As a major contributor to global food supply, the rice–wheat cropping system in the Indo–Gangetic Plains (IGP) of South Asia area currently covers about 13.5 Mha of land in Pakistan, Nepal, India, and Bangladesh (Gupta and Seth, 2007). Emission of GHG from rice fields is very sensitive to crop establishment techniques and management practices (Wassmann et al., 2004). The conventional puddled transplanted rice (CT) is a major source of GHG emission, particularly methane (Pathak et al., 2011). Puddling is done to facilitate transplanting of seedlings, suppress weeds and to reduce water loss by percolation. The saturated soil condition lowers soil oxygen content and also soil redox potential, which increases the activity of methanogens (Sharma and DeDatta, 1985) that determine production of CH$_4$ in the soil. Other soil microbial processes controlling denitrification are regulated largely by oxygen status in the soil, which in turn is dependent on soil water content (Nishimura et al., 2004). No–tillage reduced CH$_4$ emissions because rice straw was retained on the soil surface and the soils under those conditions were more oxidised than those of CT (Ito et al., 1995). Dry direct–seeded rice (DSR) decreased CH$_4$ emission as DSR fields were not continuously submerged with water (Ko and Kang, 2000; Pathak et al., 2012b). Corton et al. (2000) and Pathak et al. (2012a) predicted that the GWP can be reduced by 16 to 33 % if the entire area of the Indo–Gangetic Plains under CT was converted to DSR in a rice–based cropping system. The net effect of direct seeding on GHG emissions also depends on N$_2$O emissions, which increase under aerobic conditions. For example, N$_2$O emissions were 1.5 times greater in SRI
(System of Rice Intensification) studies due to the increased soil aeration (Peng et al., 2011; Hou et al., 2012). Wassmann et al. (2004) found that measures to reduce CH$_4$ emissions often lead to increases in N$_2$O emissions, and this trade-off between CH$_4$ and N$_2$O is a major hurdle in reducing GWP of wetland rice. Ideal strategies would reduce emissions of both CH$_4$ and N$_2$O simultaneously. The recent development of UT of rice together with residue retention using bed planting, or strip tillage, as a form of conservation agriculture (CA) for rice establishment (Malik et al., 2009), need to be assessed in terms of relative effects on emissions of CH$_4$ and N$_2$O and on GWP mitigation.

Life cycle assessment (LCA) is an approach to quantify the carbon footprint of a production process, and to identify hotspots and steps in the process where greatest climate change mitigation can be achieved. Although there are difficulties in applying LCA in agriculture, progress has been made with incorporation of on-farm emission of grain production into pre-farm and post-farm value chains of products so that a complete carbon footprint of agricultural processes from production to consumption can be calculated (Blengini and Busto, 2009; Meisterling et al., 2009).

Equivalent CO$_2$ emissions per unit of conventional wetland puddled rice production have been measured previously (Hayashi and Itsubo, 2005; Koga et al., 2006; Masuda, 2006). The activities that drive the emission factors include fertilizer production and distribution, agricultural chemical production and distribution, machinery manufacturing and use and irrigation application (Architectural Institute of Japan, 2003). Kasmaprapruet et al. (2009) have reported that during the life-cycle of rice, most (95%) GWP is contributed by the cultivation, followed by harvesting (2%) and seeding and milling processes (2%). In Italy, LCA has shown that the environmental benefits per tonne are greatly reduced in the case of upland rice production, due to low rice grain yields (Blengini and Busto, 2009). Farag et al. (2013) in their LCA study showed that CH$_4$ emission from the flooded rice fields was the main source of GHG emissions, contributing about 53%, while N fertilization added about 10% and mechanical activities about 1% of the total emissions. On the other hand, in most arable agriculture, as shown by Woods et al. (2008), N$_2$O is the dominant GHG, being responsible for 80% of wheat GHG emissions. Eshun et al. (2013) in a LCA revealed that
N$_2$O contributed the highest proportion (about 70%) of GWP for paddy rice production, followed by CO$_2$. The LCA conducted by Yoshikawa et al. (2010) found that the differences in emission are mainly due to field CH$_4$ in rice production. Harada et al. (2007) compared conventional puddling with no–tillage rice through a LCA study including pre-farm and on-farm stages where no-till rice had 43% lower cumulative CH$_4$ emission and the potential to save 1.78 tonne CO$_2$ ha$^{-1}$ relative to puddled rice.

Incorporation of CA in the rice–based triple cropping system in the Eastern Gangetic Plains remains challenge. The recently developed UT of rice, which involves minimum tillage planting, is suitable for CA and has performed well in yield (Haque et al., 2014), financial returns, soil quality (Sharma et al., 2008) and fuel consumption (2 to 3 times lower) (Islam et al., 2013), but has not been examined for its effects on GWP. Moreover, the effects of residue retention level under UT of rice also need to be assessed. A LCA analysis of the new UT rice production technology can estimate its potential contribution to GWP (Haas et al., 2001; Schmidt, 2008; Blengini and Busto, 2009; Meisterling et al., 2009). The present study was carried out to:

1. assess the GHG emissions for conventional puddling and UT with different levels of crop residue retention;
2. determine the hotspots contributing significantly to the GHG emissions within the system boundaries by a LCA study, and
3. identify the causes for the predominant GHG emissions during the pre– and on–farm stages of rice production.

2. Materials and methods

2.1. Study site and experimental design

The effects of changing from conventional soil puddling to UT along with two levels of residue retention was investigated in Northwest Bangladesh at Alipur village, Durgapur upazilla, Rajshahi division in an Agro–ecological Zone known as the Level Barind Tract (LBT). This region has a distinct physiography of terraced lands at about 8 m above sea level. The region is characterized by low annual rainfall (1370 ± 323mm) with uneven rainfall
distribution and wide variation from year to year and high temperature range (maximum
42.9°C in June 2014 and minimum 6.2°C in January, 2014). The texture class of the
experimental soil was silt loam (44% sand, 34% silt and 22% clay) and the bulk density
ranged from 1.38 g cm⁻³ in strip tillage with high residue retention to 1.49 g cm⁻³ in
conventional tillage with low residue retention. The clay minerals of the soils are mostly
mica, kaolinite, interstratified mica–vermiculite–smectite and kaolinite–smectite
(Moslehuddin et al., 2009). The soil was slightly acidic and classed as Calcareous Brown
Flood Plain and Calcareous Dark Grey Floodplain soils (Aeric Eutrochrept). The field site
was moderately drainable as it was located above the flood level (BARC, 2005).

The field study in 2014 examined two tillage practices (CT and UT) and two residue retention
levels (high residue retention–HR and low residue retention–LR) from four replicates of the
treatments in an experiment established in 2010 (Islam et al., 2013). The experimental design,
followed for the previous 11 crops (three crops per year since 2010), used a split-plot layout
where tillage practices were assigned to the main plots and residue retention levels to the
subplots. Low residue approximates current farmer practice for this region which involves
keeping about 20% of the standing rice crop residue in the field during harvesting of crops.
High residue retained 50% of standing rice residue after harvesting. For the previous lentil,
mungbean and mustard crops in the rotation, LR involved complete removal while HR
returned all crop residues to the plot. The cropping sequence followed for the first three years
in the field was lentil (Lens culinaris L.) – mungbean (Vigna mungo L.) – rain–fed monsoon
rice. In 2013–14, the monsoon rice was followed by mustard (Brassica campestris L.) and
then irrigated dry season rice. Additional chemical inputs were recorded, and were typical of
local farming practices. Soil GHG emissions (CO₂, N₂O and CH₄) were measured repeatedly
at 1–week intervals from each plot throughout the study period using a closed chamber
system. During application of split N fertilizer doses and during drying and re–wetting of the
field, the measurement was more frequent (once in two- or three- day interval).
Close Chamber method

Transparent chambers (30 cm length × 30 cm width × 60 cm height) were made with 3 mm thick acrylic sheets for microbial respiration (Rm) measurement in the field (Hutchinson and Livingston, 1993). Each chamber was covered by dark sheet during Rm measurement. Every sampling event was replicated three times. Immediately after transplanting of rice, selected seedlings were removed so that an aluminium chamber base of 31 cm length × 31 cm width × 7 cm height), complete with a 1 cm × 2.5 cm (width × deep) water groove on the inner side, could be placed on the bare space. The base of the chamber was inserted to 7 cm depth in the soil and the groove was filled with water to make the system air−tight when the measurement was done. Samples were collected within 10:00–16:00 on every sampling day. For the initial gas sample, a silicon tube was attached to the top of the chamber, and a 50 ml gas−tight polypropylene syringe was used at 0 minute after setting up of chamber to extract the gas. The second sampling was done after a further one hour. When an higher amount of gas was required, a 400 ml Tedlar bag was filled up through a silicon tube connected to the syringe.

For CH₄ and N₂O measurements in the fields, transparent gas chambers of 60 cm length × 30 cm width × 100 cm height made by 5 mm thick acrylic sheets were placed over four plants. To allow pressure adjustments in the chamber during gas sampling, a plastic light weight bag was fixed inside. A digital electronic thermometer was attached inside the chamber within a silicon cork. Samples were collected within 10:00–16:00 on every sampling day but timing of sampling days varied according to need and life cycle analysis. Samples were collected in a 50 ml polypropylene syringe at 0 and 60 minutes after sealing the chamber. For sampling of N₂O, a longer time interval was, sometimes, used before collecting the second sampling. The syringe was made air−tight with a three−way stopcock and gas was transferred into a 35 ml bottle and when required transferred into a 400 ml Tedlar bag through a silicon tube attached to the top of the chamber. The gas samples were analysed using gas chromatography for CO₂, CH₄ and N₂O with a CO₂ detector, hydrogen flame ionized detector and combined gas analyzer, respectively (Naser, 2005).
Gas flux calculations

Gas flux was calculated using the following equation (Yagi et al., 1991):

\[F = \frac{V}{A} \times \frac{\Delta c}{\Delta t} \times 273/T \times \rho \]

(1)

\(F \) is the gas flux (mg m\(^{-2}\) h\(^{-1}\)), \(V \) (m\(^3\)) and \(A \) (m\(^2\)) are volume and bottom area of the chamber, respectively; \(\Delta c/\Delta t \) (10\(^{-6}\) m\(^3\) m\(^{-3}\) h\(^{-1}\)) is the gas concentration change in the chamber during a given period;

\(T \) is the absolute temperature (K); \(\rho \) is the density of gas at the standard condition (CO\(_2\) = 1.96 kg m\(^{-3}\), CH\(_4\) = 0.716 kg m\(^{-3}\) and N\(_2\)O = 1.97 kg m\(^{-3}\)); and

With the assumption that GHG emissions follow a linear trend during the interval when gas sampling was not done, total gas fluxes for the rice growing season were calculated by the successive linear interpolation of average gas emissions on the sampling days:

\[
\text{Cumulative gas emission} = \sum_{i=1}^{n-1} (R_i \times D_i)
\]

(2)

Where, \(R_i \) is the mean gas flux (mg m\(^{-2}\) d\(^{-1}\)) of the two sampling times; \(D_i \) is the number of days in the sampling interval, and \(n \) is the number of sampling times.

2.2. Streamlined LCA assessment of GHG emissions from field paddy production

The streamlined LCA approach was adopted; LCA analysis only considered cradle–to–farm gate GHG emissions (Todd and Curran, 1999; Denham et al., 2014). In addition, this research considered GHG emissions only for estimating GWP, which is categorized as a limited impact, focused LCA analysis (Finkbeiner et al., 2011; Barton et al., 2014). This streamlined LCA followed the four steps of ISO 14040–44 to estimate the GHG emissions, including goal, scope, life cycle inventory, impact assessment and interpretation. The interpretation was reported in the results and discussions section.

2.2.1. Goal and scope

Greenhouse gas emissions from rice production were calculated for the following farming practices:
I. Conventional puddled transplanting with low residue retention (CTLR)
II. Conventional puddled transplanting with high residue retention (CTHR)
III. Unpuddled transplanting with low residue retention (UTLR)
IV. Unpuddled transplanting with high residue retention (UTHR)

The goal was accomplished with a functional unit which is the production of one tonne of paddy rice grain. The system boundary consists of pre–farm and on–farm life cycle stages. The input and output data of these life cycle stages for producing one tonne of rice are then quantified to form life cycle inventories for CT and UT with LR and HR retention. The GHG emissions from pre–farm stage involve the multiplication of the amount of inputs with their corresponding emission factors to determine the GHG emissions associated with the production and transportation of these inputs to a paddy field. On–farm GHG emissions are outputs resulting from farm machinery operation and chemical applications. The GHG emissions from pre–farm and on–farm stages are added to determine the amount of GHG emissions associated with the production of one tonne of rice (Figure 1). The inclusion of soil–carbon sequestration associated with rice production in this carbon accounting is beyond the scope of the paper.

2.2.2. Life cycle inventory

Life Cycle Inventory that consists of inputs (e.g., fertilizers, machinery, fungicides, insecticides, herbicides) and outputs (CO$_2$, CH$_4$ and N$_2$O) of pre–farm and on–farm stages (Table 1) of rice production is a pre–requisite to estimate total life cycle GHG emissions.

Pre–farm emissions

Pre–farm GHG emissions include the emissions associated with all activities for producing farm inputs, including chemicals, energy and machinery and the emissions from the transportation of inputs to the paddy field.

Chemicals–The GHG emissions from the production of chemicals were calculated so that the emission factors reflect the situation in Northwest Bangladesh. However, in the absence of the local emission factors of inputs applied to Bangladesh agriculture, a mix of generic and local
data were utilized to develop emission factors for calculating the GHG emissions from the
production and transportation of inputs. The generic value of embodied energy consumption
that is associated with energy consumption in all stages of the production of an input was
sourced from recognized literature (RMIT, 2007; DEFRA, 2008; Bosch and Kuenen, 2009;
Brander et al., 2011), which was multiplied by the local emission factor for energy production
(ADB, 1994; GoB, 2011; Brander et al., 2011).

In some cases, the data for calculating emission factors of chemicals, e.g. insecticides
Malathion™ (malathion: 0,0 dimethyl phosphorodithioate of diethyl mercaptosuccinate),
Sumithion™ (fenitrothion), fungicides Amistar™ (azoxystrobin) and Tilt™ (propiconazole)
and herbicide Refit™ (pretilachlor), were unavailable in the existing literature and so, a local
database was assembled by contacting the local manufacturers directly. The commercial
databases of the products were also checked to quantify the energy used for the production of
a unit. The information on energy consumption was obtained from Syngenta Bangladesh,
Shetu Corporation Bangladesh, and Bangladesh fertilizer companies (Quader, 2003; BBS,
2013) (Karnaphuli Fertilizer Company/Ghorasal Fertilizer Company/Fenchugonj Natural Gas
Fertilizer Company/Chittagong Urea Fertilizer Company/Jamuna Fertilizer Company/Polash
Urea Fertilizer company) for determining the GHG emission factors of urea, superphosphate
and pesticide production. Considering CO₂, CH₄ and N₂O emissions along with transportation
and distribution losses for the generation of electricity for all types of mixes of fuel
(gas/oil/coal), the emission factor used for the study is 0.64 kg CO₂–eq/kWh (Brander et al.,
2011).

In the case of inputs imported to Bangladesh, the GHG emissions from their manufacture
overseas and their transportation to paddy fields were calculated. Bangladesh imports urea,
gypsum, muriate of potash (MoP) fertilizers from Belarus, triple superphosphate (TSP) from
Morocco and Zn and B from China (Bangladesh Business News, 2013; BBS, 2013). Since no
literature provided the emission factors of these fertilizers, generic values of energy
consumption of urea, TSP, MoP, S, Zn and B fertilizers production were multiplied with the
emission factors of energy production of the source countries of the fertilizers. The energy
consumption for unit mass of fertilizer component production was collected from European
and Asian (China) literature (Brentrup and Pallière, 2008, DEFRA, 2008; Zwiers et al., 2009; Bosch and Kuenen, 2009) and then they were multiplied by the emission factors of energy production of Belarus, Morocco, Tunisia, and China, which were sourced from IFA (2009) and IEA (2007 and 2012).

Farm machinery—The GHG emissions from the manufacture of farm machinery were estimated using the USA input/output database (Suh, 2004), based on the monetary value of the machinery, with allowances for exchange rates and inflation (Biswas et al., 2008; Barton et al., 2014). The USA input/output database contains environmental emission data for the manufacture of US$1 equivalent farm machinery. The present value of farm machinery in BDT was converted to the price of 1998 at a deflation rate of 6.64% per year which, eventually, was converted to 1998 US$ with a 0.022 multiplier (WB, 2014; XE.com, 2014). After determining the machinery cost in line with 1998 US$ for one tonne of rice production, it was multiplied by the GHG emission factor of machinery manufacturing (0.15 kg CO$_2$–eq/US$)

Transport—The GHGs from the transport of inputs to the rice field were calculated according to the LCA database (INFRAS, 2010; Kitzes, 2013; HBEFA, 2014; World Resource Institute and WBCSD, 2013). A variety of transport modes including shipping, and trucks (3–7 tonnes) were used to transport inputs from factory gate to the farm and were recorded in tonne–kilometres. When inputs were transported by sea on an ocean–going freighter, a sole sea passage from the port nearest to the manufacturer and to the user were calculated following Biswas et al. (2008) and Barton et al. (2014).

On–farm emissions

On–farm data comprised emissions from farm machinery operations, including cultivation, irrigation and harvesting, and from soil emissions.

Farm machinery—Fuel consumed by farm machinery per hectare was recorded during farming operations in the field experiment. The GHG emissions during the farm machinery operations were calculated by applying the emission factor of fuel for light machinery use (RMIT, 2007; INFRAS, 2010; HBEFA, 2014). Machinery usage was expressed as the amount of fuel in litres per hectare in terms of standard machinery for the region (L t$^{-1}$). Fuel consumption was
dependent on land area, machinery width and the number of times the machinery passed across the land.

Soil – The direct emissions of CO₂, CH₄ and N₂O from soil were quantified at the experimental site (as described above), but the indirect N₂O emissions through ammonia volatilization and leaching were ignored due to soil properties which made these losses unlikely to be significant (IPCC, 2006). Nitrogen use efficiency was expected to be high due to well-controlled continuous flooding of soil to minimize N loss through leaching and volatilization (Bandyopadhyay et al., 2009). Previous measurements of soil strength at this site (M. A. Islam, personal communication) indicate the presence of a plough-pan that would prolong urea residence time in soil resulting in restricted N leaching to deeper soil layers (Patil and Das, 2013). Little of the fertilizer-derived NH₄⁺-N would be oxidized biologically to NO₃-N under the prevailing anaerobic soil conditions which would lower the risk of NO₃-N leaching and N₂O production due to denitrification (Savant and de Datta, 1982). These rice soils also contain clay minerals such as illite or vermiculite (Moslehuuddin et al., 2009) which immobilise NH₄⁺-N through fixation (Allison et al., 1953) leading to low rates of NH₃ volatilisation.

2.2.3. Impact assessment

Impact values of global warming are expressed over 20-, 100- and 500-year time horizons to enable policy makers to make relevant climate change decisions. Accordingly, individual greenhouse gas (CO₂, CH₄ and N₂O) emissions from each production stage were converted to CO₂–eq using established conversion factors for 20-, 100- and 500-year time horizons (IPCC, 2013). But we only discuss 100 year horizon as it is considered as the reference for climate change policy (UN-FCC, 1992 and Fearnside, 2002). Greenhouse gas emissions (as CO₂–eq) were then calculated on a per tonne of rice basis. The seasonal CO₂–eq per hectare (kg CO₂–eq ha⁻¹ season⁻¹) was calculated by summing CO₂–eq across the season. Total GHG emissions per tonne of rice (kg CO₂–eq per tonne rice) were calculated for the single rice season (from late February to June).
2.3. Statistical analysis

The effects of UT and residue retention on CO$_2$–eq emission for the two stages within the rice production system boundary were assessed using a two–factor analysis of variance. All data were statistically analyzed with SPSS (Statistical Package for the Social Sciences) software package version 21 (SPSS Inc., Chicago, IL, USA). Means were compared by using least significant difference (LSD) at $p<0.05$. The statistical analyses of CO$_2$–eq emission per tonne of rice production only for on–farm CO$_2$, CH$_4$ and N$_2$O emissions were conducted since the use of inputs (i.e. energy, chemicals, and machinery) did not vary among treatments.

3. Results and discussion

3.1. Implications of minimum tillage and increased residue retention for streamlined life cycle GHG emissions during wetland rice production

The GHG emissions of rice production were influenced ($p<0.05$) by crop establishment and residue management techniques (Figure 2). Among the techniques, the total GHG emissions from 1 tonne of rice production followed the ascending order: CTHR<UTHR<CTLR<UTLT. Overall, UT (UTLR and UTHR) offers greater GHG saving in the 100-year time horizon (29%, 24% over CTHR and 18%, 16% over CTLR) relative to the conventional puddling method. More specifically, UTLR had the highest reduction potential for on–farm emissions due to emission of least CH$_4$. Although the yield in UTHR was higher than that in UTLR, the latter performed better in terms of total GHG emissions per tonne of rice mainly because the CH$_4$ emissions (25 times more warming potential in 100-year time horizon than CO$_2$) from the high residue retention outweighed the benefits associated with the increased yield.

The lowest emissions by UTLR can be attributed to less disturbance of soil and the presence of a thin oxidised layer at the soil–water interface which may ensure the ongoing flow of oxygen to the soil (Ponnamperuma, 1972). This may favour the activity of CH$_4$ oxidizing bacteria which would diminish soil CH$_4$ emissions (le Mer and Roger, 2001). Anaerobic conditions develop within saturated rice soils within hours of flooding (Adhya et al., 2000; Bodelier, 2003) favouring the growth of methanogens that produce CH$_4$ as a by–product of
their respiration. The application of carbon sources like straw that stimulate methanogen survival and the low redox potential are both driving factors for CH$_4$ emission (Wang et al., 2000; Yao et al., 1999).

The UTLR and UTHR were statistically similar in terms of on–farm emissions of GHGs (Figure 2). The pre–farm emission in UTHR was around equal to the emissions of CTHR, 8.3% lower than UTLR and 5.5% lower than CTLR due to higher productivity and increased input efficiency.

Overall, the pre–farm emissions were significantly lower than on–farm emissions for CTLR, CTHR, UTLR and UTHR (9.4%, 7.5%, 11.4%, and 9.9% in the 100 years horizon of on–farm emissions). The production of pesticide and fertilizer alone contributed 8%, 6%, 6% and 6% to the total of CO$_2$–eq GHG emissions for the 100 years horizon during the pre–farm stage for UTLR, UTHR, CTLR and CTHR, respectively.

3.2 GHG emissions from pre–farm and on–farm stages

Pre–farm stage: The pre–farm stage in the current study produced significantly lower emissions compared to studies conducted in other climates. Differences were also observed among pre-farm emissions of different treatments (p >0.05). The lower pre-farm emissions in this study are due to the lower overall level of inputs (fertilisers, fungicides, insecticides, etc.) used in comparison with yields obtained, to the use of natural gas as a feed–stock for urea production and electricity generation and to light vehicles that are used for transporting inputs to paddy fields in the region of study.

The results of current research in the case of pre-farm emissions are lower than other similar studies of Thanawong et al. (2014; lower by 0.3 tonne CO$_2$–eq to 0.6 tonne CO$_2$–eq tonne$^{-1}$ rice), Xu et al. (2013: 0.53 tonne CO$_2$–eq lower in Jiangsu to 0.73 tonne CO$_2$–eq tonne$^{-1}$ rice lower in Guangdong), Wang et al., (2010; around 20% less to the total GWP per tonne of rice) and Blengini and Busto, (2009; around 0.16 tonne CO$_2$–eq tonne$^{-1}$ rice lower in 100-year time horizon) as these used carbon intensive inputs and had low yields (i.e. low yields higher per tonne base emissions). Wang et al. (2010) found that rice crops with yields of 8.8 Mt ha$^{-1}$ accounted for higher emissions than rice yielding 9.3 Mt ha$^{-1}$ due to more than double the inputs in the former case (Brodt et al. 2014). Fusi et al. (2014) also found 30–40% of the total GHGs came from pre–farm inputs manufacturing (mainly fertiliser production), transport and
rate of input use per tonne of harvest. The present study also contradicted the results of Blengini and Busto (2009) who found around 35% of gross energy (GER) and almost 40% of NRER (Non-Renewable Energy Requirement) required for white milled rice production were contributed by pre–farm inputs which consequently contributed to high emissions. By contrast with the wetland rice cropping systems, Barton et al. (2014) studied upland cropping systems in a semi–arid environment and found that the contribution of pre–farm processes could vary between 28 (0.1 tonne CO$_2$–eq tonne$^{-1}$ grain in lupin–wheat rotation without lime per year) and 55% (0.35 tonne CO$_2$–eq tonne$^{-1}$ grain in wheat–wheat rotation with lime application per year) of total GHG emissions depending on the application of lime. In the same semi–arid climate, Biswas et al. (2008) found that pre–farm stages accounted for 58% (0.1 tonne CO$_2$–eq tonne$^{-1}$) of the total emission for wheat production. While soil emissions of CH$_4$ and N$_2$O were relatively low under upland rice or dryland wheat cropping, with flooded rice production, the high CH$_4$ emission results in a higher percentage of on–farm emissions. Finally, the emissions during the pre–farm stage are mostly CO$_2$ emissions by contrast with CH$_4$ and N$_2$O that have much greater GWP, and are predominantly emitted during the on–farm stage.

On–farm stage: The contribution of on–farm processes varied between 89 and 93% (in the 100 years horizon) of total GHG emissions during wetland rice production. The on–farm GHG emissions from CTLR and CTHR were 91 and 93% of the total emissions while the percentages were 89 and 90% (100-year horizon) in the case of UTLR and UTHR, respectively. The CTHR contributed the highest on–farm emissions resulting from lower productivity and higher methane emissions. Among the main factors affecting emissions from agriculture are cultivation practices adopted (Lal, 2004), input use (Cheng et al., 2011) and soil fertility status (Duby and Lal, 2009; Gupta et al., 2009). The fuel consumption for irrigation and land preparation and harvesting (0.6–0.9%) alone accounted for 14 to 19% of the total emissions of the on–farm emissions. This is supported by the study conducted by Islam et al. (2013) and Khan et al. (2009) who found that irrigation is the major share of energy inputs for rice production. In addition, Thanawong et al. (2014) also found that irrigated rice produced higher on–farm emissions than rain-fed rice growing as the emissions of CH$_4$ of the former were almost double those of rain-fed rice. Other studies also confirmed
that water and N management, organic matter (OM) application and crop establishment
practices regulate GHG emission (Yagi et al., 1996; Nishimura et al., 2004). All these factors
(e.g. water, high N application, tillage practices and crop residues) are integral to wetland rice
production but they are favourable for GHG emissions. In addition, these practices also
influenced CH$_4$ and N$_2$O emissions through the changes of soil properties (e.g., soil porosity,
soil temperature and soil moisture, etc.) (Al–Kaisi and Yin, 2005; Yao et al., 1999; Yao et al.,
2009). Bockari–Gevao et al. (2005) reported that the operational energy consumed by tillage
on average was 1.75 GJ ha$^{-1}$ (48.6% of the total operation energy) which was the highest
contributor among the operational requirements but UT increases energy productivity by up to
12% (Islam et al., 2013). The use of UT also saved ~ 67 % fuel consumption due to fewer
passes per unit area by machinery and thereby less distance travelled for seedling
establishment (Islam et al., 2012) leading to less emissions under UT. In the following
section, we identify the hotspots for GHG emissions.

3.3. Identifying hotspots contributing to significant GHG emissions

The CH$_4$ emissions from paddy fields accounted for the major portion (60–67% in the 100-
year time horizon) of GHG emissions in all treatments/practices, followed by farm machinery
use (13–16%), CO$_2$ emissions from soil (9–10%), production of inputs (6–9%) and transport
of inputs (2–3%) (Figure 2). Contributions to GHG emissions from CH$_4$ in the 100-years
horizon ranged from 60% for UTLR practice to 67% for CTHR practice.

The IPCC (2007) substantiated that the cultivation of irrigated rice is responsible for up to
12% of anthropogenic methane (almost half of total agricultural CH$_4$ emission) efflux. The
results of the current study differ from many other grain crop LCA studies in terms of
hotspots. Nemecek et al. (2008) conducted LCA on upland crop (oilseed rape –wheat –spring
peas –winter wheat –winter barley) rotations and found N$_2$O was the key contributor of GHG
emissions (CO$_2$–eq). Indeed, N$_2$O has been found to be the dominant GHG in most LCA
studies of arable agriculture (Woods et al., 2008; Eshun et al., 2013; Brock et al., 2012)
because aerobic conditions with intermittent waterlogging stimulate the emission of N$_2$O
(Flessa and Beese, 1995), whereas CH$_4$ emission in aerobic soils can even be negative due to
microbial CH$_4$ oxidation (Barton et al., 2013, 2014).
Interestingly, the hotspots in the current research were the same as those in pasture production (beef, milk etc. by ruminants) which also resulted in the highest enteric CH\textsubscript{4} emission (63% for beef production in Beauchemin et al., 2010; 49% for milk production in Casey and Holden, 2005; 50% in beef production in Vergé et al., 2008; 83–90% in sheep meat and wool production in Biswas et al., 2010). However, the processes generating CH\textsubscript{4} emissions are different in these two cases: belching of CH\textsubscript{4} emissions from ruminants for the pasture industries and anaerobic decomposition of organic residues in wetland rice production.

The hotspot results of the current study were similar to the LCA conducted by Harada et al. (2007) and Pathak et al. (2005) who also found that CH\textsubscript{4} was the highest contributor of GHG emission (around 60%) for rice production. Again, Fumoto et al. (2008), Hokazono and Hayashi (2012) and Hatcho et al. (2012) who evaluated wetland rice cultivation in Japan, and Drocourt et al. (2012) who evaluated rice cultivation in France, identified CH\textsubscript{4} emissions as the key contributor to GWP. Fusi et al. (2014) also found CH\textsubscript{4} emissions from the soil, due to the anaerobic decomposition of organic matter, was by far the main emission source for wetland rice cultivation (40%). Whilst these studies found CH\textsubscript{4} as the dominant source of GHG emissions, their contributions were still lower than the values in the current analysis (i.e. 76%, 0.67 tonne CO\textsubscript{2}–eq tonne-1 of rice production for UTLR, 0.76 tonne CO\textsubscript{2}–eq tonne-1 of rice production for UTHR). Also Drocourt et al. (2012) explained that the retention of high residue levels in addition to anaerobic decomposition caused high CH\textsubscript{4} emission from rice fields. The present study, therefore, confirms that CH\textsubscript{4} emissions resulting from anaerobic decomposition of organic matter in unpuddled flooded fields is the dominant emission source regardless of residue levels.

The farm machinery use accounted for the second largest contribution (13–16% of total) followed by the emissions of carbon dioxide (9–10% of total) from soil during the on–farm stage. Blengini and Busto (2009) in their LCA of rice production in Italy also identified on–farm methane emissions, farm machinery use and emissions due to fertilizer applications as the main hotspots, in that order of priority. The soil N\textsubscript{2}O emissions comprised only 2–3% of total emissions for different treatments in the present study (Figure 2).
3.4 Overall GHG emissions

Total pre–farm and on–farm emissions from production of 1 tonne of rice in the Eastern Gangetic Plain were 1.11, 1.19, 1.33 and 1.57 tonne CO$_2$-eq for UTLR, UTHR, CTLR and CTHR, respectively, in the 100-year time horizon. Our results for conventional puddling are similar to studies conducted by Hokazono et al. (2009) as the GHG emissions in Japan from pre–farm and on–farm stages were 1.51, 1.34 and 1.62 tonne CO$_2$-eq tonne$^{-1}$ of rice production for the conventional, sustainable and organic farming systems, respectively. Farag et al. (2013) revealed that GHG emission for rice within the same system boundary (i.e. up to farm gate) was 1.9 t CO$_2$-eq tonne$^{-1}$. In addition, Ryu et al. (2013) estimated the carbon footprint under puddled production of rice was 2.21 t CO$_2$-eq tonne$^{-1}$ up to the harvest (farm–gate) periphery. Therefore, the GHG emission values of 1.33–1.57 tonne CO$_2$-eq tonne$^{-1}$ of puddled transplanted rice in the current study were closely similar to values reported for rice produced in other locations under different climatic conditions.

3.5. Predominant GHG emissions from field

Given that CH$_4$ was the dominant GHG emission further analysis is needed on the reasons for these emission values and potential for further decreases (Figure 3). Long–term increase in residue incorporation in the field under study might increase CH$_4$ emission (Kanno et al., 1997) and the prolonged reducing conditions with two rice crops in the previous 9 months may have increased generation of CH$_4$ (Ponnamperuma, 1972; Takai and Kamura, 1966; Yu and Chen, 2004). The on–farm CH$_4$ emission can be reduced by ensuring minimum soil disturbance, and by judicious water and crop residue management. For example, mid–season drainage of soils for a short period with residue retained might favour CO$_2$ emissions rather than CH$_4$ (Yagi and Miami, 1990). The decreased soil disturbance may maintain higher redox potential under UT that limits emissions of CH$_4$. The redox potential values varied among tillage and residue retention practices with range of Eh values from –200 to –250mV for CTLR and CTHR and –150 to –200 mV for UTLR and UTHR (data not shown). If so, modification of the strip tillage may be designed to achieve even less soil disturbance. However, research would be needed to ascertain how to avoid stimulating N$_2$O emission from the present 2–3.5% of the total direct on–farm GHG emitted for rice production in the Eastern Gangetic Plains. Comparatively small increases in emissions of N$_2$O can contribute
substantially to GHG emissions. Xing (1998) found that rice fields were a key source of N$_2$O emission, accounting for 22% of the total emission from cropland in China (Xing 1998). On the other hand, work on the LCA of rice by Nishimura et al. (2004), Wassmann and Dobermann (2006) and Six et al. (2004) were similar to our results as they found that the rice fields contribute 2–8% of the total amount of direct on-farm emissions. The rate of N$_2$O emission from wetland rice field was small in the study of Minami and Fukushi (1984). The present study found 0.2 (UTLR) to 0.4% (CTHR) of the applied N fertilizer was emitted as N$_2$O. This value is lower than the default value (1%) of N$_2$O loss from mineral N applied as fertilizer used by the IPCC (2006). Most of the produced N$_2$O might be reduced to di-nitrogen (N$_2$) in wetland rice (anaerobic) condition (Nishimura et al., 2004).

Soil carbon sequestration may become important in the UT cropping systems over time due to decreased soil disturbance (strip tillage) especially with increased residue retention. It may take several more years before the changes in soil organic carbon reach equilibrium with the reduced soil disturbance in UT and the increased residue retention. Studies on soil organic carbon are underway at the present site where tillage and residue treatments have been practiced for more than 4 years.

The other crops in the cropping system now under study are mustard (Brassica campestris L.) which is usually grown in cool–dry season (from mid-October to middle March) and transplanted aman rice which is grown in the monsoon season (from early July to middle October and characterised with high rainfall and humidity). Life cycle analysis studies are also required on these crops in order to complete a temporal and spatial assessment of the life cycle greenhouse gas mitigation potential in the intensive rice-based cropping systems of the Eastern Gangetic plain.

4. Conclusions

The present study estimated GHG emission mitigation potential associated with the application of the recently developed UT of rice and with increased residue retention in the Eastern Gangetic Plains. The conventional puddled transplanting with high residue retention (CTHR) emitted (1.6 tonne CO$_2$–eq) about 1.4 (on the basis of 100-year time horizon) times more GHG emissions for one tonne of rice production than the best mitigation option which
was strip tillage followed by unpuddled transplanting with LR (UTLR). Applying UTLR in the wetland rice system of the Eastern Gangetic plain can reduce GHG emissions to 1.1 tonne CO₂–eq tonne⁻¹ rice production in the 100-year time horizon.

The on–farm stage contributed the highest portion (e.g. 89– 93% in 100 years) of the total GHG emissions due mostly to high GHGs emission and to farm machinery use. Regardless of tillage or residue retention, CH₄ was the predominant GHG emitted from the production of 1 tonne of rice in the Eastern Gangetic Plains due to anaerobic soil conditions for rice production. We recommend carrying out additional streamlined LCA studies for all the crops of the rice–based cropping system to assess the GWP of the conservation agriculture production practices in diversified rice growing areas.

5. Acknowledgements
The authors would like to thank Institute of Fuel Research and Development laboratories along with Soil, Agronomy and Environment Section under Biological Research Division of Bangladesh Council of Scientific and Industrial Research (BCSIR) for their full cooperation in analysing gas samples and soil samples. The authors are grateful for the use of laboratories at the Soil Science Division of the Bangladesh Agricultural Research Institute and to the farmer at Alipur, Bangladesh who permitted the use of their land. The authors also thank the Australian Centre for International Agricultural Research (Project LWR 2010/080 and a John Allwright Fellowship to the senior author) for their funding support.

6. References

consumption in lowland rice–based cropping system of Malaysia. Songklanakarin J.
Bosch, P., Kuenen, J., 2009. TNO report on Greenhouse gas efficiency of industrial activities
for European Commission, DG Environment, TNO Built Environment and
Geosciences, Princetonlaan 6, the Netherlands, pp75.
emission factors for grid electricity. Ecometrica, 82, 1–22.
Brentrup, F., Pallière, C., 2008. GHG emissions and energy efficiency in European nitrogen
for 1 tonne of wheat produced in Central Zone (East) New South Wales: a life cycle
cycle greenhouse gas emissions in California rice production. Field Crops Res., 169,
89–98.
Corton, T.M., Bajita, J.B., Grospe, F.S., Pamplona, R.R., Assis, C.A., Wassmann, R., Lantin,
R.S., Buendia, L.V., 2000. Methane emission from irrigated and intensively managed
DEFRA, 2008. 2012 Guidelines to DEFRA/DECC’s GHG Conversion Factors for Company
Reporting, Produced by AEA for the Department of Energy and Climate Change
(DECC) and the Department for Environment, Food and Rural Affairs, 17 Smith
Square, London, Version–1

doi:10.1016/j.jclepro.2014.11.080

assessment of rice production in Camargue, France. In: Corson, M.S., van der Werf,
H.M.G. (Eds.), Proceedings of the 8th International Conference on Life Cycle
Assessment in the Agri-Food Sector (LCA Food 2012), 1-4 October 2012, Saint Malo,
France. INRA, Rennes, France, p. 824-825.

systems in Punjab, India, and Ohio, USA. J. Crop Improvement 23, 332-350.

Fearnside, P.M., 2002. Why a 100-year time horizon should be used for global warming
mitigation calculations. Mitigation and Adaptation Strategies for Global Change 7:
19–30.

Finkbeiner, M., Tan, R., Reginald, M., 2011. Life cycle assessment (ISO 14040/44) as basis
for environmental declarations and carbon footprint of products. In: ISO Technical
Committee 207 Workshop, Norway.

Flessa, H., Beese, F., 1995. Effects of sugar beet residue on soil redox potential and nitrous

biogeochemistry model (DNDC) to simulate methane emission from rice paddy fields
under various residue management and fertilizer regimes, Global Change Biology 14,
382–402.

Environmental profile of paddy rice cultivation with different straw management. Sci.
Total Environ. 494–495, 119–128

23

IPCC, 2007. Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, USA.

Khan, S., Khan, M.A., Hanjra, M.A., Mu, J., 2009. Pathways to reduce the environmental footprints of water and energy inputs in food production. Food Policy 34, 141–149

Table 1. Life cycle inventory of pre–farm and on–farm inputs and outputs for one tonne of rice production in the Eastern Gangetic Plain

<table>
<thead>
<tr>
<th>Inputs (units)</th>
<th>Establishment treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CTRLa</td>
</tr>
<tr>
<td>\textit{Pre–farm}</td>
<td></td>
</tr>
<tr>
<td>a) Seeds and chemicals (kg tonne-1 of rice production)</td>
<td></td>
</tr>
<tr>
<td>1. Seeds</td>
<td>7.15</td>
</tr>
<tr>
<td>2. Nitrogen</td>
<td>19.4</td>
</tr>
<tr>
<td>3. Phosphorus</td>
<td>8.35</td>
</tr>
<tr>
<td>4. Potassium</td>
<td>12.8</td>
</tr>
<tr>
<td>5. Sulfur</td>
<td>1.70</td>
</tr>
<tr>
<td>6. Zinc</td>
<td>0.48</td>
</tr>
<tr>
<td>7. Boron</td>
<td>0.50</td>
</tr>
<tr>
<td>8. Fungicides</td>
<td>0.25</td>
</tr>
<tr>
<td>9. Herbicides</td>
<td>0.29</td>
</tr>
<tr>
<td>10. Insecticides</td>
<td>0.45</td>
</tr>
<tr>
<td>b) Transport (km for road + t–nm for sea)1</td>
<td></td>
</tr>
<tr>
<td>1. Urea</td>
<td>62.8</td>
</tr>
<tr>
<td>2. Triple superphosphate</td>
<td>83.1+544</td>
</tr>
<tr>
<td>3. Muriate of potash</td>
<td>83.1+380</td>
</tr>
<tr>
<td>4. Gypsum</td>
<td>83.1+380</td>
</tr>
<tr>
<td>5. Zinc</td>
<td>83.1+380</td>
</tr>
<tr>
<td>6. Boric acid</td>
<td>83.1+265</td>
</tr>
<tr>
<td>7. Insecticides</td>
<td>66.3</td>
</tr>
<tr>
<td>8. Fungicides</td>
<td>81.9</td>
</tr>
<tr>
<td>9. Herbicides</td>
<td>83.1+173</td>
</tr>
<tr>
<td>c) Farm machinery (US$ tonne-1 of rice production)</td>
<td></td>
</tr>
<tr>
<td>1. Power Tiller/Versatile Multi–crop Planter</td>
<td>0.10</td>
</tr>
<tr>
<td>2. Harvester</td>
<td>0.06</td>
</tr>
<tr>
<td>3. Irrigation pump</td>
<td>1.85</td>
</tr>
<tr>
<td>d) Farm machinery transport (km for road + t–nm for sea)</td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td>Yield 1</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>1. Harvester</td>
<td>83.1+265</td>
</tr>
<tr>
<td>2. Power tiller</td>
<td>83.1+265</td>
</tr>
<tr>
<td>3. VMP</td>
<td>–</td>
</tr>
<tr>
<td>4. Irrigation pump</td>
<td>83.1+265</td>
</tr>
</tbody>
</table>

On-farm (litre tonne⁻¹ of rice production)

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Power tiller/Versatile Multi-crop Planter</td>
<td>2.39</td>
<td>2.33</td>
<td>0.99</td>
<td>0.98</td>
</tr>
<tr>
<td>2. Irrigation pump</td>
<td>1.53</td>
<td>1.45</td>
<td>1.55</td>
<td>1.44</td>
</tr>
<tr>
<td>3. Harvester</td>
<td>65.5</td>
<td>66.7</td>
<td>62.2</td>
<td>61.7</td>
</tr>
</tbody>
</table>

Rice yield (tonne/ha) 6.29 6.63 6.18 6.68

1 t–nm=tonne–nautical mile;

2 puddled transplanting with low residue retention (CTLR);

3 puddled transplanting with high residue retention (CTHR);

4 unpuddled transplanting with low residue retention (UTLR) and

5 unpuddled transplanting with high residue retention (UTHR)
List of figures

Fig. 1. System boundaries and input–output relationship adopted in the work
Fig. 2. Life cycle greenhouse gas emissions produced per season for one tonne of rice production as influenced by crop establishment techniques and residue retention.
Fig. 3. Effect of rice establishment techniques and residue retention on on–farm emission of greenhouse gases (CO₂ equivalent).
Fig. 1. System boundaries and input–output relationship adopted in the work.
Fig. 2 (2a-pre-farm and 2b-on-farm emissions; 2c-total emissions showing contributions from different sources). Life cycle greenhouse gas emissions produced per season for one tonne of rice production as influenced by crop establishment techniques and residue retention (p<0.05). Standard error (SE; ±) values for on-farm emissions are 58.2, 32.0 and 16.3 and for total emissions are 57.7, 62.8 and 13.1 over 20-, 100- and 500-year time horizons, respectively. Bars containing the same letter above them are not significantly different at
p<0.05. Comparisons are made among emissions converted to CO₂–eq according to GWPs of CO₂, CH₄ and N₂O over 20-, 100- and 500-year time horizons. [Legend: CT–Conventional puddled transplanting of rice; UT–Unpuddled transplanting of rice; LR–Low residue retention level; HR–Increased residue retention level]
Fig. 3. Effect of rice establishment techniques and residue retention on on-farm emission of greenhouse gases (CO₂ equivalent; p<0.05). Bars with the same letter above them are not significantly different at p<0.05. Comparisons are made among emissions converted to CO₂–eq according to GWPs of CO₂, CH₄ and N₂O over 20-, 100- and 500-year time horizons. SE (±) for CO₂ emission is 4.7. SE (±) values for CH₄ emissions are 124.6, 43.5 and 13.5 and for N₂O emissions are 0.3, 0.2 and 0.2 over 20-, 100- and 500-year time horizons, respectively.
[Legend: CT–Conventional puddled transplanting of rice; UT–Unpuddled transplanting of rice; LR–Low residue retention level; HR–Increased residue retention level].
Highlights

- Wetland rice is a major emitter of greenhouse gases and needs new mitigation strategies
- A streamlined LCA was studied for puddled and unpuddled rice planting with current and increased residue retention
- Non-puddling with low residue retention was the most effective GHG mitigation option
- Puddling soil regardless of residue retention was the least effective GHG mitigation option
- Soil CH$_4$ and on–farm machinery use were the major GHG emission sources.